Neumann theorem for Bessel function of the first kind (arbitrary order)
$begingroup$
There is a Neumann theorem, proving that:
$J_0 big(sqrt{Z^2+z^2 - 2Zz cos phi} big)=sum_{k=0}^{infty} epsilon_k J_k(Z) J_k (z) cos k phi$
where $epsilon_0=1$, and $epsilon_k = 2$: $kgeq 1$. It is assumed that $sqrt{Z^2+z^2 - 2Zz cos phi} = |vec{Z} - vec{z}|$.
Does anyone know of a generalization for Bessel functions of arbitrary order $J_m big(sqrt{Z^2+z^2 - 2Zz cos phi} big)$: $m$ is any integer?
summation bessel-functions
$endgroup$
add a comment |
$begingroup$
There is a Neumann theorem, proving that:
$J_0 big(sqrt{Z^2+z^2 - 2Zz cos phi} big)=sum_{k=0}^{infty} epsilon_k J_k(Z) J_k (z) cos k phi$
where $epsilon_0=1$, and $epsilon_k = 2$: $kgeq 1$. It is assumed that $sqrt{Z^2+z^2 - 2Zz cos phi} = |vec{Z} - vec{z}|$.
Does anyone know of a generalization for Bessel functions of arbitrary order $J_m big(sqrt{Z^2+z^2 - 2Zz cos phi} big)$: $m$ is any integer?
summation bessel-functions
$endgroup$
$begingroup$
The $x$ should be a $z$.
$endgroup$
– gammatester
Dec 13 '18 at 21:16
$begingroup$
In case one would need it, the generalization can be found here: quod.lib.umich.edu/u/umhistmath/ACV1415.0001.001/…
$endgroup$
– MsTais
Dec 13 '18 at 21:22
$begingroup$
There some more generalizations in Chap. 11, pp 358
$endgroup$
– gammatester
Dec 13 '18 at 21:33
add a comment |
$begingroup$
There is a Neumann theorem, proving that:
$J_0 big(sqrt{Z^2+z^2 - 2Zz cos phi} big)=sum_{k=0}^{infty} epsilon_k J_k(Z) J_k (z) cos k phi$
where $epsilon_0=1$, and $epsilon_k = 2$: $kgeq 1$. It is assumed that $sqrt{Z^2+z^2 - 2Zz cos phi} = |vec{Z} - vec{z}|$.
Does anyone know of a generalization for Bessel functions of arbitrary order $J_m big(sqrt{Z^2+z^2 - 2Zz cos phi} big)$: $m$ is any integer?
summation bessel-functions
$endgroup$
There is a Neumann theorem, proving that:
$J_0 big(sqrt{Z^2+z^2 - 2Zz cos phi} big)=sum_{k=0}^{infty} epsilon_k J_k(Z) J_k (z) cos k phi$
where $epsilon_0=1$, and $epsilon_k = 2$: $kgeq 1$. It is assumed that $sqrt{Z^2+z^2 - 2Zz cos phi} = |vec{Z} - vec{z}|$.
Does anyone know of a generalization for Bessel functions of arbitrary order $J_m big(sqrt{Z^2+z^2 - 2Zz cos phi} big)$: $m$ is any integer?
summation bessel-functions
summation bessel-functions
edited Dec 13 '18 at 21:21
MsTais
asked Dec 13 '18 at 20:30
MsTaisMsTais
1808
1808
$begingroup$
The $x$ should be a $z$.
$endgroup$
– gammatester
Dec 13 '18 at 21:16
$begingroup$
In case one would need it, the generalization can be found here: quod.lib.umich.edu/u/umhistmath/ACV1415.0001.001/…
$endgroup$
– MsTais
Dec 13 '18 at 21:22
$begingroup$
There some more generalizations in Chap. 11, pp 358
$endgroup$
– gammatester
Dec 13 '18 at 21:33
add a comment |
$begingroup$
The $x$ should be a $z$.
$endgroup$
– gammatester
Dec 13 '18 at 21:16
$begingroup$
In case one would need it, the generalization can be found here: quod.lib.umich.edu/u/umhistmath/ACV1415.0001.001/…
$endgroup$
– MsTais
Dec 13 '18 at 21:22
$begingroup$
There some more generalizations in Chap. 11, pp 358
$endgroup$
– gammatester
Dec 13 '18 at 21:33
$begingroup$
The $x$ should be a $z$.
$endgroup$
– gammatester
Dec 13 '18 at 21:16
$begingroup$
The $x$ should be a $z$.
$endgroup$
– gammatester
Dec 13 '18 at 21:16
$begingroup$
In case one would need it, the generalization can be found here: quod.lib.umich.edu/u/umhistmath/ACV1415.0001.001/…
$endgroup$
– MsTais
Dec 13 '18 at 21:22
$begingroup$
In case one would need it, the generalization can be found here: quod.lib.umich.edu/u/umhistmath/ACV1415.0001.001/…
$endgroup$
– MsTais
Dec 13 '18 at 21:22
$begingroup$
There some more generalizations in Chap. 11, pp 358
$endgroup$
– gammatester
Dec 13 '18 at 21:33
$begingroup$
There some more generalizations in Chap. 11, pp 358
$endgroup$
– gammatester
Dec 13 '18 at 21:33
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038535%2fneumann-theorem-for-bessel-function-of-the-first-kind-arbitrary-order%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038535%2fneumann-theorem-for-bessel-function-of-the-first-kind-arbitrary-order%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The $x$ should be a $z$.
$endgroup$
– gammatester
Dec 13 '18 at 21:16
$begingroup$
In case one would need it, the generalization can be found here: quod.lib.umich.edu/u/umhistmath/ACV1415.0001.001/…
$endgroup$
– MsTais
Dec 13 '18 at 21:22
$begingroup$
There some more generalizations in Chap. 11, pp 358
$endgroup$
– gammatester
Dec 13 '18 at 21:33