Covariance proof
$begingroup$
Let the covariance random values X,Y be :
$$Cov[X, Y]= E[(X- E[X])(Y - E[Y])] = E[XY]-E[X]E[Y]$$
Prove the following for random values $X_1...X_n$ :
$$Var[sum_{i = 1}^n X_i] = sum_{i = 1}^n Var[X_i] + sum_{i = 1}^n sum_{j = 1, jne i}^nCov[X_i,X_j]$$
How would I go about proving this?
probability probability-theory discrete-mathematics
$endgroup$
add a comment |
$begingroup$
Let the covariance random values X,Y be :
$$Cov[X, Y]= E[(X- E[X])(Y - E[Y])] = E[XY]-E[X]E[Y]$$
Prove the following for random values $X_1...X_n$ :
$$Var[sum_{i = 1}^n X_i] = sum_{i = 1}^n Var[X_i] + sum_{i = 1}^n sum_{j = 1, jne i}^nCov[X_i,X_j]$$
How would I go about proving this?
probability probability-theory discrete-mathematics
$endgroup$
1
$begingroup$
This is akin to expanding a squared sum. Can you try for two random variables and use inducton? That's my strat.
$endgroup$
– Sean Roberson
Dec 13 '18 at 4:00
$begingroup$
@SeanRoberson Induction can indeed be used, but I would not recommend it for this case.
$endgroup$
– drhab
Dec 13 '18 at 14:15
add a comment |
$begingroup$
Let the covariance random values X,Y be :
$$Cov[X, Y]= E[(X- E[X])(Y - E[Y])] = E[XY]-E[X]E[Y]$$
Prove the following for random values $X_1...X_n$ :
$$Var[sum_{i = 1}^n X_i] = sum_{i = 1}^n Var[X_i] + sum_{i = 1}^n sum_{j = 1, jne i}^nCov[X_i,X_j]$$
How would I go about proving this?
probability probability-theory discrete-mathematics
$endgroup$
Let the covariance random values X,Y be :
$$Cov[X, Y]= E[(X- E[X])(Y - E[Y])] = E[XY]-E[X]E[Y]$$
Prove the following for random values $X_1...X_n$ :
$$Var[sum_{i = 1}^n X_i] = sum_{i = 1}^n Var[X_i] + sum_{i = 1}^n sum_{j = 1, jne i}^nCov[X_i,X_j]$$
How would I go about proving this?
probability probability-theory discrete-mathematics
probability probability-theory discrete-mathematics
asked Dec 13 '18 at 3:58
J. LastinJ. Lastin
936
936
1
$begingroup$
This is akin to expanding a squared sum. Can you try for two random variables and use inducton? That's my strat.
$endgroup$
– Sean Roberson
Dec 13 '18 at 4:00
$begingroup$
@SeanRoberson Induction can indeed be used, but I would not recommend it for this case.
$endgroup$
– drhab
Dec 13 '18 at 14:15
add a comment |
1
$begingroup$
This is akin to expanding a squared sum. Can you try for two random variables and use inducton? That's my strat.
$endgroup$
– Sean Roberson
Dec 13 '18 at 4:00
$begingroup$
@SeanRoberson Induction can indeed be used, but I would not recommend it for this case.
$endgroup$
– drhab
Dec 13 '18 at 14:15
1
1
$begingroup$
This is akin to expanding a squared sum. Can you try for two random variables and use inducton? That's my strat.
$endgroup$
– Sean Roberson
Dec 13 '18 at 4:00
$begingroup$
This is akin to expanding a squared sum. Can you try for two random variables and use inducton? That's my strat.
$endgroup$
– Sean Roberson
Dec 13 '18 at 4:00
$begingroup$
@SeanRoberson Induction can indeed be used, but I would not recommend it for this case.
$endgroup$
– drhab
Dec 13 '18 at 14:15
$begingroup$
@SeanRoberson Induction can indeed be used, but I would not recommend it for this case.
$endgroup$
– drhab
Dec 13 '18 at 14:15
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
We will use principle of mathematical induction.
Basis
$Var(X_1+X_2)=E((X_1+X_2)^2)-E^2(X_1+X_2)$
$=E(X_1^2+2X_1X_2+X_2^2)-(E(X_1)+E(X_2))^2$
$=E(X_1^2)-E^2(X_1)+E(X_2^2)-E^2(X_2)+2(E(X_1X_2)-E(X_1)E(X_2))$
$=Var(X_1)+Var(X_2)+2Cov(X_1,X_2)$
Induction Hypothesis
$Var(sum_{i=1}^k X_i)=sum_{i=1}^k Var(X_i)+sum_{i=1}^k sum_{j=1,ineq j}^k Cov(X_i,X_j)$
Inductive step
$Var(sum_{i=1}^{k+1} X_i)=Var(X_{k+1}+sum_{i=1}^k X_i)$
$=Var(X_{k+1})+Var(sum_{i=1}^k X_i)+ 2Cov(X_{k+1},sum_{i=1}^k X_i)$
$=Var(X_{k+1})+Var(sum_{i=1}^k X_i)+2sum_{i=1}^k Cov(X_{k+1} X_i) $
which gives the required result on using hypothesis.
Hope it is helpful:)
$endgroup$
add a comment |
$begingroup$
Let $Z_i=X_i-mathbb EX_i$ for $i=1,dots,n$.
Then:
$$mathsf{Var}left(sum_{i=1}^nX_iright)=mathbb Eleft(sum_{i=1}^nX_i-mathbb Esum_{i=1}^nX_iright)^2=mathbb Eleft(sum_{i=1}^nZ_iright)^2=mathbb Esum_{i=1}^nsum_{j=1}^nZ_iZ_j=$$$$sum_{i=1}^nmathbb EZ_i^2+sum_{i=1}^nsum_{j=1,jneq i}^nmathbb EZ_iZ_j=sum_{i=1}^nmathsf{Var}X_i^2+sum_{i=1}^nsum_{j=1,jneq i}^nmathsf{Cov}(X_i,X_j)$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037577%2fcovariance-proof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We will use principle of mathematical induction.
Basis
$Var(X_1+X_2)=E((X_1+X_2)^2)-E^2(X_1+X_2)$
$=E(X_1^2+2X_1X_2+X_2^2)-(E(X_1)+E(X_2))^2$
$=E(X_1^2)-E^2(X_1)+E(X_2^2)-E^2(X_2)+2(E(X_1X_2)-E(X_1)E(X_2))$
$=Var(X_1)+Var(X_2)+2Cov(X_1,X_2)$
Induction Hypothesis
$Var(sum_{i=1}^k X_i)=sum_{i=1}^k Var(X_i)+sum_{i=1}^k sum_{j=1,ineq j}^k Cov(X_i,X_j)$
Inductive step
$Var(sum_{i=1}^{k+1} X_i)=Var(X_{k+1}+sum_{i=1}^k X_i)$
$=Var(X_{k+1})+Var(sum_{i=1}^k X_i)+ 2Cov(X_{k+1},sum_{i=1}^k X_i)$
$=Var(X_{k+1})+Var(sum_{i=1}^k X_i)+2sum_{i=1}^k Cov(X_{k+1} X_i) $
which gives the required result on using hypothesis.
Hope it is helpful:)
$endgroup$
add a comment |
$begingroup$
We will use principle of mathematical induction.
Basis
$Var(X_1+X_2)=E((X_1+X_2)^2)-E^2(X_1+X_2)$
$=E(X_1^2+2X_1X_2+X_2^2)-(E(X_1)+E(X_2))^2$
$=E(X_1^2)-E^2(X_1)+E(X_2^2)-E^2(X_2)+2(E(X_1X_2)-E(X_1)E(X_2))$
$=Var(X_1)+Var(X_2)+2Cov(X_1,X_2)$
Induction Hypothesis
$Var(sum_{i=1}^k X_i)=sum_{i=1}^k Var(X_i)+sum_{i=1}^k sum_{j=1,ineq j}^k Cov(X_i,X_j)$
Inductive step
$Var(sum_{i=1}^{k+1} X_i)=Var(X_{k+1}+sum_{i=1}^k X_i)$
$=Var(X_{k+1})+Var(sum_{i=1}^k X_i)+ 2Cov(X_{k+1},sum_{i=1}^k X_i)$
$=Var(X_{k+1})+Var(sum_{i=1}^k X_i)+2sum_{i=1}^k Cov(X_{k+1} X_i) $
which gives the required result on using hypothesis.
Hope it is helpful:)
$endgroup$
add a comment |
$begingroup$
We will use principle of mathematical induction.
Basis
$Var(X_1+X_2)=E((X_1+X_2)^2)-E^2(X_1+X_2)$
$=E(X_1^2+2X_1X_2+X_2^2)-(E(X_1)+E(X_2))^2$
$=E(X_1^2)-E^2(X_1)+E(X_2^2)-E^2(X_2)+2(E(X_1X_2)-E(X_1)E(X_2))$
$=Var(X_1)+Var(X_2)+2Cov(X_1,X_2)$
Induction Hypothesis
$Var(sum_{i=1}^k X_i)=sum_{i=1}^k Var(X_i)+sum_{i=1}^k sum_{j=1,ineq j}^k Cov(X_i,X_j)$
Inductive step
$Var(sum_{i=1}^{k+1} X_i)=Var(X_{k+1}+sum_{i=1}^k X_i)$
$=Var(X_{k+1})+Var(sum_{i=1}^k X_i)+ 2Cov(X_{k+1},sum_{i=1}^k X_i)$
$=Var(X_{k+1})+Var(sum_{i=1}^k X_i)+2sum_{i=1}^k Cov(X_{k+1} X_i) $
which gives the required result on using hypothesis.
Hope it is helpful:)
$endgroup$
We will use principle of mathematical induction.
Basis
$Var(X_1+X_2)=E((X_1+X_2)^2)-E^2(X_1+X_2)$
$=E(X_1^2+2X_1X_2+X_2^2)-(E(X_1)+E(X_2))^2$
$=E(X_1^2)-E^2(X_1)+E(X_2^2)-E^2(X_2)+2(E(X_1X_2)-E(X_1)E(X_2))$
$=Var(X_1)+Var(X_2)+2Cov(X_1,X_2)$
Induction Hypothesis
$Var(sum_{i=1}^k X_i)=sum_{i=1}^k Var(X_i)+sum_{i=1}^k sum_{j=1,ineq j}^k Cov(X_i,X_j)$
Inductive step
$Var(sum_{i=1}^{k+1} X_i)=Var(X_{k+1}+sum_{i=1}^k X_i)$
$=Var(X_{k+1})+Var(sum_{i=1}^k X_i)+ 2Cov(X_{k+1},sum_{i=1}^k X_i)$
$=Var(X_{k+1})+Var(sum_{i=1}^k X_i)+2sum_{i=1}^k Cov(X_{k+1} X_i) $
which gives the required result on using hypothesis.
Hope it is helpful:)
edited Dec 14 '18 at 0:16
answered Dec 13 '18 at 4:38
MartundMartund
1,633213
1,633213
add a comment |
add a comment |
$begingroup$
Let $Z_i=X_i-mathbb EX_i$ for $i=1,dots,n$.
Then:
$$mathsf{Var}left(sum_{i=1}^nX_iright)=mathbb Eleft(sum_{i=1}^nX_i-mathbb Esum_{i=1}^nX_iright)^2=mathbb Eleft(sum_{i=1}^nZ_iright)^2=mathbb Esum_{i=1}^nsum_{j=1}^nZ_iZ_j=$$$$sum_{i=1}^nmathbb EZ_i^2+sum_{i=1}^nsum_{j=1,jneq i}^nmathbb EZ_iZ_j=sum_{i=1}^nmathsf{Var}X_i^2+sum_{i=1}^nsum_{j=1,jneq i}^nmathsf{Cov}(X_i,X_j)$$
$endgroup$
add a comment |
$begingroup$
Let $Z_i=X_i-mathbb EX_i$ for $i=1,dots,n$.
Then:
$$mathsf{Var}left(sum_{i=1}^nX_iright)=mathbb Eleft(sum_{i=1}^nX_i-mathbb Esum_{i=1}^nX_iright)^2=mathbb Eleft(sum_{i=1}^nZ_iright)^2=mathbb Esum_{i=1}^nsum_{j=1}^nZ_iZ_j=$$$$sum_{i=1}^nmathbb EZ_i^2+sum_{i=1}^nsum_{j=1,jneq i}^nmathbb EZ_iZ_j=sum_{i=1}^nmathsf{Var}X_i^2+sum_{i=1}^nsum_{j=1,jneq i}^nmathsf{Cov}(X_i,X_j)$$
$endgroup$
add a comment |
$begingroup$
Let $Z_i=X_i-mathbb EX_i$ for $i=1,dots,n$.
Then:
$$mathsf{Var}left(sum_{i=1}^nX_iright)=mathbb Eleft(sum_{i=1}^nX_i-mathbb Esum_{i=1}^nX_iright)^2=mathbb Eleft(sum_{i=1}^nZ_iright)^2=mathbb Esum_{i=1}^nsum_{j=1}^nZ_iZ_j=$$$$sum_{i=1}^nmathbb EZ_i^2+sum_{i=1}^nsum_{j=1,jneq i}^nmathbb EZ_iZ_j=sum_{i=1}^nmathsf{Var}X_i^2+sum_{i=1}^nsum_{j=1,jneq i}^nmathsf{Cov}(X_i,X_j)$$
$endgroup$
Let $Z_i=X_i-mathbb EX_i$ for $i=1,dots,n$.
Then:
$$mathsf{Var}left(sum_{i=1}^nX_iright)=mathbb Eleft(sum_{i=1}^nX_i-mathbb Esum_{i=1}^nX_iright)^2=mathbb Eleft(sum_{i=1}^nZ_iright)^2=mathbb Esum_{i=1}^nsum_{j=1}^nZ_iZ_j=$$$$sum_{i=1}^nmathbb EZ_i^2+sum_{i=1}^nsum_{j=1,jneq i}^nmathbb EZ_iZ_j=sum_{i=1}^nmathsf{Var}X_i^2+sum_{i=1}^nsum_{j=1,jneq i}^nmathsf{Cov}(X_i,X_j)$$
answered Dec 13 '18 at 14:09
drhabdrhab
101k545136
101k545136
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037577%2fcovariance-proof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
This is akin to expanding a squared sum. Can you try for two random variables and use inducton? That's my strat.
$endgroup$
– Sean Roberson
Dec 13 '18 at 4:00
$begingroup$
@SeanRoberson Induction can indeed be used, but I would not recommend it for this case.
$endgroup$
– drhab
Dec 13 '18 at 14:15