If $X sim mathcal{N}(mu, sigma^2)$, what is the derivative of the probability that $X geq 0$ w.r.t. $mu$ and...
$begingroup$
I have a variable, $X$, which is normally distributed
$$X sim mathcal{N}(mu, sigma^2)$$
I also have an event, $A$, which measures the probability that $X$ is greater than or equal to 0.
$$P[A] = P[X geq 0] = lim_{b to +infty} int_{x=0}^{x=b} f(x),dx quad text{f(x) is PDF of X}$$
I'd like to know what the derivative of $P[A]$ is w.r.t. $mu$ and $sigma^2$.
$$frac{partial P[A]}{partial mu} $$
$$frac{partial P[A]}{partial sigma^2}$$
I think this is really simple because I'm looking for the derivative of an integral, but would like to make sure I'm doing it right:
$$frac{partial P[A]}{partial mu} = frac{partial}{partial mu} lim_{b->+infty} f(b) - f(0) = frac{partial}{partial mu} f(0) $$
$$frac{partial P[A]}{partial sigma^2} = frac{partial}{partial sigma^2} lim_{b->+infty} f(b) - f(0) = frac{partial}{partial sigma^2} f(0)$$
where
$$f(x) = frac{1}{sqrt{2pisigma^2}}e^{-frac{(x-mu)^2}{2sigma^2}}$$
Are the above equations correct?
calculus normal-distribution
$endgroup$
add a comment |
$begingroup$
I have a variable, $X$, which is normally distributed
$$X sim mathcal{N}(mu, sigma^2)$$
I also have an event, $A$, which measures the probability that $X$ is greater than or equal to 0.
$$P[A] = P[X geq 0] = lim_{b to +infty} int_{x=0}^{x=b} f(x),dx quad text{f(x) is PDF of X}$$
I'd like to know what the derivative of $P[A]$ is w.r.t. $mu$ and $sigma^2$.
$$frac{partial P[A]}{partial mu} $$
$$frac{partial P[A]}{partial sigma^2}$$
I think this is really simple because I'm looking for the derivative of an integral, but would like to make sure I'm doing it right:
$$frac{partial P[A]}{partial mu} = frac{partial}{partial mu} lim_{b->+infty} f(b) - f(0) = frac{partial}{partial mu} f(0) $$
$$frac{partial P[A]}{partial sigma^2} = frac{partial}{partial sigma^2} lim_{b->+infty} f(b) - f(0) = frac{partial}{partial sigma^2} f(0)$$
where
$$f(x) = frac{1}{sqrt{2pisigma^2}}e^{-frac{(x-mu)^2}{2sigma^2}}$$
Are the above equations correct?
calculus normal-distribution
$endgroup$
add a comment |
$begingroup$
I have a variable, $X$, which is normally distributed
$$X sim mathcal{N}(mu, sigma^2)$$
I also have an event, $A$, which measures the probability that $X$ is greater than or equal to 0.
$$P[A] = P[X geq 0] = lim_{b to +infty} int_{x=0}^{x=b} f(x),dx quad text{f(x) is PDF of X}$$
I'd like to know what the derivative of $P[A]$ is w.r.t. $mu$ and $sigma^2$.
$$frac{partial P[A]}{partial mu} $$
$$frac{partial P[A]}{partial sigma^2}$$
I think this is really simple because I'm looking for the derivative of an integral, but would like to make sure I'm doing it right:
$$frac{partial P[A]}{partial mu} = frac{partial}{partial mu} lim_{b->+infty} f(b) - f(0) = frac{partial}{partial mu} f(0) $$
$$frac{partial P[A]}{partial sigma^2} = frac{partial}{partial sigma^2} lim_{b->+infty} f(b) - f(0) = frac{partial}{partial sigma^2} f(0)$$
where
$$f(x) = frac{1}{sqrt{2pisigma^2}}e^{-frac{(x-mu)^2}{2sigma^2}}$$
Are the above equations correct?
calculus normal-distribution
$endgroup$
I have a variable, $X$, which is normally distributed
$$X sim mathcal{N}(mu, sigma^2)$$
I also have an event, $A$, which measures the probability that $X$ is greater than or equal to 0.
$$P[A] = P[X geq 0] = lim_{b to +infty} int_{x=0}^{x=b} f(x),dx quad text{f(x) is PDF of X}$$
I'd like to know what the derivative of $P[A]$ is w.r.t. $mu$ and $sigma^2$.
$$frac{partial P[A]}{partial mu} $$
$$frac{partial P[A]}{partial sigma^2}$$
I think this is really simple because I'm looking for the derivative of an integral, but would like to make sure I'm doing it right:
$$frac{partial P[A]}{partial mu} = frac{partial}{partial mu} lim_{b->+infty} f(b) - f(0) = frac{partial}{partial mu} f(0) $$
$$frac{partial P[A]}{partial sigma^2} = frac{partial}{partial sigma^2} lim_{b->+infty} f(b) - f(0) = frac{partial}{partial sigma^2} f(0)$$
where
$$f(x) = frac{1}{sqrt{2pisigma^2}}e^{-frac{(x-mu)^2}{2sigma^2}}$$
Are the above equations correct?
calculus normal-distribution
calculus normal-distribution
asked Dec 7 '18 at 5:41
michaelsnowdenmichaelsnowden
13214
13214
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
No you can't to do that.You're mixing up the fundamental theorem of calculus among other things. You could use Leibnitz integral rule ! Remember by definition of partial derivative :
$$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = lim_{h to 0} int_0^infty frac{f^X(x,mu+h,sigma) - f^X(x,mu,sigma)}{h} dx$$
Under certain conditions you can pass the limit under the integral sign and you'll get
$$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = int_0^infty frac{partial}{partial mu}(f^X(x,mu,sigma))dx.$$
Since $$ frac{partial}{partial mu}(f^X(x,mu,sigma)) = frac{1}{sqrt{2pisigma^2}}frac{-1}{2sigma^2}(2mu -2x)e^{-frac{(x-mu)^2}{2 sigma^2}} =
frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}}$$
you'll get
begin{align*}
int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
int_0^{infty}frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}} dx. \
end{align*}
Change of variable $ t = frac{x- mu}{sigma^2} iff x = sigma^2 t + mu $ and "$dx = sigma^2 dt$ ", $x = 0 rightarrow t = - frac{mu}{sigma^2}$
begin{align*}
int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
int_{-frac{mu}{sigma^2}}^{infty} frac{sigma^2}{sqrt{2pisigma^2}} t exp(-frac{t^2}{2}) dt. \
&= frac{sigma^2}{sqrt{2pisigma^2}} int_{-frac{mu}{sigma^2}}^{infty} t exp(-frac{t^2}{2}) dt\
&= frac{- sigma^2}{sqrt{2pisigma^2}} big[t exp (-t^2/2)big]_{-mu/sigma^2}^infty\
&= frac{- sigma^2}{sqrt{2pisigma^2}} Big( 0 - big( frac{- mu}{sigma^2}exp{frac{-mu^2}{2 sigma^4}}big) Big) \
&= frac{- mu}{sqrt{2pisigma^2}}exp{frac{-mu^2}{2 sigma^4}}.
end{align*}
$endgroup$
add a comment |
$begingroup$
Since $Z:=frac{X-mu}{sigma}simmathcal{N}(0,,1)$ has pdf $phi(z):=frac{1}{sqrt{2pi}}exp-frac{z^2}{2}$, $P(Xge 0)=1-int_{-infty}^{-mu/sigma}phi(z)dz$. Differentiation with respect to $mu$ gives $frac{1}{sigma}phi(-frac{mu}{sigma})$; differentiation with respect to $sigma$ gives $-frac{mu}{sigma^2}phi(-frac{mu}{sigma})$. In both cases, since $phi$ is even we can delete the $-$ sign in its argument.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029519%2fif-x-sim-mathcaln-mu-sigma2-what-is-the-derivative-of-the-probabilit%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
No you can't to do that.You're mixing up the fundamental theorem of calculus among other things. You could use Leibnitz integral rule ! Remember by definition of partial derivative :
$$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = lim_{h to 0} int_0^infty frac{f^X(x,mu+h,sigma) - f^X(x,mu,sigma)}{h} dx$$
Under certain conditions you can pass the limit under the integral sign and you'll get
$$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = int_0^infty frac{partial}{partial mu}(f^X(x,mu,sigma))dx.$$
Since $$ frac{partial}{partial mu}(f^X(x,mu,sigma)) = frac{1}{sqrt{2pisigma^2}}frac{-1}{2sigma^2}(2mu -2x)e^{-frac{(x-mu)^2}{2 sigma^2}} =
frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}}$$
you'll get
begin{align*}
int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
int_0^{infty}frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}} dx. \
end{align*}
Change of variable $ t = frac{x- mu}{sigma^2} iff x = sigma^2 t + mu $ and "$dx = sigma^2 dt$ ", $x = 0 rightarrow t = - frac{mu}{sigma^2}$
begin{align*}
int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
int_{-frac{mu}{sigma^2}}^{infty} frac{sigma^2}{sqrt{2pisigma^2}} t exp(-frac{t^2}{2}) dt. \
&= frac{sigma^2}{sqrt{2pisigma^2}} int_{-frac{mu}{sigma^2}}^{infty} t exp(-frac{t^2}{2}) dt\
&= frac{- sigma^2}{sqrt{2pisigma^2}} big[t exp (-t^2/2)big]_{-mu/sigma^2}^infty\
&= frac{- sigma^2}{sqrt{2pisigma^2}} Big( 0 - big( frac{- mu}{sigma^2}exp{frac{-mu^2}{2 sigma^4}}big) Big) \
&= frac{- mu}{sqrt{2pisigma^2}}exp{frac{-mu^2}{2 sigma^4}}.
end{align*}
$endgroup$
add a comment |
$begingroup$
No you can't to do that.You're mixing up the fundamental theorem of calculus among other things. You could use Leibnitz integral rule ! Remember by definition of partial derivative :
$$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = lim_{h to 0} int_0^infty frac{f^X(x,mu+h,sigma) - f^X(x,mu,sigma)}{h} dx$$
Under certain conditions you can pass the limit under the integral sign and you'll get
$$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = int_0^infty frac{partial}{partial mu}(f^X(x,mu,sigma))dx.$$
Since $$ frac{partial}{partial mu}(f^X(x,mu,sigma)) = frac{1}{sqrt{2pisigma^2}}frac{-1}{2sigma^2}(2mu -2x)e^{-frac{(x-mu)^2}{2 sigma^2}} =
frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}}$$
you'll get
begin{align*}
int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
int_0^{infty}frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}} dx. \
end{align*}
Change of variable $ t = frac{x- mu}{sigma^2} iff x = sigma^2 t + mu $ and "$dx = sigma^2 dt$ ", $x = 0 rightarrow t = - frac{mu}{sigma^2}$
begin{align*}
int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
int_{-frac{mu}{sigma^2}}^{infty} frac{sigma^2}{sqrt{2pisigma^2}} t exp(-frac{t^2}{2}) dt. \
&= frac{sigma^2}{sqrt{2pisigma^2}} int_{-frac{mu}{sigma^2}}^{infty} t exp(-frac{t^2}{2}) dt\
&= frac{- sigma^2}{sqrt{2pisigma^2}} big[t exp (-t^2/2)big]_{-mu/sigma^2}^infty\
&= frac{- sigma^2}{sqrt{2pisigma^2}} Big( 0 - big( frac{- mu}{sigma^2}exp{frac{-mu^2}{2 sigma^4}}big) Big) \
&= frac{- mu}{sqrt{2pisigma^2}}exp{frac{-mu^2}{2 sigma^4}}.
end{align*}
$endgroup$
add a comment |
$begingroup$
No you can't to do that.You're mixing up the fundamental theorem of calculus among other things. You could use Leibnitz integral rule ! Remember by definition of partial derivative :
$$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = lim_{h to 0} int_0^infty frac{f^X(x,mu+h,sigma) - f^X(x,mu,sigma)}{h} dx$$
Under certain conditions you can pass the limit under the integral sign and you'll get
$$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = int_0^infty frac{partial}{partial mu}(f^X(x,mu,sigma))dx.$$
Since $$ frac{partial}{partial mu}(f^X(x,mu,sigma)) = frac{1}{sqrt{2pisigma^2}}frac{-1}{2sigma^2}(2mu -2x)e^{-frac{(x-mu)^2}{2 sigma^2}} =
frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}}$$
you'll get
begin{align*}
int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
int_0^{infty}frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}} dx. \
end{align*}
Change of variable $ t = frac{x- mu}{sigma^2} iff x = sigma^2 t + mu $ and "$dx = sigma^2 dt$ ", $x = 0 rightarrow t = - frac{mu}{sigma^2}$
begin{align*}
int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
int_{-frac{mu}{sigma^2}}^{infty} frac{sigma^2}{sqrt{2pisigma^2}} t exp(-frac{t^2}{2}) dt. \
&= frac{sigma^2}{sqrt{2pisigma^2}} int_{-frac{mu}{sigma^2}}^{infty} t exp(-frac{t^2}{2}) dt\
&= frac{- sigma^2}{sqrt{2pisigma^2}} big[t exp (-t^2/2)big]_{-mu/sigma^2}^infty\
&= frac{- sigma^2}{sqrt{2pisigma^2}} Big( 0 - big( frac{- mu}{sigma^2}exp{frac{-mu^2}{2 sigma^4}}big) Big) \
&= frac{- mu}{sqrt{2pisigma^2}}exp{frac{-mu^2}{2 sigma^4}}.
end{align*}
$endgroup$
No you can't to do that.You're mixing up the fundamental theorem of calculus among other things. You could use Leibnitz integral rule ! Remember by definition of partial derivative :
$$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = lim_{h to 0} int_0^infty frac{f^X(x,mu+h,sigma) - f^X(x,mu,sigma)}{h} dx$$
Under certain conditions you can pass the limit under the integral sign and you'll get
$$ frac{partial }{partial mu} int_0^infty f^X(x,mu,sigma) dx = int_0^infty frac{partial}{partial mu}(f^X(x,mu,sigma))dx.$$
Since $$ frac{partial}{partial mu}(f^X(x,mu,sigma)) = frac{1}{sqrt{2pisigma^2}}frac{-1}{2sigma^2}(2mu -2x)e^{-frac{(x-mu)^2}{2 sigma^2}} =
frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}}$$
you'll get
begin{align*}
int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
int_0^{infty}frac{1}{sqrt{2pisigma^2}}frac{x - mu}{sigma^2}e^{-frac{(x-mu)^2}{2 sigma^2}} dx. \
end{align*}
Change of variable $ t = frac{x- mu}{sigma^2} iff x = sigma^2 t + mu $ and "$dx = sigma^2 dt$ ", $x = 0 rightarrow t = - frac{mu}{sigma^2}$
begin{align*}
int_0^{infty}frac{partial}{partial mu}(f^X(x,mu,sigma)) dx &=
int_{-frac{mu}{sigma^2}}^{infty} frac{sigma^2}{sqrt{2pisigma^2}} t exp(-frac{t^2}{2}) dt. \
&= frac{sigma^2}{sqrt{2pisigma^2}} int_{-frac{mu}{sigma^2}}^{infty} t exp(-frac{t^2}{2}) dt\
&= frac{- sigma^2}{sqrt{2pisigma^2}} big[t exp (-t^2/2)big]_{-mu/sigma^2}^infty\
&= frac{- sigma^2}{sqrt{2pisigma^2}} Big( 0 - big( frac{- mu}{sigma^2}exp{frac{-mu^2}{2 sigma^4}}big) Big) \
&= frac{- mu}{sqrt{2pisigma^2}}exp{frac{-mu^2}{2 sigma^4}}.
end{align*}
edited Dec 7 '18 at 12:56
answered Dec 7 '18 at 12:31
DigitalisDigitalis
528216
528216
add a comment |
add a comment |
$begingroup$
Since $Z:=frac{X-mu}{sigma}simmathcal{N}(0,,1)$ has pdf $phi(z):=frac{1}{sqrt{2pi}}exp-frac{z^2}{2}$, $P(Xge 0)=1-int_{-infty}^{-mu/sigma}phi(z)dz$. Differentiation with respect to $mu$ gives $frac{1}{sigma}phi(-frac{mu}{sigma})$; differentiation with respect to $sigma$ gives $-frac{mu}{sigma^2}phi(-frac{mu}{sigma})$. In both cases, since $phi$ is even we can delete the $-$ sign in its argument.
$endgroup$
add a comment |
$begingroup$
Since $Z:=frac{X-mu}{sigma}simmathcal{N}(0,,1)$ has pdf $phi(z):=frac{1}{sqrt{2pi}}exp-frac{z^2}{2}$, $P(Xge 0)=1-int_{-infty}^{-mu/sigma}phi(z)dz$. Differentiation with respect to $mu$ gives $frac{1}{sigma}phi(-frac{mu}{sigma})$; differentiation with respect to $sigma$ gives $-frac{mu}{sigma^2}phi(-frac{mu}{sigma})$. In both cases, since $phi$ is even we can delete the $-$ sign in its argument.
$endgroup$
add a comment |
$begingroup$
Since $Z:=frac{X-mu}{sigma}simmathcal{N}(0,,1)$ has pdf $phi(z):=frac{1}{sqrt{2pi}}exp-frac{z^2}{2}$, $P(Xge 0)=1-int_{-infty}^{-mu/sigma}phi(z)dz$. Differentiation with respect to $mu$ gives $frac{1}{sigma}phi(-frac{mu}{sigma})$; differentiation with respect to $sigma$ gives $-frac{mu}{sigma^2}phi(-frac{mu}{sigma})$. In both cases, since $phi$ is even we can delete the $-$ sign in its argument.
$endgroup$
Since $Z:=frac{X-mu}{sigma}simmathcal{N}(0,,1)$ has pdf $phi(z):=frac{1}{sqrt{2pi}}exp-frac{z^2}{2}$, $P(Xge 0)=1-int_{-infty}^{-mu/sigma}phi(z)dz$. Differentiation with respect to $mu$ gives $frac{1}{sigma}phi(-frac{mu}{sigma})$; differentiation with respect to $sigma$ gives $-frac{mu}{sigma^2}phi(-frac{mu}{sigma})$. In both cases, since $phi$ is even we can delete the $-$ sign in its argument.
answered Dec 7 '18 at 12:40
J.G.J.G.
25.2k22539
25.2k22539
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029519%2fif-x-sim-mathcaln-mu-sigma2-what-is-the-derivative-of-the-probabilit%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown