Expectation of the product of three normal variables
$begingroup$
Let $(X_1, X_2, X_3)sim N(mu,Sigma)$ be a three-dimensional random variable where each coordinates are dependent (i.e. $Sigma$ has non-zero values outside of its diagonal)
I want to know how to compute
$E(X_1 X_2^2)$
$E(X_1 X_2 X_3)$
Thanks.
EDIT : I think I know how to do it.
Using Isserlis Theorem, we know that $E((X_1-mu_1) (X_2-mu_2) (X_3-mu_3))=0$.
Also, using the identity $E(X_i X_j) = E(X_i)E(X_j) + Cov(X_i,X_j)$
I expand the expression $E((X_1-mu_1) (X_2-mu_2) (X_3-mu_3))=0$ and use the covariance identity to get:
$$E(X_1 X_2 X_3)=E(X_1) E(X_2) E(X_3)
+E(X_1)Cov(X_2,X_3)
+E(X_2)Cov(X_1,X_3)
+E(X_3)Cov(X_1,X_2)$$
or put differently
$$E(X_1 X_2 X_3)=mu_1mu_2mu_3
+mu_1sigma_{23}
+mu_2sigma_{13}
+mu_3sigma_{12}$$
To get $E(X_1 X_2^2)$, Can I use the derived result and say that $X_3=X_2$ all the time ?
I simply replace the "3"s by 2 in the formula to get
$$E(X_1 X_2^2)=E(X_1 X_2 X_2)=mu_1mu_2mu_2
+mu_1sigma_{22}
+mu_2sigma_{12}
+mu_2sigma_{12}
=mu_1(mu_2^2
+sigma_2^2)
+2mu_2sigma_{12}
$$
Can somebody confirm that I am not doing something wrong ?
Thank you.
normal-distribution covariance expected-value
$endgroup$
add a comment |
$begingroup$
Let $(X_1, X_2, X_3)sim N(mu,Sigma)$ be a three-dimensional random variable where each coordinates are dependent (i.e. $Sigma$ has non-zero values outside of its diagonal)
I want to know how to compute
$E(X_1 X_2^2)$
$E(X_1 X_2 X_3)$
Thanks.
EDIT : I think I know how to do it.
Using Isserlis Theorem, we know that $E((X_1-mu_1) (X_2-mu_2) (X_3-mu_3))=0$.
Also, using the identity $E(X_i X_j) = E(X_i)E(X_j) + Cov(X_i,X_j)$
I expand the expression $E((X_1-mu_1) (X_2-mu_2) (X_3-mu_3))=0$ and use the covariance identity to get:
$$E(X_1 X_2 X_3)=E(X_1) E(X_2) E(X_3)
+E(X_1)Cov(X_2,X_3)
+E(X_2)Cov(X_1,X_3)
+E(X_3)Cov(X_1,X_2)$$
or put differently
$$E(X_1 X_2 X_3)=mu_1mu_2mu_3
+mu_1sigma_{23}
+mu_2sigma_{13}
+mu_3sigma_{12}$$
To get $E(X_1 X_2^2)$, Can I use the derived result and say that $X_3=X_2$ all the time ?
I simply replace the "3"s by 2 in the formula to get
$$E(X_1 X_2^2)=E(X_1 X_2 X_2)=mu_1mu_2mu_2
+mu_1sigma_{22}
+mu_2sigma_{12}
+mu_2sigma_{12}
=mu_1(mu_2^2
+sigma_2^2)
+2mu_2sigma_{12}
$$
Can somebody confirm that I am not doing something wrong ?
Thank you.
normal-distribution covariance expected-value
$endgroup$
add a comment |
$begingroup$
Let $(X_1, X_2, X_3)sim N(mu,Sigma)$ be a three-dimensional random variable where each coordinates are dependent (i.e. $Sigma$ has non-zero values outside of its diagonal)
I want to know how to compute
$E(X_1 X_2^2)$
$E(X_1 X_2 X_3)$
Thanks.
EDIT : I think I know how to do it.
Using Isserlis Theorem, we know that $E((X_1-mu_1) (X_2-mu_2) (X_3-mu_3))=0$.
Also, using the identity $E(X_i X_j) = E(X_i)E(X_j) + Cov(X_i,X_j)$
I expand the expression $E((X_1-mu_1) (X_2-mu_2) (X_3-mu_3))=0$ and use the covariance identity to get:
$$E(X_1 X_2 X_3)=E(X_1) E(X_2) E(X_3)
+E(X_1)Cov(X_2,X_3)
+E(X_2)Cov(X_1,X_3)
+E(X_3)Cov(X_1,X_2)$$
or put differently
$$E(X_1 X_2 X_3)=mu_1mu_2mu_3
+mu_1sigma_{23}
+mu_2sigma_{13}
+mu_3sigma_{12}$$
To get $E(X_1 X_2^2)$, Can I use the derived result and say that $X_3=X_2$ all the time ?
I simply replace the "3"s by 2 in the formula to get
$$E(X_1 X_2^2)=E(X_1 X_2 X_2)=mu_1mu_2mu_2
+mu_1sigma_{22}
+mu_2sigma_{12}
+mu_2sigma_{12}
=mu_1(mu_2^2
+sigma_2^2)
+2mu_2sigma_{12}
$$
Can somebody confirm that I am not doing something wrong ?
Thank you.
normal-distribution covariance expected-value
$endgroup$
Let $(X_1, X_2, X_3)sim N(mu,Sigma)$ be a three-dimensional random variable where each coordinates are dependent (i.e. $Sigma$ has non-zero values outside of its diagonal)
I want to know how to compute
$E(X_1 X_2^2)$
$E(X_1 X_2 X_3)$
Thanks.
EDIT : I think I know how to do it.
Using Isserlis Theorem, we know that $E((X_1-mu_1) (X_2-mu_2) (X_3-mu_3))=0$.
Also, using the identity $E(X_i X_j) = E(X_i)E(X_j) + Cov(X_i,X_j)$
I expand the expression $E((X_1-mu_1) (X_2-mu_2) (X_3-mu_3))=0$ and use the covariance identity to get:
$$E(X_1 X_2 X_3)=E(X_1) E(X_2) E(X_3)
+E(X_1)Cov(X_2,X_3)
+E(X_2)Cov(X_1,X_3)
+E(X_3)Cov(X_1,X_2)$$
or put differently
$$E(X_1 X_2 X_3)=mu_1mu_2mu_3
+mu_1sigma_{23}
+mu_2sigma_{13}
+mu_3sigma_{12}$$
To get $E(X_1 X_2^2)$, Can I use the derived result and say that $X_3=X_2$ all the time ?
I simply replace the "3"s by 2 in the formula to get
$$E(X_1 X_2^2)=E(X_1 X_2 X_2)=mu_1mu_2mu_2
+mu_1sigma_{22}
+mu_2sigma_{12}
+mu_2sigma_{12}
=mu_1(mu_2^2
+sigma_2^2)
+2mu_2sigma_{12}
$$
Can somebody confirm that I am not doing something wrong ?
Thank you.
normal-distribution covariance expected-value
normal-distribution covariance expected-value
edited Dec 14 '18 at 16:55
quantguy
asked Dec 13 '18 at 21:20
quantguyquantguy
835
835
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038578%2fexpectation-of-the-product-of-three-normal-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038578%2fexpectation-of-the-product-of-three-normal-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown