Proving that the set enclosed by an ellipse is convex












1














I'm trying to prove that the following set ($B$) defined by an ellipse is convex, but I am getting stuck.



$$B = left{(x_1,x_2):3(x_1-3)^2+2(x_2-3)^2 leq 1 right} $$



My sad attempt:



$$ textrm{Let }x,y : in : B :, : lambda : in : [0,1]$$



$$ lambda x+(1-lambda)y=(lambda x_1+(1-lambda)y_1,: lambda x_2 +(1-lambda)y_2 )$$
$$3(lambda x_1 + (1-lambda)y_1 -3)^2+2(lambda x_2+(1-lambda)y_2-3)^2=3(lambda ^2x_1^2 +(1-lambda)^2y_1^2+9+2lambda x_1(1-lambda)y_1-6lambda x_1 -6(1-lambda)y_1)+2(lambda ^2x_2^2 +(1-lambda)^2y_2^2+9+2lambda x_2(1-lambda)y_2-6lambda x_2 -6(1-lambda)y_2)$$



and this is where I have lost all confidence in proving it. I was able to factor some of the terms into the form $(lambda x_1 -3)^2$, $((1-lambda) y_1 -3)^2$, $(lambda x_2 -3)^2$, and $((1-lambda) x_2 -3)^2$, but I don't think that helps the situation any.










share|cite|improve this question





























    1














    I'm trying to prove that the following set ($B$) defined by an ellipse is convex, but I am getting stuck.



    $$B = left{(x_1,x_2):3(x_1-3)^2+2(x_2-3)^2 leq 1 right} $$



    My sad attempt:



    $$ textrm{Let }x,y : in : B :, : lambda : in : [0,1]$$



    $$ lambda x+(1-lambda)y=(lambda x_1+(1-lambda)y_1,: lambda x_2 +(1-lambda)y_2 )$$
    $$3(lambda x_1 + (1-lambda)y_1 -3)^2+2(lambda x_2+(1-lambda)y_2-3)^2=3(lambda ^2x_1^2 +(1-lambda)^2y_1^2+9+2lambda x_1(1-lambda)y_1-6lambda x_1 -6(1-lambda)y_1)+2(lambda ^2x_2^2 +(1-lambda)^2y_2^2+9+2lambda x_2(1-lambda)y_2-6lambda x_2 -6(1-lambda)y_2)$$



    and this is where I have lost all confidence in proving it. I was able to factor some of the terms into the form $(lambda x_1 -3)^2$, $((1-lambda) y_1 -3)^2$, $(lambda x_2 -3)^2$, and $((1-lambda) x_2 -3)^2$, but I don't think that helps the situation any.










    share|cite|improve this question



























      1












      1








      1


      0





      I'm trying to prove that the following set ($B$) defined by an ellipse is convex, but I am getting stuck.



      $$B = left{(x_1,x_2):3(x_1-3)^2+2(x_2-3)^2 leq 1 right} $$



      My sad attempt:



      $$ textrm{Let }x,y : in : B :, : lambda : in : [0,1]$$



      $$ lambda x+(1-lambda)y=(lambda x_1+(1-lambda)y_1,: lambda x_2 +(1-lambda)y_2 )$$
      $$3(lambda x_1 + (1-lambda)y_1 -3)^2+2(lambda x_2+(1-lambda)y_2-3)^2=3(lambda ^2x_1^2 +(1-lambda)^2y_1^2+9+2lambda x_1(1-lambda)y_1-6lambda x_1 -6(1-lambda)y_1)+2(lambda ^2x_2^2 +(1-lambda)^2y_2^2+9+2lambda x_2(1-lambda)y_2-6lambda x_2 -6(1-lambda)y_2)$$



      and this is where I have lost all confidence in proving it. I was able to factor some of the terms into the form $(lambda x_1 -3)^2$, $((1-lambda) y_1 -3)^2$, $(lambda x_2 -3)^2$, and $((1-lambda) x_2 -3)^2$, but I don't think that helps the situation any.










      share|cite|improve this question















      I'm trying to prove that the following set ($B$) defined by an ellipse is convex, but I am getting stuck.



      $$B = left{(x_1,x_2):3(x_1-3)^2+2(x_2-3)^2 leq 1 right} $$



      My sad attempt:



      $$ textrm{Let }x,y : in : B :, : lambda : in : [0,1]$$



      $$ lambda x+(1-lambda)y=(lambda x_1+(1-lambda)y_1,: lambda x_2 +(1-lambda)y_2 )$$
      $$3(lambda x_1 + (1-lambda)y_1 -3)^2+2(lambda x_2+(1-lambda)y_2-3)^2=3(lambda ^2x_1^2 +(1-lambda)^2y_1^2+9+2lambda x_1(1-lambda)y_1-6lambda x_1 -6(1-lambda)y_1)+2(lambda ^2x_2^2 +(1-lambda)^2y_2^2+9+2lambda x_2(1-lambda)y_2-6lambda x_2 -6(1-lambda)y_2)$$



      and this is where I have lost all confidence in proving it. I was able to factor some of the terms into the form $(lambda x_1 -3)^2$, $((1-lambda) y_1 -3)^2$, $(lambda x_2 -3)^2$, and $((1-lambda) x_2 -3)^2$, but I don't think that helps the situation any.







      convex-analysis convex-geometry






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 1 '17 at 23:35









      KReiser

      9,28211435




      9,28211435










      asked Dec 1 '17 at 22:10









      Pat

      156




      156






















          3 Answers
          3






          active

          oldest

          votes


















          2














          We have to prove that if $(a_1,b_1) in B$, and $(a_2,b_2) in B$ then $$(a,b)=(lambda a_1+(1-lambda)a_2,lambda b_1+(1-lambda)b_2) in B.$$



          The trick is to observe that $a-3 = lambda(a_1-3)+(1-lambda)(a_2-3)$ and $b-3 = lambda(b_1-3)+(1-lambda)(b_2-3)$.



          Consequently,
          $$3(a-3)^2 + 2(b-3)^2 = 3(lambda (a_1-3)+(1-lambda)(a_2-3))^2 + 2(lambda (b_1-3)+(1-lambda)(b_2-3))^2.$$
          Simplifying the RHS, we get
          $$3(a-3)^2 + 2(b-3)^2 = lambda^2(3(a_1-3)^2+2(b_1-3)^2) + (1-lambda)^2(3(a_2-3)^2+2(b_2-3)^2) \+ 2lambda(1-lambda)(3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)).$$
          Since $3(a_1-3)^2+2(b_1-3)^2 le 1$ and $3(a_2-3)^2+2(b_2-3)^2 le 1$, we get
          $$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda)(color{red}{3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)}).$$
          By Cauchy-Schwarz inequality, the red expression can be bounded as
          $$3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3) le sqrt{(3(a_1-3)^2+2(b_1-3)^2)(3(a_2-3)^2+2(b_2-3)^2)}=1.$$
          Therefore,
          $$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda) =1.$$
          Q.E.D.






          share|cite|improve this answer





















          • Thank you! It was definitely the "trick" part that I was overlooking.
            – Pat
            Dec 2 '17 at 0:03



















          0














          By shifting it is equivalent to prove that $B' = {3x^2 + 2y^2 leq 1}$ is convex.



          Let $(x_1,y_1), (x_2, y_2) in B'$ and $0leq lambda leq 1$. For brevity let $mu = 1-lambda$.



          Then we need to prove that $(lambda x_1 + mu x_2, lambda y_1 + mu y_2) in B'$. In other words, $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq 1$.



          Claim: $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq lambda(3x_1^2 + 2y_1^2) + mu(3x_2^2 + 2y_2^2)$.



          Reason: Subtract the right hand side by the left hand side, we want to prove the output is $geq 0$. The terms which involves $x_i$'s are
          $$
          3((lambda-lambda^2)x_1^2 + (mu - mu^2)x_2^2 - 2lambdamu x_1x_2) = 3lambdamu(x_1-x_2)^2 geq 0.
          $$



          And the $y$ terms follows by symmetry. This proves the claim and the convexness. (You need to use the fact $lambda = 1-mu$).






          share|cite|improve this answer





























            0














            Let's show that $B={(x,y):(frac{x}{a})^2+(frac{y}{b})^2leq 1}$ is convex.



            Suppose $P,Qin B$ with $P=(x_1,y_1)$ and $Q=(x_2,y_2)$. We need to show $tP+(1-t)Qin B$ for all $tin[0,1]$.
            $$tP+(1-t)Q=Big(tx_1+(1-t)x_2,ty_1+(1-t)y_2Big)$$
            $$Big(frac{tx_1+(1-t)x_2}{a}Big)^2+Big(frac{ty_1+(1-t)y_2}{b}Big)^2=t^2Big((frac{x_1}{a})^2+(frac{y_1}{b})^2Big)+(1-t)^2Big((frac{x_2}{a})^2+(frac{y_2}{b})^2Big)+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)$$
            $$leq t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big).$$
            Using parametrization $x_1=arcos t, y_1=brsin t$ and $x_1=ar'cos t', y_1=br'sin t'$ with $0leq r,r'leq 1$ we have
            $$frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}=frac{a^2rr'cos tcos t'}{a^2}+frac{b^2rr'sin tsin t'}{b^2}=rr'(cos tcos t'+sin tsin t')=rr'cos(t-t')leq rr'leq1.$$
            So
            $$t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)leq t^2+(1-t)^2+2t(1-t)=(t+(1-t))^2=1.$$
            Note that convexity is invariant under translation so ${(x,y): (frac{x-x_0}{a})^2+(frac{y-y_0}{b})^2leq 1}$ is also convex.






            share|cite|improve this answer























              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2546650%2fproving-that-the-set-enclosed-by-an-ellipse-is-convex%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2














              We have to prove that if $(a_1,b_1) in B$, and $(a_2,b_2) in B$ then $$(a,b)=(lambda a_1+(1-lambda)a_2,lambda b_1+(1-lambda)b_2) in B.$$



              The trick is to observe that $a-3 = lambda(a_1-3)+(1-lambda)(a_2-3)$ and $b-3 = lambda(b_1-3)+(1-lambda)(b_2-3)$.



              Consequently,
              $$3(a-3)^2 + 2(b-3)^2 = 3(lambda (a_1-3)+(1-lambda)(a_2-3))^2 + 2(lambda (b_1-3)+(1-lambda)(b_2-3))^2.$$
              Simplifying the RHS, we get
              $$3(a-3)^2 + 2(b-3)^2 = lambda^2(3(a_1-3)^2+2(b_1-3)^2) + (1-lambda)^2(3(a_2-3)^2+2(b_2-3)^2) \+ 2lambda(1-lambda)(3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)).$$
              Since $3(a_1-3)^2+2(b_1-3)^2 le 1$ and $3(a_2-3)^2+2(b_2-3)^2 le 1$, we get
              $$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda)(color{red}{3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)}).$$
              By Cauchy-Schwarz inequality, the red expression can be bounded as
              $$3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3) le sqrt{(3(a_1-3)^2+2(b_1-3)^2)(3(a_2-3)^2+2(b_2-3)^2)}=1.$$
              Therefore,
              $$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda) =1.$$
              Q.E.D.






              share|cite|improve this answer





















              • Thank you! It was definitely the "trick" part that I was overlooking.
                – Pat
                Dec 2 '17 at 0:03
















              2














              We have to prove that if $(a_1,b_1) in B$, and $(a_2,b_2) in B$ then $$(a,b)=(lambda a_1+(1-lambda)a_2,lambda b_1+(1-lambda)b_2) in B.$$



              The trick is to observe that $a-3 = lambda(a_1-3)+(1-lambda)(a_2-3)$ and $b-3 = lambda(b_1-3)+(1-lambda)(b_2-3)$.



              Consequently,
              $$3(a-3)^2 + 2(b-3)^2 = 3(lambda (a_1-3)+(1-lambda)(a_2-3))^2 + 2(lambda (b_1-3)+(1-lambda)(b_2-3))^2.$$
              Simplifying the RHS, we get
              $$3(a-3)^2 + 2(b-3)^2 = lambda^2(3(a_1-3)^2+2(b_1-3)^2) + (1-lambda)^2(3(a_2-3)^2+2(b_2-3)^2) \+ 2lambda(1-lambda)(3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)).$$
              Since $3(a_1-3)^2+2(b_1-3)^2 le 1$ and $3(a_2-3)^2+2(b_2-3)^2 le 1$, we get
              $$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda)(color{red}{3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)}).$$
              By Cauchy-Schwarz inequality, the red expression can be bounded as
              $$3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3) le sqrt{(3(a_1-3)^2+2(b_1-3)^2)(3(a_2-3)^2+2(b_2-3)^2)}=1.$$
              Therefore,
              $$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda) =1.$$
              Q.E.D.






              share|cite|improve this answer





















              • Thank you! It was definitely the "trick" part that I was overlooking.
                – Pat
                Dec 2 '17 at 0:03














              2












              2








              2






              We have to prove that if $(a_1,b_1) in B$, and $(a_2,b_2) in B$ then $$(a,b)=(lambda a_1+(1-lambda)a_2,lambda b_1+(1-lambda)b_2) in B.$$



              The trick is to observe that $a-3 = lambda(a_1-3)+(1-lambda)(a_2-3)$ and $b-3 = lambda(b_1-3)+(1-lambda)(b_2-3)$.



              Consequently,
              $$3(a-3)^2 + 2(b-3)^2 = 3(lambda (a_1-3)+(1-lambda)(a_2-3))^2 + 2(lambda (b_1-3)+(1-lambda)(b_2-3))^2.$$
              Simplifying the RHS, we get
              $$3(a-3)^2 + 2(b-3)^2 = lambda^2(3(a_1-3)^2+2(b_1-3)^2) + (1-lambda)^2(3(a_2-3)^2+2(b_2-3)^2) \+ 2lambda(1-lambda)(3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)).$$
              Since $3(a_1-3)^2+2(b_1-3)^2 le 1$ and $3(a_2-3)^2+2(b_2-3)^2 le 1$, we get
              $$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda)(color{red}{3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)}).$$
              By Cauchy-Schwarz inequality, the red expression can be bounded as
              $$3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3) le sqrt{(3(a_1-3)^2+2(b_1-3)^2)(3(a_2-3)^2+2(b_2-3)^2)}=1.$$
              Therefore,
              $$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda) =1.$$
              Q.E.D.






              share|cite|improve this answer












              We have to prove that if $(a_1,b_1) in B$, and $(a_2,b_2) in B$ then $$(a,b)=(lambda a_1+(1-lambda)a_2,lambda b_1+(1-lambda)b_2) in B.$$



              The trick is to observe that $a-3 = lambda(a_1-3)+(1-lambda)(a_2-3)$ and $b-3 = lambda(b_1-3)+(1-lambda)(b_2-3)$.



              Consequently,
              $$3(a-3)^2 + 2(b-3)^2 = 3(lambda (a_1-3)+(1-lambda)(a_2-3))^2 + 2(lambda (b_1-3)+(1-lambda)(b_2-3))^2.$$
              Simplifying the RHS, we get
              $$3(a-3)^2 + 2(b-3)^2 = lambda^2(3(a_1-3)^2+2(b_1-3)^2) + (1-lambda)^2(3(a_2-3)^2+2(b_2-3)^2) \+ 2lambda(1-lambda)(3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)).$$
              Since $3(a_1-3)^2+2(b_1-3)^2 le 1$ and $3(a_2-3)^2+2(b_2-3)^2 le 1$, we get
              $$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda)(color{red}{3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)}).$$
              By Cauchy-Schwarz inequality, the red expression can be bounded as
              $$3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3) le sqrt{(3(a_1-3)^2+2(b_1-3)^2)(3(a_2-3)^2+2(b_2-3)^2)}=1.$$
              Therefore,
              $$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda) =1.$$
              Q.E.D.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Dec 1 '17 at 22:50









              Math Lover

              13.7k31435




              13.7k31435












              • Thank you! It was definitely the "trick" part that I was overlooking.
                – Pat
                Dec 2 '17 at 0:03


















              • Thank you! It was definitely the "trick" part that I was overlooking.
                – Pat
                Dec 2 '17 at 0:03
















              Thank you! It was definitely the "trick" part that I was overlooking.
              – Pat
              Dec 2 '17 at 0:03




              Thank you! It was definitely the "trick" part that I was overlooking.
              – Pat
              Dec 2 '17 at 0:03











              0














              By shifting it is equivalent to prove that $B' = {3x^2 + 2y^2 leq 1}$ is convex.



              Let $(x_1,y_1), (x_2, y_2) in B'$ and $0leq lambda leq 1$. For brevity let $mu = 1-lambda$.



              Then we need to prove that $(lambda x_1 + mu x_2, lambda y_1 + mu y_2) in B'$. In other words, $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq 1$.



              Claim: $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq lambda(3x_1^2 + 2y_1^2) + mu(3x_2^2 + 2y_2^2)$.



              Reason: Subtract the right hand side by the left hand side, we want to prove the output is $geq 0$. The terms which involves $x_i$'s are
              $$
              3((lambda-lambda^2)x_1^2 + (mu - mu^2)x_2^2 - 2lambdamu x_1x_2) = 3lambdamu(x_1-x_2)^2 geq 0.
              $$



              And the $y$ terms follows by symmetry. This proves the claim and the convexness. (You need to use the fact $lambda = 1-mu$).






              share|cite|improve this answer


























                0














                By shifting it is equivalent to prove that $B' = {3x^2 + 2y^2 leq 1}$ is convex.



                Let $(x_1,y_1), (x_2, y_2) in B'$ and $0leq lambda leq 1$. For brevity let $mu = 1-lambda$.



                Then we need to prove that $(lambda x_1 + mu x_2, lambda y_1 + mu y_2) in B'$. In other words, $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq 1$.



                Claim: $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq lambda(3x_1^2 + 2y_1^2) + mu(3x_2^2 + 2y_2^2)$.



                Reason: Subtract the right hand side by the left hand side, we want to prove the output is $geq 0$. The terms which involves $x_i$'s are
                $$
                3((lambda-lambda^2)x_1^2 + (mu - mu^2)x_2^2 - 2lambdamu x_1x_2) = 3lambdamu(x_1-x_2)^2 geq 0.
                $$



                And the $y$ terms follows by symmetry. This proves the claim and the convexness. (You need to use the fact $lambda = 1-mu$).






                share|cite|improve this answer
























                  0












                  0








                  0






                  By shifting it is equivalent to prove that $B' = {3x^2 + 2y^2 leq 1}$ is convex.



                  Let $(x_1,y_1), (x_2, y_2) in B'$ and $0leq lambda leq 1$. For brevity let $mu = 1-lambda$.



                  Then we need to prove that $(lambda x_1 + mu x_2, lambda y_1 + mu y_2) in B'$. In other words, $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq 1$.



                  Claim: $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq lambda(3x_1^2 + 2y_1^2) + mu(3x_2^2 + 2y_2^2)$.



                  Reason: Subtract the right hand side by the left hand side, we want to prove the output is $geq 0$. The terms which involves $x_i$'s are
                  $$
                  3((lambda-lambda^2)x_1^2 + (mu - mu^2)x_2^2 - 2lambdamu x_1x_2) = 3lambdamu(x_1-x_2)^2 geq 0.
                  $$



                  And the $y$ terms follows by symmetry. This proves the claim and the convexness. (You need to use the fact $lambda = 1-mu$).






                  share|cite|improve this answer












                  By shifting it is equivalent to prove that $B' = {3x^2 + 2y^2 leq 1}$ is convex.



                  Let $(x_1,y_1), (x_2, y_2) in B'$ and $0leq lambda leq 1$. For brevity let $mu = 1-lambda$.



                  Then we need to prove that $(lambda x_1 + mu x_2, lambda y_1 + mu y_2) in B'$. In other words, $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq 1$.



                  Claim: $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq lambda(3x_1^2 + 2y_1^2) + mu(3x_2^2 + 2y_2^2)$.



                  Reason: Subtract the right hand side by the left hand side, we want to prove the output is $geq 0$. The terms which involves $x_i$'s are
                  $$
                  3((lambda-lambda^2)x_1^2 + (mu - mu^2)x_2^2 - 2lambdamu x_1x_2) = 3lambdamu(x_1-x_2)^2 geq 0.
                  $$



                  And the $y$ terms follows by symmetry. This proves the claim and the convexness. (You need to use the fact $lambda = 1-mu$).







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 1 '17 at 22:38









                  Hw Chu

                  3,115518




                  3,115518























                      0














                      Let's show that $B={(x,y):(frac{x}{a})^2+(frac{y}{b})^2leq 1}$ is convex.



                      Suppose $P,Qin B$ with $P=(x_1,y_1)$ and $Q=(x_2,y_2)$. We need to show $tP+(1-t)Qin B$ for all $tin[0,1]$.
                      $$tP+(1-t)Q=Big(tx_1+(1-t)x_2,ty_1+(1-t)y_2Big)$$
                      $$Big(frac{tx_1+(1-t)x_2}{a}Big)^2+Big(frac{ty_1+(1-t)y_2}{b}Big)^2=t^2Big((frac{x_1}{a})^2+(frac{y_1}{b})^2Big)+(1-t)^2Big((frac{x_2}{a})^2+(frac{y_2}{b})^2Big)+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)$$
                      $$leq t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big).$$
                      Using parametrization $x_1=arcos t, y_1=brsin t$ and $x_1=ar'cos t', y_1=br'sin t'$ with $0leq r,r'leq 1$ we have
                      $$frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}=frac{a^2rr'cos tcos t'}{a^2}+frac{b^2rr'sin tsin t'}{b^2}=rr'(cos tcos t'+sin tsin t')=rr'cos(t-t')leq rr'leq1.$$
                      So
                      $$t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)leq t^2+(1-t)^2+2t(1-t)=(t+(1-t))^2=1.$$
                      Note that convexity is invariant under translation so ${(x,y): (frac{x-x_0}{a})^2+(frac{y-y_0}{b})^2leq 1}$ is also convex.






                      share|cite|improve this answer




























                        0














                        Let's show that $B={(x,y):(frac{x}{a})^2+(frac{y}{b})^2leq 1}$ is convex.



                        Suppose $P,Qin B$ with $P=(x_1,y_1)$ and $Q=(x_2,y_2)$. We need to show $tP+(1-t)Qin B$ for all $tin[0,1]$.
                        $$tP+(1-t)Q=Big(tx_1+(1-t)x_2,ty_1+(1-t)y_2Big)$$
                        $$Big(frac{tx_1+(1-t)x_2}{a}Big)^2+Big(frac{ty_1+(1-t)y_2}{b}Big)^2=t^2Big((frac{x_1}{a})^2+(frac{y_1}{b})^2Big)+(1-t)^2Big((frac{x_2}{a})^2+(frac{y_2}{b})^2Big)+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)$$
                        $$leq t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big).$$
                        Using parametrization $x_1=arcos t, y_1=brsin t$ and $x_1=ar'cos t', y_1=br'sin t'$ with $0leq r,r'leq 1$ we have
                        $$frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}=frac{a^2rr'cos tcos t'}{a^2}+frac{b^2rr'sin tsin t'}{b^2}=rr'(cos tcos t'+sin tsin t')=rr'cos(t-t')leq rr'leq1.$$
                        So
                        $$t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)leq t^2+(1-t)^2+2t(1-t)=(t+(1-t))^2=1.$$
                        Note that convexity is invariant under translation so ${(x,y): (frac{x-x_0}{a})^2+(frac{y-y_0}{b})^2leq 1}$ is also convex.






                        share|cite|improve this answer


























                          0












                          0








                          0






                          Let's show that $B={(x,y):(frac{x}{a})^2+(frac{y}{b})^2leq 1}$ is convex.



                          Suppose $P,Qin B$ with $P=(x_1,y_1)$ and $Q=(x_2,y_2)$. We need to show $tP+(1-t)Qin B$ for all $tin[0,1]$.
                          $$tP+(1-t)Q=Big(tx_1+(1-t)x_2,ty_1+(1-t)y_2Big)$$
                          $$Big(frac{tx_1+(1-t)x_2}{a}Big)^2+Big(frac{ty_1+(1-t)y_2}{b}Big)^2=t^2Big((frac{x_1}{a})^2+(frac{y_1}{b})^2Big)+(1-t)^2Big((frac{x_2}{a})^2+(frac{y_2}{b})^2Big)+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)$$
                          $$leq t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big).$$
                          Using parametrization $x_1=arcos t, y_1=brsin t$ and $x_1=ar'cos t', y_1=br'sin t'$ with $0leq r,r'leq 1$ we have
                          $$frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}=frac{a^2rr'cos tcos t'}{a^2}+frac{b^2rr'sin tsin t'}{b^2}=rr'(cos tcos t'+sin tsin t')=rr'cos(t-t')leq rr'leq1.$$
                          So
                          $$t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)leq t^2+(1-t)^2+2t(1-t)=(t+(1-t))^2=1.$$
                          Note that convexity is invariant under translation so ${(x,y): (frac{x-x_0}{a})^2+(frac{y-y_0}{b})^2leq 1}$ is also convex.






                          share|cite|improve this answer














                          Let's show that $B={(x,y):(frac{x}{a})^2+(frac{y}{b})^2leq 1}$ is convex.



                          Suppose $P,Qin B$ with $P=(x_1,y_1)$ and $Q=(x_2,y_2)$. We need to show $tP+(1-t)Qin B$ for all $tin[0,1]$.
                          $$tP+(1-t)Q=Big(tx_1+(1-t)x_2,ty_1+(1-t)y_2Big)$$
                          $$Big(frac{tx_1+(1-t)x_2}{a}Big)^2+Big(frac{ty_1+(1-t)y_2}{b}Big)^2=t^2Big((frac{x_1}{a})^2+(frac{y_1}{b})^2Big)+(1-t)^2Big((frac{x_2}{a})^2+(frac{y_2}{b})^2Big)+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)$$
                          $$leq t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big).$$
                          Using parametrization $x_1=arcos t, y_1=brsin t$ and $x_1=ar'cos t', y_1=br'sin t'$ with $0leq r,r'leq 1$ we have
                          $$frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}=frac{a^2rr'cos tcos t'}{a^2}+frac{b^2rr'sin tsin t'}{b^2}=rr'(cos tcos t'+sin tsin t')=rr'cos(t-t')leq rr'leq1.$$
                          So
                          $$t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)leq t^2+(1-t)^2+2t(1-t)=(t+(1-t))^2=1.$$
                          Note that convexity is invariant under translation so ${(x,y): (frac{x-x_0}{a})^2+(frac{y-y_0}{b})^2leq 1}$ is also convex.







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Nov 27 at 23:17

























                          answered Nov 27 at 4:31









                          BigM

                          2,54111530




                          2,54111530






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2546650%2fproving-that-the-set-enclosed-by-an-ellipse-is-convex%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Aardman Animations

                              Are they similar matrix

                              “minimization” problem in Euclidean space related to orthonormal basis