Proving $mathbb{P}(xi_1+ xi_2+…+xi_n=1)=(sum_{i=1}^{n}lambda_i)Delta + mathcal{R}Delta^2$












0












$begingroup$


Let $xi_1, xi_2,...,xi_n$ be independent Bernoulli random variables in $(Omega,mathcal{P}(Omega),mathbb{P})$ and $$mathbb{P}(xi_i=0)=1-lambda_iDelta$$ and $$mathbb{P}(xi_i=1)=lambda_iDelta.$$ Here $lambda_1,lambda_2,...,lambda_n$ are positive parameters and $0< Delta <frac{1}{2max{lambda_1,lambda_2,...,lambda_n}}$.



We need to show $$mathbb{P}(xi_1+ xi_2+...+xi_n=1)=(sum_{i=1}^{n}lambda_i)Delta + mathcal{R}Delta^2,$$ where $|mathcal{R}| leq 2(sum_{i=1}^{n}lambda_i^2+(sum_{i=1}^{n}lambda_i)^2)$



How I should start and what to do? I really have no idea. Can somebody explain this to me?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Since the $xi_i$ are Bernoulli distributed, their sum is $1$ iff exactly one of the $xi_i$ is $1$ and the rest is $0$.
    $endgroup$
    – Tki Deneb
    Dec 12 '18 at 13:07


















0












$begingroup$


Let $xi_1, xi_2,...,xi_n$ be independent Bernoulli random variables in $(Omega,mathcal{P}(Omega),mathbb{P})$ and $$mathbb{P}(xi_i=0)=1-lambda_iDelta$$ and $$mathbb{P}(xi_i=1)=lambda_iDelta.$$ Here $lambda_1,lambda_2,...,lambda_n$ are positive parameters and $0< Delta <frac{1}{2max{lambda_1,lambda_2,...,lambda_n}}$.



We need to show $$mathbb{P}(xi_1+ xi_2+...+xi_n=1)=(sum_{i=1}^{n}lambda_i)Delta + mathcal{R}Delta^2,$$ where $|mathcal{R}| leq 2(sum_{i=1}^{n}lambda_i^2+(sum_{i=1}^{n}lambda_i)^2)$



How I should start and what to do? I really have no idea. Can somebody explain this to me?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Since the $xi_i$ are Bernoulli distributed, their sum is $1$ iff exactly one of the $xi_i$ is $1$ and the rest is $0$.
    $endgroup$
    – Tki Deneb
    Dec 12 '18 at 13:07
















0












0








0





$begingroup$


Let $xi_1, xi_2,...,xi_n$ be independent Bernoulli random variables in $(Omega,mathcal{P}(Omega),mathbb{P})$ and $$mathbb{P}(xi_i=0)=1-lambda_iDelta$$ and $$mathbb{P}(xi_i=1)=lambda_iDelta.$$ Here $lambda_1,lambda_2,...,lambda_n$ are positive parameters and $0< Delta <frac{1}{2max{lambda_1,lambda_2,...,lambda_n}}$.



We need to show $$mathbb{P}(xi_1+ xi_2+...+xi_n=1)=(sum_{i=1}^{n}lambda_i)Delta + mathcal{R}Delta^2,$$ where $|mathcal{R}| leq 2(sum_{i=1}^{n}lambda_i^2+(sum_{i=1}^{n}lambda_i)^2)$



How I should start and what to do? I really have no idea. Can somebody explain this to me?










share|cite|improve this question











$endgroup$




Let $xi_1, xi_2,...,xi_n$ be independent Bernoulli random variables in $(Omega,mathcal{P}(Omega),mathbb{P})$ and $$mathbb{P}(xi_i=0)=1-lambda_iDelta$$ and $$mathbb{P}(xi_i=1)=lambda_iDelta.$$ Here $lambda_1,lambda_2,...,lambda_n$ are positive parameters and $0< Delta <frac{1}{2max{lambda_1,lambda_2,...,lambda_n}}$.



We need to show $$mathbb{P}(xi_1+ xi_2+...+xi_n=1)=(sum_{i=1}^{n}lambda_i)Delta + mathcal{R}Delta^2,$$ where $|mathcal{R}| leq 2(sum_{i=1}^{n}lambda_i^2+(sum_{i=1}^{n}lambda_i)^2)$



How I should start and what to do? I really have no idea. Can somebody explain this to me?







probability probability-theory random-variables bernoulli-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 3 at 0:56









J. W. Tanner

1,709114




1,709114










asked Dec 11 '18 at 17:23









AtstovasAtstovas

1089




1089












  • $begingroup$
    Since the $xi_i$ are Bernoulli distributed, their sum is $1$ iff exactly one of the $xi_i$ is $1$ and the rest is $0$.
    $endgroup$
    – Tki Deneb
    Dec 12 '18 at 13:07




















  • $begingroup$
    Since the $xi_i$ are Bernoulli distributed, their sum is $1$ iff exactly one of the $xi_i$ is $1$ and the rest is $0$.
    $endgroup$
    – Tki Deneb
    Dec 12 '18 at 13:07


















$begingroup$
Since the $xi_i$ are Bernoulli distributed, their sum is $1$ iff exactly one of the $xi_i$ is $1$ and the rest is $0$.
$endgroup$
– Tki Deneb
Dec 12 '18 at 13:07






$begingroup$
Since the $xi_i$ are Bernoulli distributed, their sum is $1$ iff exactly one of the $xi_i$ is $1$ and the rest is $0$.
$endgroup$
– Tki Deneb
Dec 12 '18 at 13:07












1 Answer
1






active

oldest

votes


















0












$begingroup$

We have
begin{align*}
Pleft(sum_{i=1}^{n}xi_i=1right) &= sum_{i=1}^{n}P(xi_i=1, {xi_j = 0: jneq i}) \
&=sum_{i=1}^nlambda_iDeltaleft(prod_{jneq i}(1-lambda_j Delta)right) \
&= sum_{i=1}^nlambda_iDeltaleft(1 - Delta sum_{jneq i}lambda_j + Delta^2sum_{j_1, j_2neq i}lambda_{j_1}lambda_{j_2} - cdotsright) \
&= sum_{i=1}^nlambda_iDelta - Delta^2 left{2sum_{i=1}^{n}sum_{j = 1}^{i-1}lambda_ilambda_jright} + cdots
end{align*}

Note that the term in curly brackets equals
begin{align*}
left(sum_{i=1}^{n}lambda_iright)^2 - sum_{i=1}^{n}lambda_i^2
end{align*}

which is clearly less in absolute value than $2(sum_{i=1}^{n}lambda_i^2 + left(sum_{i=1}^{n}lambda_iright)^2)$. Since
begin{align*}
0 < Delta < frac{1}{2max(lambda_1, cdots, lambda_n)}
end{align*}

The alternating series of sums are decreasing, so therefore the largest the sum can be is less than the remainder bound.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035533%2fproving-mathbbp-xi-1-xi-2-xi-n-1-sum-i-1n-lambda-i-delta%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    We have
    begin{align*}
    Pleft(sum_{i=1}^{n}xi_i=1right) &= sum_{i=1}^{n}P(xi_i=1, {xi_j = 0: jneq i}) \
    &=sum_{i=1}^nlambda_iDeltaleft(prod_{jneq i}(1-lambda_j Delta)right) \
    &= sum_{i=1}^nlambda_iDeltaleft(1 - Delta sum_{jneq i}lambda_j + Delta^2sum_{j_1, j_2neq i}lambda_{j_1}lambda_{j_2} - cdotsright) \
    &= sum_{i=1}^nlambda_iDelta - Delta^2 left{2sum_{i=1}^{n}sum_{j = 1}^{i-1}lambda_ilambda_jright} + cdots
    end{align*}

    Note that the term in curly brackets equals
    begin{align*}
    left(sum_{i=1}^{n}lambda_iright)^2 - sum_{i=1}^{n}lambda_i^2
    end{align*}

    which is clearly less in absolute value than $2(sum_{i=1}^{n}lambda_i^2 + left(sum_{i=1}^{n}lambda_iright)^2)$. Since
    begin{align*}
    0 < Delta < frac{1}{2max(lambda_1, cdots, lambda_n)}
    end{align*}

    The alternating series of sums are decreasing, so therefore the largest the sum can be is less than the remainder bound.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      We have
      begin{align*}
      Pleft(sum_{i=1}^{n}xi_i=1right) &= sum_{i=1}^{n}P(xi_i=1, {xi_j = 0: jneq i}) \
      &=sum_{i=1}^nlambda_iDeltaleft(prod_{jneq i}(1-lambda_j Delta)right) \
      &= sum_{i=1}^nlambda_iDeltaleft(1 - Delta sum_{jneq i}lambda_j + Delta^2sum_{j_1, j_2neq i}lambda_{j_1}lambda_{j_2} - cdotsright) \
      &= sum_{i=1}^nlambda_iDelta - Delta^2 left{2sum_{i=1}^{n}sum_{j = 1}^{i-1}lambda_ilambda_jright} + cdots
      end{align*}

      Note that the term in curly brackets equals
      begin{align*}
      left(sum_{i=1}^{n}lambda_iright)^2 - sum_{i=1}^{n}lambda_i^2
      end{align*}

      which is clearly less in absolute value than $2(sum_{i=1}^{n}lambda_i^2 + left(sum_{i=1}^{n}lambda_iright)^2)$. Since
      begin{align*}
      0 < Delta < frac{1}{2max(lambda_1, cdots, lambda_n)}
      end{align*}

      The alternating series of sums are decreasing, so therefore the largest the sum can be is less than the remainder bound.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        We have
        begin{align*}
        Pleft(sum_{i=1}^{n}xi_i=1right) &= sum_{i=1}^{n}P(xi_i=1, {xi_j = 0: jneq i}) \
        &=sum_{i=1}^nlambda_iDeltaleft(prod_{jneq i}(1-lambda_j Delta)right) \
        &= sum_{i=1}^nlambda_iDeltaleft(1 - Delta sum_{jneq i}lambda_j + Delta^2sum_{j_1, j_2neq i}lambda_{j_1}lambda_{j_2} - cdotsright) \
        &= sum_{i=1}^nlambda_iDelta - Delta^2 left{2sum_{i=1}^{n}sum_{j = 1}^{i-1}lambda_ilambda_jright} + cdots
        end{align*}

        Note that the term in curly brackets equals
        begin{align*}
        left(sum_{i=1}^{n}lambda_iright)^2 - sum_{i=1}^{n}lambda_i^2
        end{align*}

        which is clearly less in absolute value than $2(sum_{i=1}^{n}lambda_i^2 + left(sum_{i=1}^{n}lambda_iright)^2)$. Since
        begin{align*}
        0 < Delta < frac{1}{2max(lambda_1, cdots, lambda_n)}
        end{align*}

        The alternating series of sums are decreasing, so therefore the largest the sum can be is less than the remainder bound.






        share|cite|improve this answer









        $endgroup$



        We have
        begin{align*}
        Pleft(sum_{i=1}^{n}xi_i=1right) &= sum_{i=1}^{n}P(xi_i=1, {xi_j = 0: jneq i}) \
        &=sum_{i=1}^nlambda_iDeltaleft(prod_{jneq i}(1-lambda_j Delta)right) \
        &= sum_{i=1}^nlambda_iDeltaleft(1 - Delta sum_{jneq i}lambda_j + Delta^2sum_{j_1, j_2neq i}lambda_{j_1}lambda_{j_2} - cdotsright) \
        &= sum_{i=1}^nlambda_iDelta - Delta^2 left{2sum_{i=1}^{n}sum_{j = 1}^{i-1}lambda_ilambda_jright} + cdots
        end{align*}

        Note that the term in curly brackets equals
        begin{align*}
        left(sum_{i=1}^{n}lambda_iright)^2 - sum_{i=1}^{n}lambda_i^2
        end{align*}

        which is clearly less in absolute value than $2(sum_{i=1}^{n}lambda_i^2 + left(sum_{i=1}^{n}lambda_iright)^2)$. Since
        begin{align*}
        0 < Delta < frac{1}{2max(lambda_1, cdots, lambda_n)}
        end{align*}

        The alternating series of sums are decreasing, so therefore the largest the sum can be is less than the remainder bound.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Feb 3 at 1:40









        Tom ChenTom Chen

        978513




        978513






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035533%2fproving-mathbbp-xi-1-xi-2-xi-n-1-sum-i-1n-lambda-i-delta%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Probability when a professor distributes a quiz and homework assignment to a class of n students.

            Aardman Animations

            Are they similar matrix