About positive part of difference fuctions.
$begingroup$
What can we Say that $(f-g)^{+}$? $(f-g)^{+}=(f^{+}+(-g)^{+})=f^{+}-g^{-}$?
real-analysis calculus functional-analysis
$endgroup$
add a comment |
$begingroup$
What can we Say that $(f-g)^{+}$? $(f-g)^{+}=(f^{+}+(-g)^{+})=f^{+}-g^{-}$?
real-analysis calculus functional-analysis
$endgroup$
add a comment |
$begingroup$
What can we Say that $(f-g)^{+}$? $(f-g)^{+}=(f^{+}+(-g)^{+})=f^{+}-g^{-}$?
real-analysis calculus functional-analysis
$endgroup$
What can we Say that $(f-g)^{+}$? $(f-g)^{+}=(f^{+}+(-g)^{+})=f^{+}-g^{-}$?
real-analysis calculus functional-analysis
real-analysis calculus functional-analysis
asked Dec 18 '18 at 15:50
eraldcoileraldcoil
395211
395211
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The positive and the negative part of a function are non negative function. In general it is not true that $ (-g)^+ = - g^-$. It is true if and only if $g=0$.
But we know (see for instance https://en.wikipedia.org/wiki/Positive_and_negative_parts) that for every function
$$ f^+ = frac{ | f | +f }{2} quad f^- = frac{ | f | -f }{2}.$$
Thus
$$(f-g)^+ = frac{|f-g| + f-g }{2} leq frac{|f| + |g| + f-g }{2} = frac{|f| + f}{2} + frac{|g| -g }{2} = f^+ + (-g)^+.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045317%2fabout-positive-part-of-difference-fuctions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The positive and the negative part of a function are non negative function. In general it is not true that $ (-g)^+ = - g^-$. It is true if and only if $g=0$.
But we know (see for instance https://en.wikipedia.org/wiki/Positive_and_negative_parts) that for every function
$$ f^+ = frac{ | f | +f }{2} quad f^- = frac{ | f | -f }{2}.$$
Thus
$$(f-g)^+ = frac{|f-g| + f-g }{2} leq frac{|f| + |g| + f-g }{2} = frac{|f| + f}{2} + frac{|g| -g }{2} = f^+ + (-g)^+.$$
$endgroup$
add a comment |
$begingroup$
The positive and the negative part of a function are non negative function. In general it is not true that $ (-g)^+ = - g^-$. It is true if and only if $g=0$.
But we know (see for instance https://en.wikipedia.org/wiki/Positive_and_negative_parts) that for every function
$$ f^+ = frac{ | f | +f }{2} quad f^- = frac{ | f | -f }{2}.$$
Thus
$$(f-g)^+ = frac{|f-g| + f-g }{2} leq frac{|f| + |g| + f-g }{2} = frac{|f| + f}{2} + frac{|g| -g }{2} = f^+ + (-g)^+.$$
$endgroup$
add a comment |
$begingroup$
The positive and the negative part of a function are non negative function. In general it is not true that $ (-g)^+ = - g^-$. It is true if and only if $g=0$.
But we know (see for instance https://en.wikipedia.org/wiki/Positive_and_negative_parts) that for every function
$$ f^+ = frac{ | f | +f }{2} quad f^- = frac{ | f | -f }{2}.$$
Thus
$$(f-g)^+ = frac{|f-g| + f-g }{2} leq frac{|f| + |g| + f-g }{2} = frac{|f| + f}{2} + frac{|g| -g }{2} = f^+ + (-g)^+.$$
$endgroup$
The positive and the negative part of a function are non negative function. In general it is not true that $ (-g)^+ = - g^-$. It is true if and only if $g=0$.
But we know (see for instance https://en.wikipedia.org/wiki/Positive_and_negative_parts) that for every function
$$ f^+ = frac{ | f | +f }{2} quad f^- = frac{ | f | -f }{2}.$$
Thus
$$(f-g)^+ = frac{|f-g| + f-g }{2} leq frac{|f| + |g| + f-g }{2} = frac{|f| + f}{2} + frac{|g| -g }{2} = f^+ + (-g)^+.$$
answered Dec 18 '18 at 17:10
HermioneHermione
19619
19619
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045317%2fabout-positive-part-of-difference-fuctions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown