Neumann theorem for Bessel function of the first kind (arbitrary order)












0












$begingroup$


There is a Neumann theorem, proving that:



$J_0 big(sqrt{Z^2+z^2 - 2Zz cos phi} big)=sum_{k=0}^{infty} epsilon_k J_k(Z) J_k (z) cos k phi$



where $epsilon_0=1$, and $epsilon_k = 2$: $kgeq 1$. It is assumed that $sqrt{Z^2+z^2 - 2Zz cos phi} = |vec{Z} - vec{z}|$.



Does anyone know of a generalization for Bessel functions of arbitrary order $J_m big(sqrt{Z^2+z^2 - 2Zz cos phi} big)$: $m$ is any integer?










share|cite|improve this question











$endgroup$












  • $begingroup$
    The $x$ should be a $z$.
    $endgroup$
    – gammatester
    Dec 13 '18 at 21:16










  • $begingroup$
    In case one would need it, the generalization can be found here: quod.lib.umich.edu/u/umhistmath/ACV1415.0001.001/…
    $endgroup$
    – MsTais
    Dec 13 '18 at 21:22










  • $begingroup$
    There some more generalizations in Chap. 11, pp 358
    $endgroup$
    – gammatester
    Dec 13 '18 at 21:33


















0












$begingroup$


There is a Neumann theorem, proving that:



$J_0 big(sqrt{Z^2+z^2 - 2Zz cos phi} big)=sum_{k=0}^{infty} epsilon_k J_k(Z) J_k (z) cos k phi$



where $epsilon_0=1$, and $epsilon_k = 2$: $kgeq 1$. It is assumed that $sqrt{Z^2+z^2 - 2Zz cos phi} = |vec{Z} - vec{z}|$.



Does anyone know of a generalization for Bessel functions of arbitrary order $J_m big(sqrt{Z^2+z^2 - 2Zz cos phi} big)$: $m$ is any integer?










share|cite|improve this question











$endgroup$












  • $begingroup$
    The $x$ should be a $z$.
    $endgroup$
    – gammatester
    Dec 13 '18 at 21:16










  • $begingroup$
    In case one would need it, the generalization can be found here: quod.lib.umich.edu/u/umhistmath/ACV1415.0001.001/…
    $endgroup$
    – MsTais
    Dec 13 '18 at 21:22










  • $begingroup$
    There some more generalizations in Chap. 11, pp 358
    $endgroup$
    – gammatester
    Dec 13 '18 at 21:33
















0












0








0





$begingroup$


There is a Neumann theorem, proving that:



$J_0 big(sqrt{Z^2+z^2 - 2Zz cos phi} big)=sum_{k=0}^{infty} epsilon_k J_k(Z) J_k (z) cos k phi$



where $epsilon_0=1$, and $epsilon_k = 2$: $kgeq 1$. It is assumed that $sqrt{Z^2+z^2 - 2Zz cos phi} = |vec{Z} - vec{z}|$.



Does anyone know of a generalization for Bessel functions of arbitrary order $J_m big(sqrt{Z^2+z^2 - 2Zz cos phi} big)$: $m$ is any integer?










share|cite|improve this question











$endgroup$




There is a Neumann theorem, proving that:



$J_0 big(sqrt{Z^2+z^2 - 2Zz cos phi} big)=sum_{k=0}^{infty} epsilon_k J_k(Z) J_k (z) cos k phi$



where $epsilon_0=1$, and $epsilon_k = 2$: $kgeq 1$. It is assumed that $sqrt{Z^2+z^2 - 2Zz cos phi} = |vec{Z} - vec{z}|$.



Does anyone know of a generalization for Bessel functions of arbitrary order $J_m big(sqrt{Z^2+z^2 - 2Zz cos phi} big)$: $m$ is any integer?







summation bessel-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 13 '18 at 21:21







MsTais

















asked Dec 13 '18 at 20:30









MsTaisMsTais

1808




1808












  • $begingroup$
    The $x$ should be a $z$.
    $endgroup$
    – gammatester
    Dec 13 '18 at 21:16










  • $begingroup$
    In case one would need it, the generalization can be found here: quod.lib.umich.edu/u/umhistmath/ACV1415.0001.001/…
    $endgroup$
    – MsTais
    Dec 13 '18 at 21:22










  • $begingroup$
    There some more generalizations in Chap. 11, pp 358
    $endgroup$
    – gammatester
    Dec 13 '18 at 21:33




















  • $begingroup$
    The $x$ should be a $z$.
    $endgroup$
    – gammatester
    Dec 13 '18 at 21:16










  • $begingroup$
    In case one would need it, the generalization can be found here: quod.lib.umich.edu/u/umhistmath/ACV1415.0001.001/…
    $endgroup$
    – MsTais
    Dec 13 '18 at 21:22










  • $begingroup$
    There some more generalizations in Chap. 11, pp 358
    $endgroup$
    – gammatester
    Dec 13 '18 at 21:33


















$begingroup$
The $x$ should be a $z$.
$endgroup$
– gammatester
Dec 13 '18 at 21:16




$begingroup$
The $x$ should be a $z$.
$endgroup$
– gammatester
Dec 13 '18 at 21:16












$begingroup$
In case one would need it, the generalization can be found here: quod.lib.umich.edu/u/umhistmath/ACV1415.0001.001/…
$endgroup$
– MsTais
Dec 13 '18 at 21:22




$begingroup$
In case one would need it, the generalization can be found here: quod.lib.umich.edu/u/umhistmath/ACV1415.0001.001/…
$endgroup$
– MsTais
Dec 13 '18 at 21:22












$begingroup$
There some more generalizations in Chap. 11, pp 358
$endgroup$
– gammatester
Dec 13 '18 at 21:33






$begingroup$
There some more generalizations in Chap. 11, pp 358
$endgroup$
– gammatester
Dec 13 '18 at 21:33












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038535%2fneumann-theorem-for-bessel-function-of-the-first-kind-arbitrary-order%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038535%2fneumann-theorem-for-bessel-function-of-the-first-kind-arbitrary-order%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Aardman Animations

Are they similar matrix

“minimization” problem in Euclidean space related to orthonormal basis