Showing that a function is differentiable at $0$ with $f'(0)=0$












2












$begingroup$


The function is defined by



$$f(x) = begin{cases} e^{-1/x^{2}} & text{if $x neq 0$} \
0 & text{if $x = 0$} end{cases} $$



I tried using this definition



$$f'(a) = lim_{x to a} frac {f(x)-f(a)}{x-a}$$



which results in having



$$lim_{x to 0} frac {e^{-1/x^{2}}-0}{x-0} = lim_{x to 0} frac {e^{-1/x^{2}}}{x}$$



I see that you can solve this using L'Hospital's rules, but the value is still $frac 00$ no matter how many times I do the differential to each of the fraction.



What is the best way to approach this?










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    The function is defined by



    $$f(x) = begin{cases} e^{-1/x^{2}} & text{if $x neq 0$} \
    0 & text{if $x = 0$} end{cases} $$



    I tried using this definition



    $$f'(a) = lim_{x to a} frac {f(x)-f(a)}{x-a}$$



    which results in having



    $$lim_{x to 0} frac {e^{-1/x^{2}}-0}{x-0} = lim_{x to 0} frac {e^{-1/x^{2}}}{x}$$



    I see that you can solve this using L'Hospital's rules, but the value is still $frac 00$ no matter how many times I do the differential to each of the fraction.



    What is the best way to approach this?










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$


      The function is defined by



      $$f(x) = begin{cases} e^{-1/x^{2}} & text{if $x neq 0$} \
      0 & text{if $x = 0$} end{cases} $$



      I tried using this definition



      $$f'(a) = lim_{x to a} frac {f(x)-f(a)}{x-a}$$



      which results in having



      $$lim_{x to 0} frac {e^{-1/x^{2}}-0}{x-0} = lim_{x to 0} frac {e^{-1/x^{2}}}{x}$$



      I see that you can solve this using L'Hospital's rules, but the value is still $frac 00$ no matter how many times I do the differential to each of the fraction.



      What is the best way to approach this?










      share|cite|improve this question











      $endgroup$




      The function is defined by



      $$f(x) = begin{cases} e^{-1/x^{2}} & text{if $x neq 0$} \
      0 & text{if $x = 0$} end{cases} $$



      I tried using this definition



      $$f'(a) = lim_{x to a} frac {f(x)-f(a)}{x-a}$$



      which results in having



      $$lim_{x to 0} frac {e^{-1/x^{2}}-0}{x-0} = lim_{x to 0} frac {e^{-1/x^{2}}}{x}$$



      I see that you can solve this using L'Hospital's rules, but the value is still $frac 00$ no matter how many times I do the differential to each of the fraction.



      What is the best way to approach this?







      real-analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 7 '18 at 7:06









      Kemono Chen

      3,0521743




      3,0521743










      asked Dec 7 '18 at 5:58









      Jeffry SantosaJeffry Santosa

      384




      384






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Hint
          $$lim_{xto0}frac{e^{-1/x^2}}x=lim_{xtopminfty}e^{-x^2}{x}=lim_{xtopminfty}frac{x}{e^{x^2}}=lim_{xtopminfty}frac{1}{2xe^{x^2}}$$
          Explaination
          $$lim_{xto0}f(x)=lim_{xtopminfty}f(1/x)$$
          It can be easily proved by using epsilon-delta language.

          I applied L'hospital in the last equal sign.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I'm sorry this may sound embarrassing, even though I'm a 3rd year math major. Can you elaborate more on your hint? How does $lim_{xto0}frac{e^{-1/x^2}}x$ becomes $lim_{xtoinfty}e^{-x^2}{x}$?
            $endgroup$
            – Jeffry Santosa
            Dec 7 '18 at 6:12












          • $begingroup$
            If you need more explanation, just ask.
            $endgroup$
            – Kemono Chen
            Dec 7 '18 at 6:17










          • $begingroup$
            Note that $lim_{xto 0} f(x) = lim_{x to infty} f(1/x)$ is not true in general. If the function is not continuous at zero the latter limit may still exist.
            $endgroup$
            – Pjotr5
            Dec 7 '18 at 8:09










          • $begingroup$
            @Pjotr5 Here $xtoinfty$ denotes $xtopminfty$.
            $endgroup$
            – Kemono Chen
            Dec 7 '18 at 8:10












          • $begingroup$
            @KemonoChen To be very precise it would be good to mention this, because that is not standard notation for real limits.
            $endgroup$
            – Pjotr5
            Dec 7 '18 at 8:19



















          1












          $begingroup$

          We have
          $$lim_{xrightarrow 0}frac{e^{-1/x^2}}{x}=lim_{trightarrow infty}frac{t}{e^{t^2}}=lim_{trightarrow infty}frac{1}{2te^{t^2}}=0 $$
          by $t=frac{1}{x}$ and L'Hospital's rules.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029532%2fshowing-that-a-function-is-differentiable-at-0-with-f0-0%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Hint
            $$lim_{xto0}frac{e^{-1/x^2}}x=lim_{xtopminfty}e^{-x^2}{x}=lim_{xtopminfty}frac{x}{e^{x^2}}=lim_{xtopminfty}frac{1}{2xe^{x^2}}$$
            Explaination
            $$lim_{xto0}f(x)=lim_{xtopminfty}f(1/x)$$
            It can be easily proved by using epsilon-delta language.

            I applied L'hospital in the last equal sign.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              I'm sorry this may sound embarrassing, even though I'm a 3rd year math major. Can you elaborate more on your hint? How does $lim_{xto0}frac{e^{-1/x^2}}x$ becomes $lim_{xtoinfty}e^{-x^2}{x}$?
              $endgroup$
              – Jeffry Santosa
              Dec 7 '18 at 6:12












            • $begingroup$
              If you need more explanation, just ask.
              $endgroup$
              – Kemono Chen
              Dec 7 '18 at 6:17










            • $begingroup$
              Note that $lim_{xto 0} f(x) = lim_{x to infty} f(1/x)$ is not true in general. If the function is not continuous at zero the latter limit may still exist.
              $endgroup$
              – Pjotr5
              Dec 7 '18 at 8:09










            • $begingroup$
              @Pjotr5 Here $xtoinfty$ denotes $xtopminfty$.
              $endgroup$
              – Kemono Chen
              Dec 7 '18 at 8:10












            • $begingroup$
              @KemonoChen To be very precise it would be good to mention this, because that is not standard notation for real limits.
              $endgroup$
              – Pjotr5
              Dec 7 '18 at 8:19
















            1












            $begingroup$

            Hint
            $$lim_{xto0}frac{e^{-1/x^2}}x=lim_{xtopminfty}e^{-x^2}{x}=lim_{xtopminfty}frac{x}{e^{x^2}}=lim_{xtopminfty}frac{1}{2xe^{x^2}}$$
            Explaination
            $$lim_{xto0}f(x)=lim_{xtopminfty}f(1/x)$$
            It can be easily proved by using epsilon-delta language.

            I applied L'hospital in the last equal sign.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              I'm sorry this may sound embarrassing, even though I'm a 3rd year math major. Can you elaborate more on your hint? How does $lim_{xto0}frac{e^{-1/x^2}}x$ becomes $lim_{xtoinfty}e^{-x^2}{x}$?
              $endgroup$
              – Jeffry Santosa
              Dec 7 '18 at 6:12












            • $begingroup$
              If you need more explanation, just ask.
              $endgroup$
              – Kemono Chen
              Dec 7 '18 at 6:17










            • $begingroup$
              Note that $lim_{xto 0} f(x) = lim_{x to infty} f(1/x)$ is not true in general. If the function is not continuous at zero the latter limit may still exist.
              $endgroup$
              – Pjotr5
              Dec 7 '18 at 8:09










            • $begingroup$
              @Pjotr5 Here $xtoinfty$ denotes $xtopminfty$.
              $endgroup$
              – Kemono Chen
              Dec 7 '18 at 8:10












            • $begingroup$
              @KemonoChen To be very precise it would be good to mention this, because that is not standard notation for real limits.
              $endgroup$
              – Pjotr5
              Dec 7 '18 at 8:19














            1












            1








            1





            $begingroup$

            Hint
            $$lim_{xto0}frac{e^{-1/x^2}}x=lim_{xtopminfty}e^{-x^2}{x}=lim_{xtopminfty}frac{x}{e^{x^2}}=lim_{xtopminfty}frac{1}{2xe^{x^2}}$$
            Explaination
            $$lim_{xto0}f(x)=lim_{xtopminfty}f(1/x)$$
            It can be easily proved by using epsilon-delta language.

            I applied L'hospital in the last equal sign.






            share|cite|improve this answer











            $endgroup$



            Hint
            $$lim_{xto0}frac{e^{-1/x^2}}x=lim_{xtopminfty}e^{-x^2}{x}=lim_{xtopminfty}frac{x}{e^{x^2}}=lim_{xtopminfty}frac{1}{2xe^{x^2}}$$
            Explaination
            $$lim_{xto0}f(x)=lim_{xtopminfty}f(1/x)$$
            It can be easily proved by using epsilon-delta language.

            I applied L'hospital in the last equal sign.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 7 '18 at 8:21

























            answered Dec 7 '18 at 6:04









            Kemono ChenKemono Chen

            3,0521743




            3,0521743












            • $begingroup$
              I'm sorry this may sound embarrassing, even though I'm a 3rd year math major. Can you elaborate more on your hint? How does $lim_{xto0}frac{e^{-1/x^2}}x$ becomes $lim_{xtoinfty}e^{-x^2}{x}$?
              $endgroup$
              – Jeffry Santosa
              Dec 7 '18 at 6:12












            • $begingroup$
              If you need more explanation, just ask.
              $endgroup$
              – Kemono Chen
              Dec 7 '18 at 6:17










            • $begingroup$
              Note that $lim_{xto 0} f(x) = lim_{x to infty} f(1/x)$ is not true in general. If the function is not continuous at zero the latter limit may still exist.
              $endgroup$
              – Pjotr5
              Dec 7 '18 at 8:09










            • $begingroup$
              @Pjotr5 Here $xtoinfty$ denotes $xtopminfty$.
              $endgroup$
              – Kemono Chen
              Dec 7 '18 at 8:10












            • $begingroup$
              @KemonoChen To be very precise it would be good to mention this, because that is not standard notation for real limits.
              $endgroup$
              – Pjotr5
              Dec 7 '18 at 8:19


















            • $begingroup$
              I'm sorry this may sound embarrassing, even though I'm a 3rd year math major. Can you elaborate more on your hint? How does $lim_{xto0}frac{e^{-1/x^2}}x$ becomes $lim_{xtoinfty}e^{-x^2}{x}$?
              $endgroup$
              – Jeffry Santosa
              Dec 7 '18 at 6:12












            • $begingroup$
              If you need more explanation, just ask.
              $endgroup$
              – Kemono Chen
              Dec 7 '18 at 6:17










            • $begingroup$
              Note that $lim_{xto 0} f(x) = lim_{x to infty} f(1/x)$ is not true in general. If the function is not continuous at zero the latter limit may still exist.
              $endgroup$
              – Pjotr5
              Dec 7 '18 at 8:09










            • $begingroup$
              @Pjotr5 Here $xtoinfty$ denotes $xtopminfty$.
              $endgroup$
              – Kemono Chen
              Dec 7 '18 at 8:10












            • $begingroup$
              @KemonoChen To be very precise it would be good to mention this, because that is not standard notation for real limits.
              $endgroup$
              – Pjotr5
              Dec 7 '18 at 8:19
















            $begingroup$
            I'm sorry this may sound embarrassing, even though I'm a 3rd year math major. Can you elaborate more on your hint? How does $lim_{xto0}frac{e^{-1/x^2}}x$ becomes $lim_{xtoinfty}e^{-x^2}{x}$?
            $endgroup$
            – Jeffry Santosa
            Dec 7 '18 at 6:12






            $begingroup$
            I'm sorry this may sound embarrassing, even though I'm a 3rd year math major. Can you elaborate more on your hint? How does $lim_{xto0}frac{e^{-1/x^2}}x$ becomes $lim_{xtoinfty}e^{-x^2}{x}$?
            $endgroup$
            – Jeffry Santosa
            Dec 7 '18 at 6:12














            $begingroup$
            If you need more explanation, just ask.
            $endgroup$
            – Kemono Chen
            Dec 7 '18 at 6:17




            $begingroup$
            If you need more explanation, just ask.
            $endgroup$
            – Kemono Chen
            Dec 7 '18 at 6:17












            $begingroup$
            Note that $lim_{xto 0} f(x) = lim_{x to infty} f(1/x)$ is not true in general. If the function is not continuous at zero the latter limit may still exist.
            $endgroup$
            – Pjotr5
            Dec 7 '18 at 8:09




            $begingroup$
            Note that $lim_{xto 0} f(x) = lim_{x to infty} f(1/x)$ is not true in general. If the function is not continuous at zero the latter limit may still exist.
            $endgroup$
            – Pjotr5
            Dec 7 '18 at 8:09












            $begingroup$
            @Pjotr5 Here $xtoinfty$ denotes $xtopminfty$.
            $endgroup$
            – Kemono Chen
            Dec 7 '18 at 8:10






            $begingroup$
            @Pjotr5 Here $xtoinfty$ denotes $xtopminfty$.
            $endgroup$
            – Kemono Chen
            Dec 7 '18 at 8:10














            $begingroup$
            @KemonoChen To be very precise it would be good to mention this, because that is not standard notation for real limits.
            $endgroup$
            – Pjotr5
            Dec 7 '18 at 8:19




            $begingroup$
            @KemonoChen To be very precise it would be good to mention this, because that is not standard notation for real limits.
            $endgroup$
            – Pjotr5
            Dec 7 '18 at 8:19











            1












            $begingroup$

            We have
            $$lim_{xrightarrow 0}frac{e^{-1/x^2}}{x}=lim_{trightarrow infty}frac{t}{e^{t^2}}=lim_{trightarrow infty}frac{1}{2te^{t^2}}=0 $$
            by $t=frac{1}{x}$ and L'Hospital's rules.






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              We have
              $$lim_{xrightarrow 0}frac{e^{-1/x^2}}{x}=lim_{trightarrow infty}frac{t}{e^{t^2}}=lim_{trightarrow infty}frac{1}{2te^{t^2}}=0 $$
              by $t=frac{1}{x}$ and L'Hospital's rules.






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                We have
                $$lim_{xrightarrow 0}frac{e^{-1/x^2}}{x}=lim_{trightarrow infty}frac{t}{e^{t^2}}=lim_{trightarrow infty}frac{1}{2te^{t^2}}=0 $$
                by $t=frac{1}{x}$ and L'Hospital's rules.






                share|cite|improve this answer









                $endgroup$



                We have
                $$lim_{xrightarrow 0}frac{e^{-1/x^2}}{x}=lim_{trightarrow infty}frac{t}{e^{t^2}}=lim_{trightarrow infty}frac{1}{2te^{t^2}}=0 $$
                by $t=frac{1}{x}$ and L'Hospital's rules.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 7 '18 at 6:07









                LauLau

                527315




                527315






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029532%2fshowing-that-a-function-is-differentiable-at-0-with-f0-0%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Probability when a professor distributes a quiz and homework assignment to a class of n students.

                    Aardman Animations

                    Are they similar matrix