Green's function for $-Delta$ on the plane is $-frac{1}{2pi}lnlVert x-y rVert$
$begingroup$
Green's function for $-Delta$ on the plane is $-frac{1}{2pi}lnlVert x-y rVert$
a) Using the method of reflection, compute the green's function for Laplace's equation $-Delta u=0$
b) Compute the green's function for the quadrant with the following other boundary condition Neuwann on the x-axis and dirichlet on the y-axis
My answers
a)$U(x)= Vlvert xrvert$ where, $x=(x,x^{2},x^{3},...x^{n})$
$-Delta u = -frac{partial^{2}u}{partial x^{2}} - frac{partial^{2}u}{partial y^{2}}=0$
taking derivative of $U$
$Ux_i = V'frac{x_i}{lvert xrvert}$
$Ux_ix_i = V''frac{x_i^{2}}{lvert xrvert^{2}}$ + $V'frac{lvert xrvert -frac{x_i^{2}}{lvert xrvert}}{lvert xrvert^{2}}$
therefore
$-Delta u= sum Ux_ix_i= sum V''frac{x_i^{2}}{lvert xrvert^{2}} + V'frac{lvert xrvert-frac{x_i^{2}}{lvert xrvert}}{lvert xrvert^{2}} $
I'm stuck here.
partial-derivative
$endgroup$
add a comment |
$begingroup$
Green's function for $-Delta$ on the plane is $-frac{1}{2pi}lnlVert x-y rVert$
a) Using the method of reflection, compute the green's function for Laplace's equation $-Delta u=0$
b) Compute the green's function for the quadrant with the following other boundary condition Neuwann on the x-axis and dirichlet on the y-axis
My answers
a)$U(x)= Vlvert xrvert$ where, $x=(x,x^{2},x^{3},...x^{n})$
$-Delta u = -frac{partial^{2}u}{partial x^{2}} - frac{partial^{2}u}{partial y^{2}}=0$
taking derivative of $U$
$Ux_i = V'frac{x_i}{lvert xrvert}$
$Ux_ix_i = V''frac{x_i^{2}}{lvert xrvert^{2}}$ + $V'frac{lvert xrvert -frac{x_i^{2}}{lvert xrvert}}{lvert xrvert^{2}}$
therefore
$-Delta u= sum Ux_ix_i= sum V''frac{x_i^{2}}{lvert xrvert^{2}} + V'frac{lvert xrvert-frac{x_i^{2}}{lvert xrvert}}{lvert xrvert^{2}} $
I'm stuck here.
partial-derivative
$endgroup$
$begingroup$
Note that $sum_i x_i^2 equiv |x|^2$ so you arrive at the ODE $V''(r) + frac{V'(r)}{r}(n-1) = 0$ where $r = |x|$ and $n=2$ is the dimension.
$endgroup$
– Winther
Dec 18 '18 at 15:41
$begingroup$
Thanks for the clarification here
$endgroup$
– Tariro Manyika
Feb 8 at 9:16
add a comment |
$begingroup$
Green's function for $-Delta$ on the plane is $-frac{1}{2pi}lnlVert x-y rVert$
a) Using the method of reflection, compute the green's function for Laplace's equation $-Delta u=0$
b) Compute the green's function for the quadrant with the following other boundary condition Neuwann on the x-axis and dirichlet on the y-axis
My answers
a)$U(x)= Vlvert xrvert$ where, $x=(x,x^{2},x^{3},...x^{n})$
$-Delta u = -frac{partial^{2}u}{partial x^{2}} - frac{partial^{2}u}{partial y^{2}}=0$
taking derivative of $U$
$Ux_i = V'frac{x_i}{lvert xrvert}$
$Ux_ix_i = V''frac{x_i^{2}}{lvert xrvert^{2}}$ + $V'frac{lvert xrvert -frac{x_i^{2}}{lvert xrvert}}{lvert xrvert^{2}}$
therefore
$-Delta u= sum Ux_ix_i= sum V''frac{x_i^{2}}{lvert xrvert^{2}} + V'frac{lvert xrvert-frac{x_i^{2}}{lvert xrvert}}{lvert xrvert^{2}} $
I'm stuck here.
partial-derivative
$endgroup$
Green's function for $-Delta$ on the plane is $-frac{1}{2pi}lnlVert x-y rVert$
a) Using the method of reflection, compute the green's function for Laplace's equation $-Delta u=0$
b) Compute the green's function for the quadrant with the following other boundary condition Neuwann on the x-axis and dirichlet on the y-axis
My answers
a)$U(x)= Vlvert xrvert$ where, $x=(x,x^{2},x^{3},...x^{n})$
$-Delta u = -frac{partial^{2}u}{partial x^{2}} - frac{partial^{2}u}{partial y^{2}}=0$
taking derivative of $U$
$Ux_i = V'frac{x_i}{lvert xrvert}$
$Ux_ix_i = V''frac{x_i^{2}}{lvert xrvert^{2}}$ + $V'frac{lvert xrvert -frac{x_i^{2}}{lvert xrvert}}{lvert xrvert^{2}}$
therefore
$-Delta u= sum Ux_ix_i= sum V''frac{x_i^{2}}{lvert xrvert^{2}} + V'frac{lvert xrvert-frac{x_i^{2}}{lvert xrvert}}{lvert xrvert^{2}} $
I'm stuck here.
partial-derivative
partial-derivative
edited Dec 18 '18 at 15:48
tomasz
23.7k23482
23.7k23482
asked Dec 18 '18 at 15:38
Tariro ManyikaTariro Manyika
638
638
$begingroup$
Note that $sum_i x_i^2 equiv |x|^2$ so you arrive at the ODE $V''(r) + frac{V'(r)}{r}(n-1) = 0$ where $r = |x|$ and $n=2$ is the dimension.
$endgroup$
– Winther
Dec 18 '18 at 15:41
$begingroup$
Thanks for the clarification here
$endgroup$
– Tariro Manyika
Feb 8 at 9:16
add a comment |
$begingroup$
Note that $sum_i x_i^2 equiv |x|^2$ so you arrive at the ODE $V''(r) + frac{V'(r)}{r}(n-1) = 0$ where $r = |x|$ and $n=2$ is the dimension.
$endgroup$
– Winther
Dec 18 '18 at 15:41
$begingroup$
Thanks for the clarification here
$endgroup$
– Tariro Manyika
Feb 8 at 9:16
$begingroup$
Note that $sum_i x_i^2 equiv |x|^2$ so you arrive at the ODE $V''(r) + frac{V'(r)}{r}(n-1) = 0$ where $r = |x|$ and $n=2$ is the dimension.
$endgroup$
– Winther
Dec 18 '18 at 15:41
$begingroup$
Note that $sum_i x_i^2 equiv |x|^2$ so you arrive at the ODE $V''(r) + frac{V'(r)}{r}(n-1) = 0$ where $r = |x|$ and $n=2$ is the dimension.
$endgroup$
– Winther
Dec 18 '18 at 15:41
$begingroup$
Thanks for the clarification here
$endgroup$
– Tariro Manyika
Feb 8 at 9:16
$begingroup$
Thanks for the clarification here
$endgroup$
– Tariro Manyika
Feb 8 at 9:16
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045300%2fgreens-function-for-delta-on-the-plane-is-frac12-pi-ln-lvert-x-y-rv%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045300%2fgreens-function-for-delta-on-the-plane-is-frac12-pi-ln-lvert-x-y-rv%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Note that $sum_i x_i^2 equiv |x|^2$ so you arrive at the ODE $V''(r) + frac{V'(r)}{r}(n-1) = 0$ where $r = |x|$ and $n=2$ is the dimension.
$endgroup$
– Winther
Dec 18 '18 at 15:41
$begingroup$
Thanks for the clarification here
$endgroup$
– Tariro Manyika
Feb 8 at 9:16