Calculate $sinfrac{pi}{16}$ from given trigonometric identities
$begingroup$
There is the choice between four trigonometric identities
$$sin(4phi)=8cos^{3}(phi)sin(phi)-4cos(phi)sin(phi)$$
$$cos(4phi)=8cos^{4}(phi) -8cos^{2}(phi)+1$$
$$sin^{4}(phi)=1/8(cos(4phi) -4cos(2phi)+3)$$
$$cos^{4}(phi)=1/8(cos(4phi)+4cos(2phi)+3)$$
to calculate $sinfrac{pi}{16}$. When using the first I got stuck trying to eliminate cos expressions and bring $sin(4phi)$ and $sin(phi)$ on different sides of the equation, as in
$$sin(4phi)=sin (2phi)(2-4sin^{2}(phi))$$
What way to go ?
trigonometry
$endgroup$
add a comment |
$begingroup$
There is the choice between four trigonometric identities
$$sin(4phi)=8cos^{3}(phi)sin(phi)-4cos(phi)sin(phi)$$
$$cos(4phi)=8cos^{4}(phi) -8cos^{2}(phi)+1$$
$$sin^{4}(phi)=1/8(cos(4phi) -4cos(2phi)+3)$$
$$cos^{4}(phi)=1/8(cos(4phi)+4cos(2phi)+3)$$
to calculate $sinfrac{pi}{16}$. When using the first I got stuck trying to eliminate cos expressions and bring $sin(4phi)$ and $sin(phi)$ on different sides of the equation, as in
$$sin(4phi)=sin (2phi)(2-4sin^{2}(phi))$$
What way to go ?
trigonometry
$endgroup$
$begingroup$
Fun related reading: J. Matthew H. Peters, Some trigonometric ratios in surd form, Mathematical Gazette 66 #438 (December 1982), 296-299 AND Ron Knott's web page Exact Trigonometric Function Values.
$endgroup$
– Dave L. Renfro
Dec 11 '18 at 17:49
$begingroup$
Just use three times the bisection formulas $sinfrac{x}{2}=sqrt{frac{1-cos x}{2}}$, $cosfrac{x}{2}=sqrt{frac{1+cos x}{2}}$.
$endgroup$
– Jack D'Aurizio
Dec 11 '18 at 18:52
add a comment |
$begingroup$
There is the choice between four trigonometric identities
$$sin(4phi)=8cos^{3}(phi)sin(phi)-4cos(phi)sin(phi)$$
$$cos(4phi)=8cos^{4}(phi) -8cos^{2}(phi)+1$$
$$sin^{4}(phi)=1/8(cos(4phi) -4cos(2phi)+3)$$
$$cos^{4}(phi)=1/8(cos(4phi)+4cos(2phi)+3)$$
to calculate $sinfrac{pi}{16}$. When using the first I got stuck trying to eliminate cos expressions and bring $sin(4phi)$ and $sin(phi)$ on different sides of the equation, as in
$$sin(4phi)=sin (2phi)(2-4sin^{2}(phi))$$
What way to go ?
trigonometry
$endgroup$
There is the choice between four trigonometric identities
$$sin(4phi)=8cos^{3}(phi)sin(phi)-4cos(phi)sin(phi)$$
$$cos(4phi)=8cos^{4}(phi) -8cos^{2}(phi)+1$$
$$sin^{4}(phi)=1/8(cos(4phi) -4cos(2phi)+3)$$
$$cos^{4}(phi)=1/8(cos(4phi)+4cos(2phi)+3)$$
to calculate $sinfrac{pi}{16}$. When using the first I got stuck trying to eliminate cos expressions and bring $sin(4phi)$ and $sin(phi)$ on different sides of the equation, as in
$$sin(4phi)=sin (2phi)(2-4sin^{2}(phi))$$
What way to go ?
trigonometry
trigonometry
asked Dec 11 '18 at 17:25
B. HauffaB. Hauffa
62
62
$begingroup$
Fun related reading: J. Matthew H. Peters, Some trigonometric ratios in surd form, Mathematical Gazette 66 #438 (December 1982), 296-299 AND Ron Knott's web page Exact Trigonometric Function Values.
$endgroup$
– Dave L. Renfro
Dec 11 '18 at 17:49
$begingroup$
Just use three times the bisection formulas $sinfrac{x}{2}=sqrt{frac{1-cos x}{2}}$, $cosfrac{x}{2}=sqrt{frac{1+cos x}{2}}$.
$endgroup$
– Jack D'Aurizio
Dec 11 '18 at 18:52
add a comment |
$begingroup$
Fun related reading: J. Matthew H. Peters, Some trigonometric ratios in surd form, Mathematical Gazette 66 #438 (December 1982), 296-299 AND Ron Knott's web page Exact Trigonometric Function Values.
$endgroup$
– Dave L. Renfro
Dec 11 '18 at 17:49
$begingroup$
Just use three times the bisection formulas $sinfrac{x}{2}=sqrt{frac{1-cos x}{2}}$, $cosfrac{x}{2}=sqrt{frac{1+cos x}{2}}$.
$endgroup$
– Jack D'Aurizio
Dec 11 '18 at 18:52
$begingroup$
Fun related reading: J. Matthew H. Peters, Some trigonometric ratios in surd form, Mathematical Gazette 66 #438 (December 1982), 296-299 AND Ron Knott's web page Exact Trigonometric Function Values.
$endgroup$
– Dave L. Renfro
Dec 11 '18 at 17:49
$begingroup$
Fun related reading: J. Matthew H. Peters, Some trigonometric ratios in surd form, Mathematical Gazette 66 #438 (December 1982), 296-299 AND Ron Knott's web page Exact Trigonometric Function Values.
$endgroup$
– Dave L. Renfro
Dec 11 '18 at 17:49
$begingroup$
Just use three times the bisection formulas $sinfrac{x}{2}=sqrt{frac{1-cos x}{2}}$, $cosfrac{x}{2}=sqrt{frac{1+cos x}{2}}$.
$endgroup$
– Jack D'Aurizio
Dec 11 '18 at 18:52
$begingroup$
Just use three times the bisection formulas $sinfrac{x}{2}=sqrt{frac{1-cos x}{2}}$, $cosfrac{x}{2}=sqrt{frac{1+cos x}{2}}$.
$endgroup$
– Jack D'Aurizio
Dec 11 '18 at 18:52
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint: Note that $cos(pi/4) = dfrac{1}{sqrt{2}}$, Use the second one of your list and put $y = cos^2(pi/16)$ to get a quadratic equation in $y$, and then use the identity $sin(pi/16) = sqrt{1-cos^2(pi/16)}= sqrt{1-y}$ to finish.
$endgroup$
add a comment |
$begingroup$
Use the second identity:
$$ 8cos^4left(frac{pi}{16}right) - 8cos^2left(frac{pi}{16}right) + 1 = cosleft(frac{pi}{4}right) = frac{sqrt2}{2} $$
Let $x = cos^2left(frac{pi}{16}right)$ then
$$ 8x^2-8x = frac{sqrt{2}-2}{2} $$
Completing the square:
$$ 4x^2 - 4x + 1 = frac{sqrt{2}-2}{4}+1 = frac{2+sqrt{2}}{4} $$
$$ (2x-1)^2 = frac{2+sqrt{2}}{4} $$
Note that $2x-1 = 2cos^2left(frac{pi}{16}right)-1 = cos left(frac{pi}{8}right) > 0$ so we take the positive root
$$ 2x-1 = frac{sqrt{2+sqrt{2}}}{2} $$
$$ x = frac{2+sqrt{2+sqrt{2}}}{4} $$
Then we have
$$ sinleft(frac{pi}{16}right) = sqrt{1-x} = frac{sqrt{2-sqrt{2+sqrt{2}}}}{2} $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035536%2fcalculate-sin-frac-pi16-from-given-trigonometric-identities%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Note that $cos(pi/4) = dfrac{1}{sqrt{2}}$, Use the second one of your list and put $y = cos^2(pi/16)$ to get a quadratic equation in $y$, and then use the identity $sin(pi/16) = sqrt{1-cos^2(pi/16)}= sqrt{1-y}$ to finish.
$endgroup$
add a comment |
$begingroup$
Hint: Note that $cos(pi/4) = dfrac{1}{sqrt{2}}$, Use the second one of your list and put $y = cos^2(pi/16)$ to get a quadratic equation in $y$, and then use the identity $sin(pi/16) = sqrt{1-cos^2(pi/16)}= sqrt{1-y}$ to finish.
$endgroup$
add a comment |
$begingroup$
Hint: Note that $cos(pi/4) = dfrac{1}{sqrt{2}}$, Use the second one of your list and put $y = cos^2(pi/16)$ to get a quadratic equation in $y$, and then use the identity $sin(pi/16) = sqrt{1-cos^2(pi/16)}= sqrt{1-y}$ to finish.
$endgroup$
Hint: Note that $cos(pi/4) = dfrac{1}{sqrt{2}}$, Use the second one of your list and put $y = cos^2(pi/16)$ to get a quadratic equation in $y$, and then use the identity $sin(pi/16) = sqrt{1-cos^2(pi/16)}= sqrt{1-y}$ to finish.
edited Dec 11 '18 at 17:36
answered Dec 11 '18 at 17:31
DeepSeaDeepSea
71.2k54487
71.2k54487
add a comment |
add a comment |
$begingroup$
Use the second identity:
$$ 8cos^4left(frac{pi}{16}right) - 8cos^2left(frac{pi}{16}right) + 1 = cosleft(frac{pi}{4}right) = frac{sqrt2}{2} $$
Let $x = cos^2left(frac{pi}{16}right)$ then
$$ 8x^2-8x = frac{sqrt{2}-2}{2} $$
Completing the square:
$$ 4x^2 - 4x + 1 = frac{sqrt{2}-2}{4}+1 = frac{2+sqrt{2}}{4} $$
$$ (2x-1)^2 = frac{2+sqrt{2}}{4} $$
Note that $2x-1 = 2cos^2left(frac{pi}{16}right)-1 = cos left(frac{pi}{8}right) > 0$ so we take the positive root
$$ 2x-1 = frac{sqrt{2+sqrt{2}}}{2} $$
$$ x = frac{2+sqrt{2+sqrt{2}}}{4} $$
Then we have
$$ sinleft(frac{pi}{16}right) = sqrt{1-x} = frac{sqrt{2-sqrt{2+sqrt{2}}}}{2} $$
$endgroup$
add a comment |
$begingroup$
Use the second identity:
$$ 8cos^4left(frac{pi}{16}right) - 8cos^2left(frac{pi}{16}right) + 1 = cosleft(frac{pi}{4}right) = frac{sqrt2}{2} $$
Let $x = cos^2left(frac{pi}{16}right)$ then
$$ 8x^2-8x = frac{sqrt{2}-2}{2} $$
Completing the square:
$$ 4x^2 - 4x + 1 = frac{sqrt{2}-2}{4}+1 = frac{2+sqrt{2}}{4} $$
$$ (2x-1)^2 = frac{2+sqrt{2}}{4} $$
Note that $2x-1 = 2cos^2left(frac{pi}{16}right)-1 = cos left(frac{pi}{8}right) > 0$ so we take the positive root
$$ 2x-1 = frac{sqrt{2+sqrt{2}}}{2} $$
$$ x = frac{2+sqrt{2+sqrt{2}}}{4} $$
Then we have
$$ sinleft(frac{pi}{16}right) = sqrt{1-x} = frac{sqrt{2-sqrt{2+sqrt{2}}}}{2} $$
$endgroup$
add a comment |
$begingroup$
Use the second identity:
$$ 8cos^4left(frac{pi}{16}right) - 8cos^2left(frac{pi}{16}right) + 1 = cosleft(frac{pi}{4}right) = frac{sqrt2}{2} $$
Let $x = cos^2left(frac{pi}{16}right)$ then
$$ 8x^2-8x = frac{sqrt{2}-2}{2} $$
Completing the square:
$$ 4x^2 - 4x + 1 = frac{sqrt{2}-2}{4}+1 = frac{2+sqrt{2}}{4} $$
$$ (2x-1)^2 = frac{2+sqrt{2}}{4} $$
Note that $2x-1 = 2cos^2left(frac{pi}{16}right)-1 = cos left(frac{pi}{8}right) > 0$ so we take the positive root
$$ 2x-1 = frac{sqrt{2+sqrt{2}}}{2} $$
$$ x = frac{2+sqrt{2+sqrt{2}}}{4} $$
Then we have
$$ sinleft(frac{pi}{16}right) = sqrt{1-x} = frac{sqrt{2-sqrt{2+sqrt{2}}}}{2} $$
$endgroup$
Use the second identity:
$$ 8cos^4left(frac{pi}{16}right) - 8cos^2left(frac{pi}{16}right) + 1 = cosleft(frac{pi}{4}right) = frac{sqrt2}{2} $$
Let $x = cos^2left(frac{pi}{16}right)$ then
$$ 8x^2-8x = frac{sqrt{2}-2}{2} $$
Completing the square:
$$ 4x^2 - 4x + 1 = frac{sqrt{2}-2}{4}+1 = frac{2+sqrt{2}}{4} $$
$$ (2x-1)^2 = frac{2+sqrt{2}}{4} $$
Note that $2x-1 = 2cos^2left(frac{pi}{16}right)-1 = cos left(frac{pi}{8}right) > 0$ so we take the positive root
$$ 2x-1 = frac{sqrt{2+sqrt{2}}}{2} $$
$$ x = frac{2+sqrt{2+sqrt{2}}}{4} $$
Then we have
$$ sinleft(frac{pi}{16}right) = sqrt{1-x} = frac{sqrt{2-sqrt{2+sqrt{2}}}}{2} $$
answered Dec 13 '18 at 9:35
DylanDylan
12.9k31027
12.9k31027
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035536%2fcalculate-sin-frac-pi16-from-given-trigonometric-identities%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Fun related reading: J. Matthew H. Peters, Some trigonometric ratios in surd form, Mathematical Gazette 66 #438 (December 1982), 296-299 AND Ron Knott's web page Exact Trigonometric Function Values.
$endgroup$
– Dave L. Renfro
Dec 11 '18 at 17:49
$begingroup$
Just use three times the bisection formulas $sinfrac{x}{2}=sqrt{frac{1-cos x}{2}}$, $cosfrac{x}{2}=sqrt{frac{1+cos x}{2}}$.
$endgroup$
– Jack D'Aurizio
Dec 11 '18 at 18:52