Proving that the set enclosed by an ellipse is convex
I'm trying to prove that the following set ($B$) defined by an ellipse is convex, but I am getting stuck.
$$B = left{(x_1,x_2):3(x_1-3)^2+2(x_2-3)^2 leq 1 right} $$
My sad attempt:
$$ textrm{Let }x,y : in : B :, : lambda : in : [0,1]$$
$$ lambda x+(1-lambda)y=(lambda x_1+(1-lambda)y_1,: lambda x_2 +(1-lambda)y_2 )$$
$$3(lambda x_1 + (1-lambda)y_1 -3)^2+2(lambda x_2+(1-lambda)y_2-3)^2=3(lambda ^2x_1^2 +(1-lambda)^2y_1^2+9+2lambda x_1(1-lambda)y_1-6lambda x_1 -6(1-lambda)y_1)+2(lambda ^2x_2^2 +(1-lambda)^2y_2^2+9+2lambda x_2(1-lambda)y_2-6lambda x_2 -6(1-lambda)y_2)$$
and this is where I have lost all confidence in proving it. I was able to factor some of the terms into the form $(lambda x_1 -3)^2$, $((1-lambda) y_1 -3)^2$, $(lambda x_2 -3)^2$, and $((1-lambda) x_2 -3)^2$, but I don't think that helps the situation any.
convex-analysis convex-geometry
add a comment |
I'm trying to prove that the following set ($B$) defined by an ellipse is convex, but I am getting stuck.
$$B = left{(x_1,x_2):3(x_1-3)^2+2(x_2-3)^2 leq 1 right} $$
My sad attempt:
$$ textrm{Let }x,y : in : B :, : lambda : in : [0,1]$$
$$ lambda x+(1-lambda)y=(lambda x_1+(1-lambda)y_1,: lambda x_2 +(1-lambda)y_2 )$$
$$3(lambda x_1 + (1-lambda)y_1 -3)^2+2(lambda x_2+(1-lambda)y_2-3)^2=3(lambda ^2x_1^2 +(1-lambda)^2y_1^2+9+2lambda x_1(1-lambda)y_1-6lambda x_1 -6(1-lambda)y_1)+2(lambda ^2x_2^2 +(1-lambda)^2y_2^2+9+2lambda x_2(1-lambda)y_2-6lambda x_2 -6(1-lambda)y_2)$$
and this is where I have lost all confidence in proving it. I was able to factor some of the terms into the form $(lambda x_1 -3)^2$, $((1-lambda) y_1 -3)^2$, $(lambda x_2 -3)^2$, and $((1-lambda) x_2 -3)^2$, but I don't think that helps the situation any.
convex-analysis convex-geometry
add a comment |
I'm trying to prove that the following set ($B$) defined by an ellipse is convex, but I am getting stuck.
$$B = left{(x_1,x_2):3(x_1-3)^2+2(x_2-3)^2 leq 1 right} $$
My sad attempt:
$$ textrm{Let }x,y : in : B :, : lambda : in : [0,1]$$
$$ lambda x+(1-lambda)y=(lambda x_1+(1-lambda)y_1,: lambda x_2 +(1-lambda)y_2 )$$
$$3(lambda x_1 + (1-lambda)y_1 -3)^2+2(lambda x_2+(1-lambda)y_2-3)^2=3(lambda ^2x_1^2 +(1-lambda)^2y_1^2+9+2lambda x_1(1-lambda)y_1-6lambda x_1 -6(1-lambda)y_1)+2(lambda ^2x_2^2 +(1-lambda)^2y_2^2+9+2lambda x_2(1-lambda)y_2-6lambda x_2 -6(1-lambda)y_2)$$
and this is where I have lost all confidence in proving it. I was able to factor some of the terms into the form $(lambda x_1 -3)^2$, $((1-lambda) y_1 -3)^2$, $(lambda x_2 -3)^2$, and $((1-lambda) x_2 -3)^2$, but I don't think that helps the situation any.
convex-analysis convex-geometry
I'm trying to prove that the following set ($B$) defined by an ellipse is convex, but I am getting stuck.
$$B = left{(x_1,x_2):3(x_1-3)^2+2(x_2-3)^2 leq 1 right} $$
My sad attempt:
$$ textrm{Let }x,y : in : B :, : lambda : in : [0,1]$$
$$ lambda x+(1-lambda)y=(lambda x_1+(1-lambda)y_1,: lambda x_2 +(1-lambda)y_2 )$$
$$3(lambda x_1 + (1-lambda)y_1 -3)^2+2(lambda x_2+(1-lambda)y_2-3)^2=3(lambda ^2x_1^2 +(1-lambda)^2y_1^2+9+2lambda x_1(1-lambda)y_1-6lambda x_1 -6(1-lambda)y_1)+2(lambda ^2x_2^2 +(1-lambda)^2y_2^2+9+2lambda x_2(1-lambda)y_2-6lambda x_2 -6(1-lambda)y_2)$$
and this is where I have lost all confidence in proving it. I was able to factor some of the terms into the form $(lambda x_1 -3)^2$, $((1-lambda) y_1 -3)^2$, $(lambda x_2 -3)^2$, and $((1-lambda) x_2 -3)^2$, but I don't think that helps the situation any.
convex-analysis convex-geometry
convex-analysis convex-geometry
edited Dec 1 '17 at 23:35
KReiser
9,28211435
9,28211435
asked Dec 1 '17 at 22:10
Pat
156
156
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
We have to prove that if $(a_1,b_1) in B$, and $(a_2,b_2) in B$ then $$(a,b)=(lambda a_1+(1-lambda)a_2,lambda b_1+(1-lambda)b_2) in B.$$
The trick is to observe that $a-3 = lambda(a_1-3)+(1-lambda)(a_2-3)$ and $b-3 = lambda(b_1-3)+(1-lambda)(b_2-3)$.
Consequently,
$$3(a-3)^2 + 2(b-3)^2 = 3(lambda (a_1-3)+(1-lambda)(a_2-3))^2 + 2(lambda (b_1-3)+(1-lambda)(b_2-3))^2.$$
Simplifying the RHS, we get
$$3(a-3)^2 + 2(b-3)^2 = lambda^2(3(a_1-3)^2+2(b_1-3)^2) + (1-lambda)^2(3(a_2-3)^2+2(b_2-3)^2) \+ 2lambda(1-lambda)(3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)).$$
Since $3(a_1-3)^2+2(b_1-3)^2 le 1$ and $3(a_2-3)^2+2(b_2-3)^2 le 1$, we get
$$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda)(color{red}{3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)}).$$
By Cauchy-Schwarz inequality, the red expression can be bounded as
$$3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3) le sqrt{(3(a_1-3)^2+2(b_1-3)^2)(3(a_2-3)^2+2(b_2-3)^2)}=1.$$
Therefore,
$$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda) =1.$$
Q.E.D.
Thank you! It was definitely the "trick" part that I was overlooking.
– Pat
Dec 2 '17 at 0:03
add a comment |
By shifting it is equivalent to prove that $B' = {3x^2 + 2y^2 leq 1}$ is convex.
Let $(x_1,y_1), (x_2, y_2) in B'$ and $0leq lambda leq 1$. For brevity let $mu = 1-lambda$.
Then we need to prove that $(lambda x_1 + mu x_2, lambda y_1 + mu y_2) in B'$. In other words, $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq 1$.
Claim: $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq lambda(3x_1^2 + 2y_1^2) + mu(3x_2^2 + 2y_2^2)$.
Reason: Subtract the right hand side by the left hand side, we want to prove the output is $geq 0$. The terms which involves $x_i$'s are
$$
3((lambda-lambda^2)x_1^2 + (mu - mu^2)x_2^2 - 2lambdamu x_1x_2) = 3lambdamu(x_1-x_2)^2 geq 0.
$$
And the $y$ terms follows by symmetry. This proves the claim and the convexness. (You need to use the fact $lambda = 1-mu$).
add a comment |
Let's show that $B={(x,y):(frac{x}{a})^2+(frac{y}{b})^2leq 1}$ is convex.
Suppose $P,Qin B$ with $P=(x_1,y_1)$ and $Q=(x_2,y_2)$. We need to show $tP+(1-t)Qin B$ for all $tin[0,1]$.
$$tP+(1-t)Q=Big(tx_1+(1-t)x_2,ty_1+(1-t)y_2Big)$$
$$Big(frac{tx_1+(1-t)x_2}{a}Big)^2+Big(frac{ty_1+(1-t)y_2}{b}Big)^2=t^2Big((frac{x_1}{a})^2+(frac{y_1}{b})^2Big)+(1-t)^2Big((frac{x_2}{a})^2+(frac{y_2}{b})^2Big)+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)$$
$$leq t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big).$$
Using parametrization $x_1=arcos t, y_1=brsin t$ and $x_1=ar'cos t', y_1=br'sin t'$ with $0leq r,r'leq 1$ we have
$$frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}=frac{a^2rr'cos tcos t'}{a^2}+frac{b^2rr'sin tsin t'}{b^2}=rr'(cos tcos t'+sin tsin t')=rr'cos(t-t')leq rr'leq1.$$
So
$$t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)leq t^2+(1-t)^2+2t(1-t)=(t+(1-t))^2=1.$$
Note that convexity is invariant under translation so ${(x,y): (frac{x-x_0}{a})^2+(frac{y-y_0}{b})^2leq 1}$ is also convex.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2546650%2fproving-that-the-set-enclosed-by-an-ellipse-is-convex%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
We have to prove that if $(a_1,b_1) in B$, and $(a_2,b_2) in B$ then $$(a,b)=(lambda a_1+(1-lambda)a_2,lambda b_1+(1-lambda)b_2) in B.$$
The trick is to observe that $a-3 = lambda(a_1-3)+(1-lambda)(a_2-3)$ and $b-3 = lambda(b_1-3)+(1-lambda)(b_2-3)$.
Consequently,
$$3(a-3)^2 + 2(b-3)^2 = 3(lambda (a_1-3)+(1-lambda)(a_2-3))^2 + 2(lambda (b_1-3)+(1-lambda)(b_2-3))^2.$$
Simplifying the RHS, we get
$$3(a-3)^2 + 2(b-3)^2 = lambda^2(3(a_1-3)^2+2(b_1-3)^2) + (1-lambda)^2(3(a_2-3)^2+2(b_2-3)^2) \+ 2lambda(1-lambda)(3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)).$$
Since $3(a_1-3)^2+2(b_1-3)^2 le 1$ and $3(a_2-3)^2+2(b_2-3)^2 le 1$, we get
$$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda)(color{red}{3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)}).$$
By Cauchy-Schwarz inequality, the red expression can be bounded as
$$3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3) le sqrt{(3(a_1-3)^2+2(b_1-3)^2)(3(a_2-3)^2+2(b_2-3)^2)}=1.$$
Therefore,
$$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda) =1.$$
Q.E.D.
Thank you! It was definitely the "trick" part that I was overlooking.
– Pat
Dec 2 '17 at 0:03
add a comment |
We have to prove that if $(a_1,b_1) in B$, and $(a_2,b_2) in B$ then $$(a,b)=(lambda a_1+(1-lambda)a_2,lambda b_1+(1-lambda)b_2) in B.$$
The trick is to observe that $a-3 = lambda(a_1-3)+(1-lambda)(a_2-3)$ and $b-3 = lambda(b_1-3)+(1-lambda)(b_2-3)$.
Consequently,
$$3(a-3)^2 + 2(b-3)^2 = 3(lambda (a_1-3)+(1-lambda)(a_2-3))^2 + 2(lambda (b_1-3)+(1-lambda)(b_2-3))^2.$$
Simplifying the RHS, we get
$$3(a-3)^2 + 2(b-3)^2 = lambda^2(3(a_1-3)^2+2(b_1-3)^2) + (1-lambda)^2(3(a_2-3)^2+2(b_2-3)^2) \+ 2lambda(1-lambda)(3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)).$$
Since $3(a_1-3)^2+2(b_1-3)^2 le 1$ and $3(a_2-3)^2+2(b_2-3)^2 le 1$, we get
$$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda)(color{red}{3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)}).$$
By Cauchy-Schwarz inequality, the red expression can be bounded as
$$3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3) le sqrt{(3(a_1-3)^2+2(b_1-3)^2)(3(a_2-3)^2+2(b_2-3)^2)}=1.$$
Therefore,
$$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda) =1.$$
Q.E.D.
Thank you! It was definitely the "trick" part that I was overlooking.
– Pat
Dec 2 '17 at 0:03
add a comment |
We have to prove that if $(a_1,b_1) in B$, and $(a_2,b_2) in B$ then $$(a,b)=(lambda a_1+(1-lambda)a_2,lambda b_1+(1-lambda)b_2) in B.$$
The trick is to observe that $a-3 = lambda(a_1-3)+(1-lambda)(a_2-3)$ and $b-3 = lambda(b_1-3)+(1-lambda)(b_2-3)$.
Consequently,
$$3(a-3)^2 + 2(b-3)^2 = 3(lambda (a_1-3)+(1-lambda)(a_2-3))^2 + 2(lambda (b_1-3)+(1-lambda)(b_2-3))^2.$$
Simplifying the RHS, we get
$$3(a-3)^2 + 2(b-3)^2 = lambda^2(3(a_1-3)^2+2(b_1-3)^2) + (1-lambda)^2(3(a_2-3)^2+2(b_2-3)^2) \+ 2lambda(1-lambda)(3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)).$$
Since $3(a_1-3)^2+2(b_1-3)^2 le 1$ and $3(a_2-3)^2+2(b_2-3)^2 le 1$, we get
$$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda)(color{red}{3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)}).$$
By Cauchy-Schwarz inequality, the red expression can be bounded as
$$3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3) le sqrt{(3(a_1-3)^2+2(b_1-3)^2)(3(a_2-3)^2+2(b_2-3)^2)}=1.$$
Therefore,
$$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda) =1.$$
Q.E.D.
We have to prove that if $(a_1,b_1) in B$, and $(a_2,b_2) in B$ then $$(a,b)=(lambda a_1+(1-lambda)a_2,lambda b_1+(1-lambda)b_2) in B.$$
The trick is to observe that $a-3 = lambda(a_1-3)+(1-lambda)(a_2-3)$ and $b-3 = lambda(b_1-3)+(1-lambda)(b_2-3)$.
Consequently,
$$3(a-3)^2 + 2(b-3)^2 = 3(lambda (a_1-3)+(1-lambda)(a_2-3))^2 + 2(lambda (b_1-3)+(1-lambda)(b_2-3))^2.$$
Simplifying the RHS, we get
$$3(a-3)^2 + 2(b-3)^2 = lambda^2(3(a_1-3)^2+2(b_1-3)^2) + (1-lambda)^2(3(a_2-3)^2+2(b_2-3)^2) \+ 2lambda(1-lambda)(3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)).$$
Since $3(a_1-3)^2+2(b_1-3)^2 le 1$ and $3(a_2-3)^2+2(b_2-3)^2 le 1$, we get
$$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda)(color{red}{3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3)}).$$
By Cauchy-Schwarz inequality, the red expression can be bounded as
$$3(a_1-3)(a_2-3)+2(b_1-3)(b_2-3) le sqrt{(3(a_1-3)^2+2(b_1-3)^2)(3(a_2-3)^2+2(b_2-3)^2)}=1.$$
Therefore,
$$3(a-3)^2 + 2(b-3)^2 le lambda^2 + (1-lambda)^2+ 2lambda(1-lambda) =1.$$
Q.E.D.
answered Dec 1 '17 at 22:50
Math Lover
13.7k31435
13.7k31435
Thank you! It was definitely the "trick" part that I was overlooking.
– Pat
Dec 2 '17 at 0:03
add a comment |
Thank you! It was definitely the "trick" part that I was overlooking.
– Pat
Dec 2 '17 at 0:03
Thank you! It was definitely the "trick" part that I was overlooking.
– Pat
Dec 2 '17 at 0:03
Thank you! It was definitely the "trick" part that I was overlooking.
– Pat
Dec 2 '17 at 0:03
add a comment |
By shifting it is equivalent to prove that $B' = {3x^2 + 2y^2 leq 1}$ is convex.
Let $(x_1,y_1), (x_2, y_2) in B'$ and $0leq lambda leq 1$. For brevity let $mu = 1-lambda$.
Then we need to prove that $(lambda x_1 + mu x_2, lambda y_1 + mu y_2) in B'$. In other words, $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq 1$.
Claim: $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq lambda(3x_1^2 + 2y_1^2) + mu(3x_2^2 + 2y_2^2)$.
Reason: Subtract the right hand side by the left hand side, we want to prove the output is $geq 0$. The terms which involves $x_i$'s are
$$
3((lambda-lambda^2)x_1^2 + (mu - mu^2)x_2^2 - 2lambdamu x_1x_2) = 3lambdamu(x_1-x_2)^2 geq 0.
$$
And the $y$ terms follows by symmetry. This proves the claim and the convexness. (You need to use the fact $lambda = 1-mu$).
add a comment |
By shifting it is equivalent to prove that $B' = {3x^2 + 2y^2 leq 1}$ is convex.
Let $(x_1,y_1), (x_2, y_2) in B'$ and $0leq lambda leq 1$. For brevity let $mu = 1-lambda$.
Then we need to prove that $(lambda x_1 + mu x_2, lambda y_1 + mu y_2) in B'$. In other words, $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq 1$.
Claim: $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq lambda(3x_1^2 + 2y_1^2) + mu(3x_2^2 + 2y_2^2)$.
Reason: Subtract the right hand side by the left hand side, we want to prove the output is $geq 0$. The terms which involves $x_i$'s are
$$
3((lambda-lambda^2)x_1^2 + (mu - mu^2)x_2^2 - 2lambdamu x_1x_2) = 3lambdamu(x_1-x_2)^2 geq 0.
$$
And the $y$ terms follows by symmetry. This proves the claim and the convexness. (You need to use the fact $lambda = 1-mu$).
add a comment |
By shifting it is equivalent to prove that $B' = {3x^2 + 2y^2 leq 1}$ is convex.
Let $(x_1,y_1), (x_2, y_2) in B'$ and $0leq lambda leq 1$. For brevity let $mu = 1-lambda$.
Then we need to prove that $(lambda x_1 + mu x_2, lambda y_1 + mu y_2) in B'$. In other words, $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq 1$.
Claim: $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq lambda(3x_1^2 + 2y_1^2) + mu(3x_2^2 + 2y_2^2)$.
Reason: Subtract the right hand side by the left hand side, we want to prove the output is $geq 0$. The terms which involves $x_i$'s are
$$
3((lambda-lambda^2)x_1^2 + (mu - mu^2)x_2^2 - 2lambdamu x_1x_2) = 3lambdamu(x_1-x_2)^2 geq 0.
$$
And the $y$ terms follows by symmetry. This proves the claim and the convexness. (You need to use the fact $lambda = 1-mu$).
By shifting it is equivalent to prove that $B' = {3x^2 + 2y^2 leq 1}$ is convex.
Let $(x_1,y_1), (x_2, y_2) in B'$ and $0leq lambda leq 1$. For brevity let $mu = 1-lambda$.
Then we need to prove that $(lambda x_1 + mu x_2, lambda y_1 + mu y_2) in B'$. In other words, $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq 1$.
Claim: $3(lambda x_1 + mu x_2)^2 + 2(lambda y_1 + mu y_2)^2 leq lambda(3x_1^2 + 2y_1^2) + mu(3x_2^2 + 2y_2^2)$.
Reason: Subtract the right hand side by the left hand side, we want to prove the output is $geq 0$. The terms which involves $x_i$'s are
$$
3((lambda-lambda^2)x_1^2 + (mu - mu^2)x_2^2 - 2lambdamu x_1x_2) = 3lambdamu(x_1-x_2)^2 geq 0.
$$
And the $y$ terms follows by symmetry. This proves the claim and the convexness. (You need to use the fact $lambda = 1-mu$).
answered Dec 1 '17 at 22:38
Hw Chu
3,115518
3,115518
add a comment |
add a comment |
Let's show that $B={(x,y):(frac{x}{a})^2+(frac{y}{b})^2leq 1}$ is convex.
Suppose $P,Qin B$ with $P=(x_1,y_1)$ and $Q=(x_2,y_2)$. We need to show $tP+(1-t)Qin B$ for all $tin[0,1]$.
$$tP+(1-t)Q=Big(tx_1+(1-t)x_2,ty_1+(1-t)y_2Big)$$
$$Big(frac{tx_1+(1-t)x_2}{a}Big)^2+Big(frac{ty_1+(1-t)y_2}{b}Big)^2=t^2Big((frac{x_1}{a})^2+(frac{y_1}{b})^2Big)+(1-t)^2Big((frac{x_2}{a})^2+(frac{y_2}{b})^2Big)+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)$$
$$leq t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big).$$
Using parametrization $x_1=arcos t, y_1=brsin t$ and $x_1=ar'cos t', y_1=br'sin t'$ with $0leq r,r'leq 1$ we have
$$frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}=frac{a^2rr'cos tcos t'}{a^2}+frac{b^2rr'sin tsin t'}{b^2}=rr'(cos tcos t'+sin tsin t')=rr'cos(t-t')leq rr'leq1.$$
So
$$t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)leq t^2+(1-t)^2+2t(1-t)=(t+(1-t))^2=1.$$
Note that convexity is invariant under translation so ${(x,y): (frac{x-x_0}{a})^2+(frac{y-y_0}{b})^2leq 1}$ is also convex.
add a comment |
Let's show that $B={(x,y):(frac{x}{a})^2+(frac{y}{b})^2leq 1}$ is convex.
Suppose $P,Qin B$ with $P=(x_1,y_1)$ and $Q=(x_2,y_2)$. We need to show $tP+(1-t)Qin B$ for all $tin[0,1]$.
$$tP+(1-t)Q=Big(tx_1+(1-t)x_2,ty_1+(1-t)y_2Big)$$
$$Big(frac{tx_1+(1-t)x_2}{a}Big)^2+Big(frac{ty_1+(1-t)y_2}{b}Big)^2=t^2Big((frac{x_1}{a})^2+(frac{y_1}{b})^2Big)+(1-t)^2Big((frac{x_2}{a})^2+(frac{y_2}{b})^2Big)+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)$$
$$leq t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big).$$
Using parametrization $x_1=arcos t, y_1=brsin t$ and $x_1=ar'cos t', y_1=br'sin t'$ with $0leq r,r'leq 1$ we have
$$frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}=frac{a^2rr'cos tcos t'}{a^2}+frac{b^2rr'sin tsin t'}{b^2}=rr'(cos tcos t'+sin tsin t')=rr'cos(t-t')leq rr'leq1.$$
So
$$t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)leq t^2+(1-t)^2+2t(1-t)=(t+(1-t))^2=1.$$
Note that convexity is invariant under translation so ${(x,y): (frac{x-x_0}{a})^2+(frac{y-y_0}{b})^2leq 1}$ is also convex.
add a comment |
Let's show that $B={(x,y):(frac{x}{a})^2+(frac{y}{b})^2leq 1}$ is convex.
Suppose $P,Qin B$ with $P=(x_1,y_1)$ and $Q=(x_2,y_2)$. We need to show $tP+(1-t)Qin B$ for all $tin[0,1]$.
$$tP+(1-t)Q=Big(tx_1+(1-t)x_2,ty_1+(1-t)y_2Big)$$
$$Big(frac{tx_1+(1-t)x_2}{a}Big)^2+Big(frac{ty_1+(1-t)y_2}{b}Big)^2=t^2Big((frac{x_1}{a})^2+(frac{y_1}{b})^2Big)+(1-t)^2Big((frac{x_2}{a})^2+(frac{y_2}{b})^2Big)+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)$$
$$leq t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big).$$
Using parametrization $x_1=arcos t, y_1=brsin t$ and $x_1=ar'cos t', y_1=br'sin t'$ with $0leq r,r'leq 1$ we have
$$frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}=frac{a^2rr'cos tcos t'}{a^2}+frac{b^2rr'sin tsin t'}{b^2}=rr'(cos tcos t'+sin tsin t')=rr'cos(t-t')leq rr'leq1.$$
So
$$t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)leq t^2+(1-t)^2+2t(1-t)=(t+(1-t))^2=1.$$
Note that convexity is invariant under translation so ${(x,y): (frac{x-x_0}{a})^2+(frac{y-y_0}{b})^2leq 1}$ is also convex.
Let's show that $B={(x,y):(frac{x}{a})^2+(frac{y}{b})^2leq 1}$ is convex.
Suppose $P,Qin B$ with $P=(x_1,y_1)$ and $Q=(x_2,y_2)$. We need to show $tP+(1-t)Qin B$ for all $tin[0,1]$.
$$tP+(1-t)Q=Big(tx_1+(1-t)x_2,ty_1+(1-t)y_2Big)$$
$$Big(frac{tx_1+(1-t)x_2}{a}Big)^2+Big(frac{ty_1+(1-t)y_2}{b}Big)^2=t^2Big((frac{x_1}{a})^2+(frac{y_1}{b})^2Big)+(1-t)^2Big((frac{x_2}{a})^2+(frac{y_2}{b})^2Big)+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)$$
$$leq t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big).$$
Using parametrization $x_1=arcos t, y_1=brsin t$ and $x_1=ar'cos t', y_1=br'sin t'$ with $0leq r,r'leq 1$ we have
$$frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}=frac{a^2rr'cos tcos t'}{a^2}+frac{b^2rr'sin tsin t'}{b^2}=rr'(cos tcos t'+sin tsin t')=rr'cos(t-t')leq rr'leq1.$$
So
$$t^2+(1-t)^2+2t(1-t)Big(frac{x_1x_2}{a^2}+frac{y_1y_2}{b^2}Big)leq t^2+(1-t)^2+2t(1-t)=(t+(1-t))^2=1.$$
Note that convexity is invariant under translation so ${(x,y): (frac{x-x_0}{a})^2+(frac{y-y_0}{b})^2leq 1}$ is also convex.
edited Nov 27 at 23:17
answered Nov 27 at 4:31
BigM
2,54111530
2,54111530
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2546650%2fproving-that-the-set-enclosed-by-an-ellipse-is-convex%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown