Calculate $sinfrac{pi}{16}$ from given trigonometric identities












1












$begingroup$


There is the choice between four trigonometric identities
$$sin(4phi)=8cos^{3}(phi)sin(phi)-4cos(phi)sin(phi)$$
$$cos(4phi)=8cos^{4}(phi) -8cos^{2}(phi)+1$$
$$sin^{4}(phi)=1/8(cos(4phi) -4cos(2phi)+3)$$
$$cos^{4}(phi)=1/8(cos(4phi)+4cos(2phi)+3)$$
to calculate $sinfrac{pi}{16}$. When using the first I got stuck trying to eliminate cos expressions and bring $sin(4phi)$ and $sin(phi)$ on different sides of the equation, as in
$$sin(4phi)=sin (2phi)(2-4sin^{2}(phi))$$
What way to go ?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Fun related reading: J. Matthew H. Peters, Some trigonometric ratios in surd form, Mathematical Gazette 66 #438 (December 1982), 296-299 AND Ron Knott's web page Exact Trigonometric Function Values.
    $endgroup$
    – Dave L. Renfro
    Dec 11 '18 at 17:49










  • $begingroup$
    Just use three times the bisection formulas $sinfrac{x}{2}=sqrt{frac{1-cos x}{2}}$, $cosfrac{x}{2}=sqrt{frac{1+cos x}{2}}$.
    $endgroup$
    – Jack D'Aurizio
    Dec 11 '18 at 18:52
















1












$begingroup$


There is the choice between four trigonometric identities
$$sin(4phi)=8cos^{3}(phi)sin(phi)-4cos(phi)sin(phi)$$
$$cos(4phi)=8cos^{4}(phi) -8cos^{2}(phi)+1$$
$$sin^{4}(phi)=1/8(cos(4phi) -4cos(2phi)+3)$$
$$cos^{4}(phi)=1/8(cos(4phi)+4cos(2phi)+3)$$
to calculate $sinfrac{pi}{16}$. When using the first I got stuck trying to eliminate cos expressions and bring $sin(4phi)$ and $sin(phi)$ on different sides of the equation, as in
$$sin(4phi)=sin (2phi)(2-4sin^{2}(phi))$$
What way to go ?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Fun related reading: J. Matthew H. Peters, Some trigonometric ratios in surd form, Mathematical Gazette 66 #438 (December 1982), 296-299 AND Ron Knott's web page Exact Trigonometric Function Values.
    $endgroup$
    – Dave L. Renfro
    Dec 11 '18 at 17:49










  • $begingroup$
    Just use three times the bisection formulas $sinfrac{x}{2}=sqrt{frac{1-cos x}{2}}$, $cosfrac{x}{2}=sqrt{frac{1+cos x}{2}}$.
    $endgroup$
    – Jack D'Aurizio
    Dec 11 '18 at 18:52














1












1








1





$begingroup$


There is the choice between four trigonometric identities
$$sin(4phi)=8cos^{3}(phi)sin(phi)-4cos(phi)sin(phi)$$
$$cos(4phi)=8cos^{4}(phi) -8cos^{2}(phi)+1$$
$$sin^{4}(phi)=1/8(cos(4phi) -4cos(2phi)+3)$$
$$cos^{4}(phi)=1/8(cos(4phi)+4cos(2phi)+3)$$
to calculate $sinfrac{pi}{16}$. When using the first I got stuck trying to eliminate cos expressions and bring $sin(4phi)$ and $sin(phi)$ on different sides of the equation, as in
$$sin(4phi)=sin (2phi)(2-4sin^{2}(phi))$$
What way to go ?










share|cite|improve this question









$endgroup$




There is the choice between four trigonometric identities
$$sin(4phi)=8cos^{3}(phi)sin(phi)-4cos(phi)sin(phi)$$
$$cos(4phi)=8cos^{4}(phi) -8cos^{2}(phi)+1$$
$$sin^{4}(phi)=1/8(cos(4phi) -4cos(2phi)+3)$$
$$cos^{4}(phi)=1/8(cos(4phi)+4cos(2phi)+3)$$
to calculate $sinfrac{pi}{16}$. When using the first I got stuck trying to eliminate cos expressions and bring $sin(4phi)$ and $sin(phi)$ on different sides of the equation, as in
$$sin(4phi)=sin (2phi)(2-4sin^{2}(phi))$$
What way to go ?







trigonometry






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 11 '18 at 17:25









B. HauffaB. Hauffa

62




62












  • $begingroup$
    Fun related reading: J. Matthew H. Peters, Some trigonometric ratios in surd form, Mathematical Gazette 66 #438 (December 1982), 296-299 AND Ron Knott's web page Exact Trigonometric Function Values.
    $endgroup$
    – Dave L. Renfro
    Dec 11 '18 at 17:49










  • $begingroup$
    Just use three times the bisection formulas $sinfrac{x}{2}=sqrt{frac{1-cos x}{2}}$, $cosfrac{x}{2}=sqrt{frac{1+cos x}{2}}$.
    $endgroup$
    – Jack D'Aurizio
    Dec 11 '18 at 18:52


















  • $begingroup$
    Fun related reading: J. Matthew H. Peters, Some trigonometric ratios in surd form, Mathematical Gazette 66 #438 (December 1982), 296-299 AND Ron Knott's web page Exact Trigonometric Function Values.
    $endgroup$
    – Dave L. Renfro
    Dec 11 '18 at 17:49










  • $begingroup$
    Just use three times the bisection formulas $sinfrac{x}{2}=sqrt{frac{1-cos x}{2}}$, $cosfrac{x}{2}=sqrt{frac{1+cos x}{2}}$.
    $endgroup$
    – Jack D'Aurizio
    Dec 11 '18 at 18:52
















$begingroup$
Fun related reading: J. Matthew H. Peters, Some trigonometric ratios in surd form, Mathematical Gazette 66 #438 (December 1982), 296-299 AND Ron Knott's web page Exact Trigonometric Function Values.
$endgroup$
– Dave L. Renfro
Dec 11 '18 at 17:49




$begingroup$
Fun related reading: J. Matthew H. Peters, Some trigonometric ratios in surd form, Mathematical Gazette 66 #438 (December 1982), 296-299 AND Ron Knott's web page Exact Trigonometric Function Values.
$endgroup$
– Dave L. Renfro
Dec 11 '18 at 17:49












$begingroup$
Just use three times the bisection formulas $sinfrac{x}{2}=sqrt{frac{1-cos x}{2}}$, $cosfrac{x}{2}=sqrt{frac{1+cos x}{2}}$.
$endgroup$
– Jack D'Aurizio
Dec 11 '18 at 18:52




$begingroup$
Just use three times the bisection formulas $sinfrac{x}{2}=sqrt{frac{1-cos x}{2}}$, $cosfrac{x}{2}=sqrt{frac{1+cos x}{2}}$.
$endgroup$
– Jack D'Aurizio
Dec 11 '18 at 18:52










2 Answers
2






active

oldest

votes


















1












$begingroup$

Hint: Note that $cos(pi/4) = dfrac{1}{sqrt{2}}$, Use the second one of your list and put $y = cos^2(pi/16)$ to get a quadratic equation in $y$, and then use the identity $sin(pi/16) = sqrt{1-cos^2(pi/16)}= sqrt{1-y}$ to finish.






share|cite|improve this answer











$endgroup$





















    0












    $begingroup$

    Use the second identity:



    $$ 8cos^4left(frac{pi}{16}right) - 8cos^2left(frac{pi}{16}right) + 1 = cosleft(frac{pi}{4}right) = frac{sqrt2}{2} $$



    Let $x = cos^2left(frac{pi}{16}right)$ then



    $$ 8x^2-8x = frac{sqrt{2}-2}{2} $$



    Completing the square:
    $$ 4x^2 - 4x + 1 = frac{sqrt{2}-2}{4}+1 = frac{2+sqrt{2}}{4} $$



    $$ (2x-1)^2 = frac{2+sqrt{2}}{4} $$



    Note that $2x-1 = 2cos^2left(frac{pi}{16}right)-1 = cos left(frac{pi}{8}right) > 0$ so we take the positive root



    $$ 2x-1 = frac{sqrt{2+sqrt{2}}}{2} $$



    $$ x = frac{2+sqrt{2+sqrt{2}}}{4} $$



    Then we have



    $$ sinleft(frac{pi}{16}right) = sqrt{1-x} = frac{sqrt{2-sqrt{2+sqrt{2}}}}{2} $$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035536%2fcalculate-sin-frac-pi16-from-given-trigonometric-identities%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      Hint: Note that $cos(pi/4) = dfrac{1}{sqrt{2}}$, Use the second one of your list and put $y = cos^2(pi/16)$ to get a quadratic equation in $y$, and then use the identity $sin(pi/16) = sqrt{1-cos^2(pi/16)}= sqrt{1-y}$ to finish.






      share|cite|improve this answer











      $endgroup$


















        1












        $begingroup$

        Hint: Note that $cos(pi/4) = dfrac{1}{sqrt{2}}$, Use the second one of your list and put $y = cos^2(pi/16)$ to get a quadratic equation in $y$, and then use the identity $sin(pi/16) = sqrt{1-cos^2(pi/16)}= sqrt{1-y}$ to finish.






        share|cite|improve this answer











        $endgroup$
















          1












          1








          1





          $begingroup$

          Hint: Note that $cos(pi/4) = dfrac{1}{sqrt{2}}$, Use the second one of your list and put $y = cos^2(pi/16)$ to get a quadratic equation in $y$, and then use the identity $sin(pi/16) = sqrt{1-cos^2(pi/16)}= sqrt{1-y}$ to finish.






          share|cite|improve this answer











          $endgroup$



          Hint: Note that $cos(pi/4) = dfrac{1}{sqrt{2}}$, Use the second one of your list and put $y = cos^2(pi/16)$ to get a quadratic equation in $y$, and then use the identity $sin(pi/16) = sqrt{1-cos^2(pi/16)}= sqrt{1-y}$ to finish.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 11 '18 at 17:36

























          answered Dec 11 '18 at 17:31









          DeepSeaDeepSea

          71.2k54487




          71.2k54487























              0












              $begingroup$

              Use the second identity:



              $$ 8cos^4left(frac{pi}{16}right) - 8cos^2left(frac{pi}{16}right) + 1 = cosleft(frac{pi}{4}right) = frac{sqrt2}{2} $$



              Let $x = cos^2left(frac{pi}{16}right)$ then



              $$ 8x^2-8x = frac{sqrt{2}-2}{2} $$



              Completing the square:
              $$ 4x^2 - 4x + 1 = frac{sqrt{2}-2}{4}+1 = frac{2+sqrt{2}}{4} $$



              $$ (2x-1)^2 = frac{2+sqrt{2}}{4} $$



              Note that $2x-1 = 2cos^2left(frac{pi}{16}right)-1 = cos left(frac{pi}{8}right) > 0$ so we take the positive root



              $$ 2x-1 = frac{sqrt{2+sqrt{2}}}{2} $$



              $$ x = frac{2+sqrt{2+sqrt{2}}}{4} $$



              Then we have



              $$ sinleft(frac{pi}{16}right) = sqrt{1-x} = frac{sqrt{2-sqrt{2+sqrt{2}}}}{2} $$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Use the second identity:



                $$ 8cos^4left(frac{pi}{16}right) - 8cos^2left(frac{pi}{16}right) + 1 = cosleft(frac{pi}{4}right) = frac{sqrt2}{2} $$



                Let $x = cos^2left(frac{pi}{16}right)$ then



                $$ 8x^2-8x = frac{sqrt{2}-2}{2} $$



                Completing the square:
                $$ 4x^2 - 4x + 1 = frac{sqrt{2}-2}{4}+1 = frac{2+sqrt{2}}{4} $$



                $$ (2x-1)^2 = frac{2+sqrt{2}}{4} $$



                Note that $2x-1 = 2cos^2left(frac{pi}{16}right)-1 = cos left(frac{pi}{8}right) > 0$ so we take the positive root



                $$ 2x-1 = frac{sqrt{2+sqrt{2}}}{2} $$



                $$ x = frac{2+sqrt{2+sqrt{2}}}{4} $$



                Then we have



                $$ sinleft(frac{pi}{16}right) = sqrt{1-x} = frac{sqrt{2-sqrt{2+sqrt{2}}}}{2} $$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Use the second identity:



                  $$ 8cos^4left(frac{pi}{16}right) - 8cos^2left(frac{pi}{16}right) + 1 = cosleft(frac{pi}{4}right) = frac{sqrt2}{2} $$



                  Let $x = cos^2left(frac{pi}{16}right)$ then



                  $$ 8x^2-8x = frac{sqrt{2}-2}{2} $$



                  Completing the square:
                  $$ 4x^2 - 4x + 1 = frac{sqrt{2}-2}{4}+1 = frac{2+sqrt{2}}{4} $$



                  $$ (2x-1)^2 = frac{2+sqrt{2}}{4} $$



                  Note that $2x-1 = 2cos^2left(frac{pi}{16}right)-1 = cos left(frac{pi}{8}right) > 0$ so we take the positive root



                  $$ 2x-1 = frac{sqrt{2+sqrt{2}}}{2} $$



                  $$ x = frac{2+sqrt{2+sqrt{2}}}{4} $$



                  Then we have



                  $$ sinleft(frac{pi}{16}right) = sqrt{1-x} = frac{sqrt{2-sqrt{2+sqrt{2}}}}{2} $$






                  share|cite|improve this answer









                  $endgroup$



                  Use the second identity:



                  $$ 8cos^4left(frac{pi}{16}right) - 8cos^2left(frac{pi}{16}right) + 1 = cosleft(frac{pi}{4}right) = frac{sqrt2}{2} $$



                  Let $x = cos^2left(frac{pi}{16}right)$ then



                  $$ 8x^2-8x = frac{sqrt{2}-2}{2} $$



                  Completing the square:
                  $$ 4x^2 - 4x + 1 = frac{sqrt{2}-2}{4}+1 = frac{2+sqrt{2}}{4} $$



                  $$ (2x-1)^2 = frac{2+sqrt{2}}{4} $$



                  Note that $2x-1 = 2cos^2left(frac{pi}{16}right)-1 = cos left(frac{pi}{8}right) > 0$ so we take the positive root



                  $$ 2x-1 = frac{sqrt{2+sqrt{2}}}{2} $$



                  $$ x = frac{2+sqrt{2+sqrt{2}}}{4} $$



                  Then we have



                  $$ sinleft(frac{pi}{16}right) = sqrt{1-x} = frac{sqrt{2-sqrt{2+sqrt{2}}}}{2} $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 13 '18 at 9:35









                  DylanDylan

                  12.9k31027




                  12.9k31027






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035536%2fcalculate-sin-frac-pi16-from-given-trigonometric-identities%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Probability when a professor distributes a quiz and homework assignment to a class of n students.

                      Aardman Animations

                      Are they similar matrix