test the integral $int_{0}^{infty} frac {x}{3x^4 + 5x^2 +1}dx$ for convergence
$begingroup$
test the integral $int_{0}^{infty} frac {x}{3x^4 + 5x^2 +1}dx$ for convergence.
My thought
Can I compare it with 1/(3x^4)?
Any hints for the solution are appreciated!
real-analysis calculus convergence improper-integrals
$endgroup$
add a comment |
$begingroup$
test the integral $int_{0}^{infty} frac {x}{3x^4 + 5x^2 +1}dx$ for convergence.
My thought
Can I compare it with 1/(3x^4)?
Any hints for the solution are appreciated!
real-analysis calculus convergence improper-integrals
$endgroup$
$begingroup$
Is $3x^4+5x^2+1>x^4$?
$endgroup$
– John Wayland Bales
Dec 7 '18 at 6:16
2
$begingroup$
you can try $$frac{x}{3x^4+5x^2+1}leq frac{1}{x^3},,,,xgeq 0$$
$endgroup$
– Lau
Dec 7 '18 at 6:19
$begingroup$
@Lau but I have to prove this fact first ....... is it proved here on math stack ?
$endgroup$
– hopefully
Dec 7 '18 at 6:40
1
$begingroup$
This can be easily seen:$forall xgeq0, frac x{3x^4+5x^2+1}leqfrac x{3x^4}leqfrac x{x^4} because$ the terms we ignore in the denominator are all positive. By ignoring them, we make the denominator smaller and thus the value of the ratio larger.
$endgroup$
– Shubham Johri
Dec 7 '18 at 6:44
$begingroup$
I am not speaking about this @Lau I am speaking about proving the convergence of an integral that is different from the required one (the initial point differes)
$endgroup$
– hopefully
Dec 7 '18 at 6:55
add a comment |
$begingroup$
test the integral $int_{0}^{infty} frac {x}{3x^4 + 5x^2 +1}dx$ for convergence.
My thought
Can I compare it with 1/(3x^4)?
Any hints for the solution are appreciated!
real-analysis calculus convergence improper-integrals
$endgroup$
test the integral $int_{0}^{infty} frac {x}{3x^4 + 5x^2 +1}dx$ for convergence.
My thought
Can I compare it with 1/(3x^4)?
Any hints for the solution are appreciated!
real-analysis calculus convergence improper-integrals
real-analysis calculus convergence improper-integrals
asked Dec 7 '18 at 6:10
hopefullyhopefully
310113
310113
$begingroup$
Is $3x^4+5x^2+1>x^4$?
$endgroup$
– John Wayland Bales
Dec 7 '18 at 6:16
2
$begingroup$
you can try $$frac{x}{3x^4+5x^2+1}leq frac{1}{x^3},,,,xgeq 0$$
$endgroup$
– Lau
Dec 7 '18 at 6:19
$begingroup$
@Lau but I have to prove this fact first ....... is it proved here on math stack ?
$endgroup$
– hopefully
Dec 7 '18 at 6:40
1
$begingroup$
This can be easily seen:$forall xgeq0, frac x{3x^4+5x^2+1}leqfrac x{3x^4}leqfrac x{x^4} because$ the terms we ignore in the denominator are all positive. By ignoring them, we make the denominator smaller and thus the value of the ratio larger.
$endgroup$
– Shubham Johri
Dec 7 '18 at 6:44
$begingroup$
I am not speaking about this @Lau I am speaking about proving the convergence of an integral that is different from the required one (the initial point differes)
$endgroup$
– hopefully
Dec 7 '18 at 6:55
add a comment |
$begingroup$
Is $3x^4+5x^2+1>x^4$?
$endgroup$
– John Wayland Bales
Dec 7 '18 at 6:16
2
$begingroup$
you can try $$frac{x}{3x^4+5x^2+1}leq frac{1}{x^3},,,,xgeq 0$$
$endgroup$
– Lau
Dec 7 '18 at 6:19
$begingroup$
@Lau but I have to prove this fact first ....... is it proved here on math stack ?
$endgroup$
– hopefully
Dec 7 '18 at 6:40
1
$begingroup$
This can be easily seen:$forall xgeq0, frac x{3x^4+5x^2+1}leqfrac x{3x^4}leqfrac x{x^4} because$ the terms we ignore in the denominator are all positive. By ignoring them, we make the denominator smaller and thus the value of the ratio larger.
$endgroup$
– Shubham Johri
Dec 7 '18 at 6:44
$begingroup$
I am not speaking about this @Lau I am speaking about proving the convergence of an integral that is different from the required one (the initial point differes)
$endgroup$
– hopefully
Dec 7 '18 at 6:55
$begingroup$
Is $3x^4+5x^2+1>x^4$?
$endgroup$
– John Wayland Bales
Dec 7 '18 at 6:16
$begingroup$
Is $3x^4+5x^2+1>x^4$?
$endgroup$
– John Wayland Bales
Dec 7 '18 at 6:16
2
2
$begingroup$
you can try $$frac{x}{3x^4+5x^2+1}leq frac{1}{x^3},,,,xgeq 0$$
$endgroup$
– Lau
Dec 7 '18 at 6:19
$begingroup$
you can try $$frac{x}{3x^4+5x^2+1}leq frac{1}{x^3},,,,xgeq 0$$
$endgroup$
– Lau
Dec 7 '18 at 6:19
$begingroup$
@Lau but I have to prove this fact first ....... is it proved here on math stack ?
$endgroup$
– hopefully
Dec 7 '18 at 6:40
$begingroup$
@Lau but I have to prove this fact first ....... is it proved here on math stack ?
$endgroup$
– hopefully
Dec 7 '18 at 6:40
1
1
$begingroup$
This can be easily seen:$forall xgeq0, frac x{3x^4+5x^2+1}leqfrac x{3x^4}leqfrac x{x^4} because$ the terms we ignore in the denominator are all positive. By ignoring them, we make the denominator smaller and thus the value of the ratio larger.
$endgroup$
– Shubham Johri
Dec 7 '18 at 6:44
$begingroup$
This can be easily seen:$forall xgeq0, frac x{3x^4+5x^2+1}leqfrac x{3x^4}leqfrac x{x^4} because$ the terms we ignore in the denominator are all positive. By ignoring them, we make the denominator smaller and thus the value of the ratio larger.
$endgroup$
– Shubham Johri
Dec 7 '18 at 6:44
$begingroup$
I am not speaking about this @Lau I am speaking about proving the convergence of an integral that is different from the required one (the initial point differes)
$endgroup$
– hopefully
Dec 7 '18 at 6:55
$begingroup$
I am not speaking about this @Lau I am speaking about proving the convergence of an integral that is different from the required one (the initial point differes)
$endgroup$
– hopefully
Dec 7 '18 at 6:55
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$I=int_0^infty frac x{3x^4 + 5x^2 +1}dx$
$forall x>0, 0leqfrac x{3x^4 + 5x^2 +1}leqfrac x{x^4}=frac1{x^3}$
$implies 0leq I=int_0^1 frac x{3x^4 + 5x^2 +1}dx+int_1^infty frac x{3x^4 + 5x^2 +1}dx\ leqint_0^1 frac x{3x^4 + 5x^2 +1}dx+int_1^infty frac 1{x^3}dx\ =int_0^1 frac x{3x^4 + 5x^2 +1}dx+int_1^infty frac 1{x^3}dx\ =int_0^1 frac x{3x^4 + 5x^2 +1}dx+frac12$
Since $frac x{3x^4 + 5x^2 +1}$ is continuous on $[0,1]$ (the denominator has no real zeroes), it is bounded there and so is the proper integral $int_0^1 frac x{3x^4 + 5x^2 +1}dx$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029548%2ftest-the-integral-int-0-infty-frac-x3x4-5x2-1dx-for-convergenc%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$I=int_0^infty frac x{3x^4 + 5x^2 +1}dx$
$forall x>0, 0leqfrac x{3x^4 + 5x^2 +1}leqfrac x{x^4}=frac1{x^3}$
$implies 0leq I=int_0^1 frac x{3x^4 + 5x^2 +1}dx+int_1^infty frac x{3x^4 + 5x^2 +1}dx\ leqint_0^1 frac x{3x^4 + 5x^2 +1}dx+int_1^infty frac 1{x^3}dx\ =int_0^1 frac x{3x^4 + 5x^2 +1}dx+int_1^infty frac 1{x^3}dx\ =int_0^1 frac x{3x^4 + 5x^2 +1}dx+frac12$
Since $frac x{3x^4 + 5x^2 +1}$ is continuous on $[0,1]$ (the denominator has no real zeroes), it is bounded there and so is the proper integral $int_0^1 frac x{3x^4 + 5x^2 +1}dx$.
$endgroup$
add a comment |
$begingroup$
$I=int_0^infty frac x{3x^4 + 5x^2 +1}dx$
$forall x>0, 0leqfrac x{3x^4 + 5x^2 +1}leqfrac x{x^4}=frac1{x^3}$
$implies 0leq I=int_0^1 frac x{3x^4 + 5x^2 +1}dx+int_1^infty frac x{3x^4 + 5x^2 +1}dx\ leqint_0^1 frac x{3x^4 + 5x^2 +1}dx+int_1^infty frac 1{x^3}dx\ =int_0^1 frac x{3x^4 + 5x^2 +1}dx+int_1^infty frac 1{x^3}dx\ =int_0^1 frac x{3x^4 + 5x^2 +1}dx+frac12$
Since $frac x{3x^4 + 5x^2 +1}$ is continuous on $[0,1]$ (the denominator has no real zeroes), it is bounded there and so is the proper integral $int_0^1 frac x{3x^4 + 5x^2 +1}dx$.
$endgroup$
add a comment |
$begingroup$
$I=int_0^infty frac x{3x^4 + 5x^2 +1}dx$
$forall x>0, 0leqfrac x{3x^4 + 5x^2 +1}leqfrac x{x^4}=frac1{x^3}$
$implies 0leq I=int_0^1 frac x{3x^4 + 5x^2 +1}dx+int_1^infty frac x{3x^4 + 5x^2 +1}dx\ leqint_0^1 frac x{3x^4 + 5x^2 +1}dx+int_1^infty frac 1{x^3}dx\ =int_0^1 frac x{3x^4 + 5x^2 +1}dx+int_1^infty frac 1{x^3}dx\ =int_0^1 frac x{3x^4 + 5x^2 +1}dx+frac12$
Since $frac x{3x^4 + 5x^2 +1}$ is continuous on $[0,1]$ (the denominator has no real zeroes), it is bounded there and so is the proper integral $int_0^1 frac x{3x^4 + 5x^2 +1}dx$.
$endgroup$
$I=int_0^infty frac x{3x^4 + 5x^2 +1}dx$
$forall x>0, 0leqfrac x{3x^4 + 5x^2 +1}leqfrac x{x^4}=frac1{x^3}$
$implies 0leq I=int_0^1 frac x{3x^4 + 5x^2 +1}dx+int_1^infty frac x{3x^4 + 5x^2 +1}dx\ leqint_0^1 frac x{3x^4 + 5x^2 +1}dx+int_1^infty frac 1{x^3}dx\ =int_0^1 frac x{3x^4 + 5x^2 +1}dx+int_1^infty frac 1{x^3}dx\ =int_0^1 frac x{3x^4 + 5x^2 +1}dx+frac12$
Since $frac x{3x^4 + 5x^2 +1}$ is continuous on $[0,1]$ (the denominator has no real zeroes), it is bounded there and so is the proper integral $int_0^1 frac x{3x^4 + 5x^2 +1}dx$.
edited Dec 7 '18 at 6:46
answered Dec 7 '18 at 6:39
Shubham JohriShubham Johri
5,057717
5,057717
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029548%2ftest-the-integral-int-0-infty-frac-x3x4-5x2-1dx-for-convergenc%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Is $3x^4+5x^2+1>x^4$?
$endgroup$
– John Wayland Bales
Dec 7 '18 at 6:16
2
$begingroup$
you can try $$frac{x}{3x^4+5x^2+1}leq frac{1}{x^3},,,,xgeq 0$$
$endgroup$
– Lau
Dec 7 '18 at 6:19
$begingroup$
@Lau but I have to prove this fact first ....... is it proved here on math stack ?
$endgroup$
– hopefully
Dec 7 '18 at 6:40
1
$begingroup$
This can be easily seen:$forall xgeq0, frac x{3x^4+5x^2+1}leqfrac x{3x^4}leqfrac x{x^4} because$ the terms we ignore in the denominator are all positive. By ignoring them, we make the denominator smaller and thus the value of the ratio larger.
$endgroup$
– Shubham Johri
Dec 7 '18 at 6:44
$begingroup$
I am not speaking about this @Lau I am speaking about proving the convergence of an integral that is different from the required one (the initial point differes)
$endgroup$
– hopefully
Dec 7 '18 at 6:55