$sum a_n b_n$ when $sum a_n$ convergent and ${b_n}$ nonnegative
$begingroup$
Let $sum_{i=0}^infty a_n$ be a conditionally convergent series, and ${b_n}$ be a nonnegative and convergent sequence of real or complex numbers. Does $sum_{i=0}^infty a_n b_n$ converge?
Do we actually need convergence of ${b_n}$ for convergence of $sum_{i=0}^infty a_n b_n$ or is it sufficient that ${b_n}$ is nonnegative and bounded?
real-analysis sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
Let $sum_{i=0}^infty a_n$ be a conditionally convergent series, and ${b_n}$ be a nonnegative and convergent sequence of real or complex numbers. Does $sum_{i=0}^infty a_n b_n$ converge?
Do we actually need convergence of ${b_n}$ for convergence of $sum_{i=0}^infty a_n b_n$ or is it sufficient that ${b_n}$ is nonnegative and bounded?
real-analysis sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
Let $sum_{i=0}^infty a_n$ be a conditionally convergent series, and ${b_n}$ be a nonnegative and convergent sequence of real or complex numbers. Does $sum_{i=0}^infty a_n b_n$ converge?
Do we actually need convergence of ${b_n}$ for convergence of $sum_{i=0}^infty a_n b_n$ or is it sufficient that ${b_n}$ is nonnegative and bounded?
real-analysis sequences-and-series convergence
$endgroup$
Let $sum_{i=0}^infty a_n$ be a conditionally convergent series, and ${b_n}$ be a nonnegative and convergent sequence of real or complex numbers. Does $sum_{i=0}^infty a_n b_n$ converge?
Do we actually need convergence of ${b_n}$ for convergence of $sum_{i=0}^infty a_n b_n$ or is it sufficient that ${b_n}$ is nonnegative and bounded?
real-analysis sequences-and-series convergence
real-analysis sequences-and-series convergence
asked Dec 14 '18 at 16:40
Solicitous WookieeSolicitous Wookiee
61
61
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Consider $a_n = frac{(-1)^n}{sqrt{n}}$ and $b_n = 2018+frac{(-1)^n}{sqrt{n}}$. Then all the conditions are met, although we have
$$sum_{n=1}^{infty} a_n b_n = sum_{n=1}^{infty} left( 2018 frac{(-1)^n}{sqrt{n}} + frac{1}{n}right), $$
which diverges.
$endgroup$
$begingroup$
Look good, thanks!
$endgroup$
– Solicitous Wookiee
Dec 14 '18 at 16:54
add a comment |
$begingroup$
Bounded and non-negative is not sufficient. Consider $a_n=frac{(-1)^n}n$ and $b_n=1+(-1)^n$.
$endgroup$
$begingroup$
$b_n$ is not convergent
$endgroup$
– gimusi
Dec 14 '18 at 16:52
$begingroup$
That is the point...
$endgroup$
– SmileyCraft
Dec 14 '18 at 16:53
$begingroup$
@SmileyCraft The question assumes that $b_n$ is a convergent sequence.
$endgroup$
– BigbearZzz
Dec 14 '18 at 16:56
$begingroup$
The OP literally asks "is it sufficient that ${b_n}$ is nonnegative and bounded?" and my example answers this question.
$endgroup$
– SmileyCraft
Dec 14 '18 at 16:59
add a comment |
$begingroup$
Assume
$$a_n = frac{(-1)^n}{sqrt n}$$
$$b_n =begin{cases}=0quad n,text{odd}\\=frac{1}{sqrt n}quad n,text{even} end{cases}$$
and therefore
$$sum_{n=1}^{2N} a_n b_n=sum_{n=1}^{N} frac1{2n} toinfty$$
$endgroup$
$begingroup$
Your sequence $;b_n;$ isn't convergent...
$endgroup$
– DonAntonio
Dec 14 '18 at 16:44
$begingroup$
Opsss...thanks I fix
$endgroup$
– gimusi
Dec 14 '18 at 16:44
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039591%2fsum-a-n-b-n-when-sum-a-n-convergent-and-b-n-nonnegative%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Consider $a_n = frac{(-1)^n}{sqrt{n}}$ and $b_n = 2018+frac{(-1)^n}{sqrt{n}}$. Then all the conditions are met, although we have
$$sum_{n=1}^{infty} a_n b_n = sum_{n=1}^{infty} left( 2018 frac{(-1)^n}{sqrt{n}} + frac{1}{n}right), $$
which diverges.
$endgroup$
$begingroup$
Look good, thanks!
$endgroup$
– Solicitous Wookiee
Dec 14 '18 at 16:54
add a comment |
$begingroup$
Consider $a_n = frac{(-1)^n}{sqrt{n}}$ and $b_n = 2018+frac{(-1)^n}{sqrt{n}}$. Then all the conditions are met, although we have
$$sum_{n=1}^{infty} a_n b_n = sum_{n=1}^{infty} left( 2018 frac{(-1)^n}{sqrt{n}} + frac{1}{n}right), $$
which diverges.
$endgroup$
$begingroup$
Look good, thanks!
$endgroup$
– Solicitous Wookiee
Dec 14 '18 at 16:54
add a comment |
$begingroup$
Consider $a_n = frac{(-1)^n}{sqrt{n}}$ and $b_n = 2018+frac{(-1)^n}{sqrt{n}}$. Then all the conditions are met, although we have
$$sum_{n=1}^{infty} a_n b_n = sum_{n=1}^{infty} left( 2018 frac{(-1)^n}{sqrt{n}} + frac{1}{n}right), $$
which diverges.
$endgroup$
Consider $a_n = frac{(-1)^n}{sqrt{n}}$ and $b_n = 2018+frac{(-1)^n}{sqrt{n}}$. Then all the conditions are met, although we have
$$sum_{n=1}^{infty} a_n b_n = sum_{n=1}^{infty} left( 2018 frac{(-1)^n}{sqrt{n}} + frac{1}{n}right), $$
which diverges.
answered Dec 14 '18 at 16:49
Sangchul LeeSangchul Lee
94k12167272
94k12167272
$begingroup$
Look good, thanks!
$endgroup$
– Solicitous Wookiee
Dec 14 '18 at 16:54
add a comment |
$begingroup$
Look good, thanks!
$endgroup$
– Solicitous Wookiee
Dec 14 '18 at 16:54
$begingroup$
Look good, thanks!
$endgroup$
– Solicitous Wookiee
Dec 14 '18 at 16:54
$begingroup$
Look good, thanks!
$endgroup$
– Solicitous Wookiee
Dec 14 '18 at 16:54
add a comment |
$begingroup$
Bounded and non-negative is not sufficient. Consider $a_n=frac{(-1)^n}n$ and $b_n=1+(-1)^n$.
$endgroup$
$begingroup$
$b_n$ is not convergent
$endgroup$
– gimusi
Dec 14 '18 at 16:52
$begingroup$
That is the point...
$endgroup$
– SmileyCraft
Dec 14 '18 at 16:53
$begingroup$
@SmileyCraft The question assumes that $b_n$ is a convergent sequence.
$endgroup$
– BigbearZzz
Dec 14 '18 at 16:56
$begingroup$
The OP literally asks "is it sufficient that ${b_n}$ is nonnegative and bounded?" and my example answers this question.
$endgroup$
– SmileyCraft
Dec 14 '18 at 16:59
add a comment |
$begingroup$
Bounded and non-negative is not sufficient. Consider $a_n=frac{(-1)^n}n$ and $b_n=1+(-1)^n$.
$endgroup$
$begingroup$
$b_n$ is not convergent
$endgroup$
– gimusi
Dec 14 '18 at 16:52
$begingroup$
That is the point...
$endgroup$
– SmileyCraft
Dec 14 '18 at 16:53
$begingroup$
@SmileyCraft The question assumes that $b_n$ is a convergent sequence.
$endgroup$
– BigbearZzz
Dec 14 '18 at 16:56
$begingroup$
The OP literally asks "is it sufficient that ${b_n}$ is nonnegative and bounded?" and my example answers this question.
$endgroup$
– SmileyCraft
Dec 14 '18 at 16:59
add a comment |
$begingroup$
Bounded and non-negative is not sufficient. Consider $a_n=frac{(-1)^n}n$ and $b_n=1+(-1)^n$.
$endgroup$
Bounded and non-negative is not sufficient. Consider $a_n=frac{(-1)^n}n$ and $b_n=1+(-1)^n$.
answered Dec 14 '18 at 16:41
SmileyCraftSmileyCraft
3,591517
3,591517
$begingroup$
$b_n$ is not convergent
$endgroup$
– gimusi
Dec 14 '18 at 16:52
$begingroup$
That is the point...
$endgroup$
– SmileyCraft
Dec 14 '18 at 16:53
$begingroup$
@SmileyCraft The question assumes that $b_n$ is a convergent sequence.
$endgroup$
– BigbearZzz
Dec 14 '18 at 16:56
$begingroup$
The OP literally asks "is it sufficient that ${b_n}$ is nonnegative and bounded?" and my example answers this question.
$endgroup$
– SmileyCraft
Dec 14 '18 at 16:59
add a comment |
$begingroup$
$b_n$ is not convergent
$endgroup$
– gimusi
Dec 14 '18 at 16:52
$begingroup$
That is the point...
$endgroup$
– SmileyCraft
Dec 14 '18 at 16:53
$begingroup$
@SmileyCraft The question assumes that $b_n$ is a convergent sequence.
$endgroup$
– BigbearZzz
Dec 14 '18 at 16:56
$begingroup$
The OP literally asks "is it sufficient that ${b_n}$ is nonnegative and bounded?" and my example answers this question.
$endgroup$
– SmileyCraft
Dec 14 '18 at 16:59
$begingroup$
$b_n$ is not convergent
$endgroup$
– gimusi
Dec 14 '18 at 16:52
$begingroup$
$b_n$ is not convergent
$endgroup$
– gimusi
Dec 14 '18 at 16:52
$begingroup$
That is the point...
$endgroup$
– SmileyCraft
Dec 14 '18 at 16:53
$begingroup$
That is the point...
$endgroup$
– SmileyCraft
Dec 14 '18 at 16:53
$begingroup$
@SmileyCraft The question assumes that $b_n$ is a convergent sequence.
$endgroup$
– BigbearZzz
Dec 14 '18 at 16:56
$begingroup$
@SmileyCraft The question assumes that $b_n$ is a convergent sequence.
$endgroup$
– BigbearZzz
Dec 14 '18 at 16:56
$begingroup$
The OP literally asks "is it sufficient that ${b_n}$ is nonnegative and bounded?" and my example answers this question.
$endgroup$
– SmileyCraft
Dec 14 '18 at 16:59
$begingroup$
The OP literally asks "is it sufficient that ${b_n}$ is nonnegative and bounded?" and my example answers this question.
$endgroup$
– SmileyCraft
Dec 14 '18 at 16:59
add a comment |
$begingroup$
Assume
$$a_n = frac{(-1)^n}{sqrt n}$$
$$b_n =begin{cases}=0quad n,text{odd}\\=frac{1}{sqrt n}quad n,text{even} end{cases}$$
and therefore
$$sum_{n=1}^{2N} a_n b_n=sum_{n=1}^{N} frac1{2n} toinfty$$
$endgroup$
$begingroup$
Your sequence $;b_n;$ isn't convergent...
$endgroup$
– DonAntonio
Dec 14 '18 at 16:44
$begingroup$
Opsss...thanks I fix
$endgroup$
– gimusi
Dec 14 '18 at 16:44
add a comment |
$begingroup$
Assume
$$a_n = frac{(-1)^n}{sqrt n}$$
$$b_n =begin{cases}=0quad n,text{odd}\\=frac{1}{sqrt n}quad n,text{even} end{cases}$$
and therefore
$$sum_{n=1}^{2N} a_n b_n=sum_{n=1}^{N} frac1{2n} toinfty$$
$endgroup$
$begingroup$
Your sequence $;b_n;$ isn't convergent...
$endgroup$
– DonAntonio
Dec 14 '18 at 16:44
$begingroup$
Opsss...thanks I fix
$endgroup$
– gimusi
Dec 14 '18 at 16:44
add a comment |
$begingroup$
Assume
$$a_n = frac{(-1)^n}{sqrt n}$$
$$b_n =begin{cases}=0quad n,text{odd}\\=frac{1}{sqrt n}quad n,text{even} end{cases}$$
and therefore
$$sum_{n=1}^{2N} a_n b_n=sum_{n=1}^{N} frac1{2n} toinfty$$
$endgroup$
Assume
$$a_n = frac{(-1)^n}{sqrt n}$$
$$b_n =begin{cases}=0quad n,text{odd}\\=frac{1}{sqrt n}quad n,text{even} end{cases}$$
and therefore
$$sum_{n=1}^{2N} a_n b_n=sum_{n=1}^{N} frac1{2n} toinfty$$
edited Dec 14 '18 at 16:58
answered Dec 14 '18 at 16:43
gimusigimusi
92.8k84494
92.8k84494
$begingroup$
Your sequence $;b_n;$ isn't convergent...
$endgroup$
– DonAntonio
Dec 14 '18 at 16:44
$begingroup$
Opsss...thanks I fix
$endgroup$
– gimusi
Dec 14 '18 at 16:44
add a comment |
$begingroup$
Your sequence $;b_n;$ isn't convergent...
$endgroup$
– DonAntonio
Dec 14 '18 at 16:44
$begingroup$
Opsss...thanks I fix
$endgroup$
– gimusi
Dec 14 '18 at 16:44
$begingroup$
Your sequence $;b_n;$ isn't convergent...
$endgroup$
– DonAntonio
Dec 14 '18 at 16:44
$begingroup$
Your sequence $;b_n;$ isn't convergent...
$endgroup$
– DonAntonio
Dec 14 '18 at 16:44
$begingroup$
Opsss...thanks I fix
$endgroup$
– gimusi
Dec 14 '18 at 16:44
$begingroup$
Opsss...thanks I fix
$endgroup$
– gimusi
Dec 14 '18 at 16:44
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039591%2fsum-a-n-b-n-when-sum-a-n-convergent-and-b-n-nonnegative%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown