How to calculate the indefinite integral of $(x-1)^{frac 12}-(x-3)$?
$begingroup$
Why is the following integral wrong?
$$ int[(x-1)^{frac 12}-(x-3)]dx=frac 23 (x-1)^{frac32}-frac12(x-3)^2+c $$
The answer given by my textbook is:
$$ int[(x-1)^{frac 12}-(x-3)]dx=frac 23 (x-1)^{frac32}-frac12x^2+3x+c $$
I understand why the textbook's answer is right. But I don't understand what I did wrong in mine.
calculus integration indefinite-integrals
$endgroup$
add a comment |
$begingroup$
Why is the following integral wrong?
$$ int[(x-1)^{frac 12}-(x-3)]dx=frac 23 (x-1)^{frac32}-frac12(x-3)^2+c $$
The answer given by my textbook is:
$$ int[(x-1)^{frac 12}-(x-3)]dx=frac 23 (x-1)^{frac32}-frac12x^2+3x+c $$
I understand why the textbook's answer is right. But I don't understand what I did wrong in mine.
calculus integration indefinite-integrals
$endgroup$
add a comment |
$begingroup$
Why is the following integral wrong?
$$ int[(x-1)^{frac 12}-(x-3)]dx=frac 23 (x-1)^{frac32}-frac12(x-3)^2+c $$
The answer given by my textbook is:
$$ int[(x-1)^{frac 12}-(x-3)]dx=frac 23 (x-1)^{frac32}-frac12x^2+3x+c $$
I understand why the textbook's answer is right. But I don't understand what I did wrong in mine.
calculus integration indefinite-integrals
$endgroup$
Why is the following integral wrong?
$$ int[(x-1)^{frac 12}-(x-3)]dx=frac 23 (x-1)^{frac32}-frac12(x-3)^2+c $$
The answer given by my textbook is:
$$ int[(x-1)^{frac 12}-(x-3)]dx=frac 23 (x-1)^{frac32}-frac12x^2+3x+c $$
I understand why the textbook's answer is right. But I don't understand what I did wrong in mine.
calculus integration indefinite-integrals
calculus integration indefinite-integrals
edited Dec 9 '18 at 1:53
AccidentalFourierTransform
1,442827
1,442827
asked Dec 8 '18 at 21:46
John ArgJohn Arg
316
316
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Note that
begin{align}
frac{2}{3}(x-1)^{3/2}-frac{1}{2}(x-3)^2+c &= frac{2}{3}(x-1)^{3/2}-frac{1}{2}(x^2-6x+9)+c\ &= frac{2}{3}(x-1)^{3/2}-frac{1}{2}x^2+3xunderbrace{-frac{9}{2}+c}_{text{constant}},
end{align}
so both answers are valid.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031674%2fhow-to-calculate-the-indefinite-integral-of-x-1-frac-12-x-3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that
begin{align}
frac{2}{3}(x-1)^{3/2}-frac{1}{2}(x-3)^2+c &= frac{2}{3}(x-1)^{3/2}-frac{1}{2}(x^2-6x+9)+c\ &= frac{2}{3}(x-1)^{3/2}-frac{1}{2}x^2+3xunderbrace{-frac{9}{2}+c}_{text{constant}},
end{align}
so both answers are valid.
$endgroup$
add a comment |
$begingroup$
Note that
begin{align}
frac{2}{3}(x-1)^{3/2}-frac{1}{2}(x-3)^2+c &= frac{2}{3}(x-1)^{3/2}-frac{1}{2}(x^2-6x+9)+c\ &= frac{2}{3}(x-1)^{3/2}-frac{1}{2}x^2+3xunderbrace{-frac{9}{2}+c}_{text{constant}},
end{align}
so both answers are valid.
$endgroup$
add a comment |
$begingroup$
Note that
begin{align}
frac{2}{3}(x-1)^{3/2}-frac{1}{2}(x-3)^2+c &= frac{2}{3}(x-1)^{3/2}-frac{1}{2}(x^2-6x+9)+c\ &= frac{2}{3}(x-1)^{3/2}-frac{1}{2}x^2+3xunderbrace{-frac{9}{2}+c}_{text{constant}},
end{align}
so both answers are valid.
$endgroup$
Note that
begin{align}
frac{2}{3}(x-1)^{3/2}-frac{1}{2}(x-3)^2+c &= frac{2}{3}(x-1)^{3/2}-frac{1}{2}(x^2-6x+9)+c\ &= frac{2}{3}(x-1)^{3/2}-frac{1}{2}x^2+3xunderbrace{-frac{9}{2}+c}_{text{constant}},
end{align}
so both answers are valid.
edited Dec 8 '18 at 21:54
answered Dec 8 '18 at 21:48
MisterRiemannMisterRiemann
5,8571624
5,8571624
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031674%2fhow-to-calculate-the-indefinite-integral-of-x-1-frac-12-x-3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown