Showing that a function is differentiable at $0$ with $f'(0)=0$
$begingroup$
The function is defined by
$$f(x) = begin{cases} e^{-1/x^{2}} & text{if $x neq 0$} \
0 & text{if $x = 0$} end{cases} $$
I tried using this definition
$$f'(a) = lim_{x to a} frac {f(x)-f(a)}{x-a}$$
which results in having
$$lim_{x to 0} frac {e^{-1/x^{2}}-0}{x-0} = lim_{x to 0} frac {e^{-1/x^{2}}}{x}$$
I see that you can solve this using L'Hospital's rules, but the value is still $frac 00$ no matter how many times I do the differential to each of the fraction.
What is the best way to approach this?
real-analysis
$endgroup$
add a comment |
$begingroup$
The function is defined by
$$f(x) = begin{cases} e^{-1/x^{2}} & text{if $x neq 0$} \
0 & text{if $x = 0$} end{cases} $$
I tried using this definition
$$f'(a) = lim_{x to a} frac {f(x)-f(a)}{x-a}$$
which results in having
$$lim_{x to 0} frac {e^{-1/x^{2}}-0}{x-0} = lim_{x to 0} frac {e^{-1/x^{2}}}{x}$$
I see that you can solve this using L'Hospital's rules, but the value is still $frac 00$ no matter how many times I do the differential to each of the fraction.
What is the best way to approach this?
real-analysis
$endgroup$
add a comment |
$begingroup$
The function is defined by
$$f(x) = begin{cases} e^{-1/x^{2}} & text{if $x neq 0$} \
0 & text{if $x = 0$} end{cases} $$
I tried using this definition
$$f'(a) = lim_{x to a} frac {f(x)-f(a)}{x-a}$$
which results in having
$$lim_{x to 0} frac {e^{-1/x^{2}}-0}{x-0} = lim_{x to 0} frac {e^{-1/x^{2}}}{x}$$
I see that you can solve this using L'Hospital's rules, but the value is still $frac 00$ no matter how many times I do the differential to each of the fraction.
What is the best way to approach this?
real-analysis
$endgroup$
The function is defined by
$$f(x) = begin{cases} e^{-1/x^{2}} & text{if $x neq 0$} \
0 & text{if $x = 0$} end{cases} $$
I tried using this definition
$$f'(a) = lim_{x to a} frac {f(x)-f(a)}{x-a}$$
which results in having
$$lim_{x to 0} frac {e^{-1/x^{2}}-0}{x-0} = lim_{x to 0} frac {e^{-1/x^{2}}}{x}$$
I see that you can solve this using L'Hospital's rules, but the value is still $frac 00$ no matter how many times I do the differential to each of the fraction.
What is the best way to approach this?
real-analysis
real-analysis
edited Dec 7 '18 at 7:06
Kemono Chen
3,0521743
3,0521743
asked Dec 7 '18 at 5:58
Jeffry SantosaJeffry Santosa
384
384
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint
$$lim_{xto0}frac{e^{-1/x^2}}x=lim_{xtopminfty}e^{-x^2}{x}=lim_{xtopminfty}frac{x}{e^{x^2}}=lim_{xtopminfty}frac{1}{2xe^{x^2}}$$
Explaination
$$lim_{xto0}f(x)=lim_{xtopminfty}f(1/x)$$
It can be easily proved by using epsilon-delta language.
I applied L'hospital in the last equal sign.
$endgroup$
$begingroup$
I'm sorry this may sound embarrassing, even though I'm a 3rd year math major. Can you elaborate more on your hint? How does $lim_{xto0}frac{e^{-1/x^2}}x$ becomes $lim_{xtoinfty}e^{-x^2}{x}$?
$endgroup$
– Jeffry Santosa
Dec 7 '18 at 6:12
$begingroup$
If you need more explanation, just ask.
$endgroup$
– Kemono Chen
Dec 7 '18 at 6:17
$begingroup$
Note that $lim_{xto 0} f(x) = lim_{x to infty} f(1/x)$ is not true in general. If the function is not continuous at zero the latter limit may still exist.
$endgroup$
– Pjotr5
Dec 7 '18 at 8:09
$begingroup$
@Pjotr5 Here $xtoinfty$ denotes $xtopminfty$.
$endgroup$
– Kemono Chen
Dec 7 '18 at 8:10
$begingroup$
@KemonoChen To be very precise it would be good to mention this, because that is not standard notation for real limits.
$endgroup$
– Pjotr5
Dec 7 '18 at 8:19
add a comment |
$begingroup$
We have
$$lim_{xrightarrow 0}frac{e^{-1/x^2}}{x}=lim_{trightarrow infty}frac{t}{e^{t^2}}=lim_{trightarrow infty}frac{1}{2te^{t^2}}=0 $$
by $t=frac{1}{x}$ and L'Hospital's rules.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029532%2fshowing-that-a-function-is-differentiable-at-0-with-f0-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint
$$lim_{xto0}frac{e^{-1/x^2}}x=lim_{xtopminfty}e^{-x^2}{x}=lim_{xtopminfty}frac{x}{e^{x^2}}=lim_{xtopminfty}frac{1}{2xe^{x^2}}$$
Explaination
$$lim_{xto0}f(x)=lim_{xtopminfty}f(1/x)$$
It can be easily proved by using epsilon-delta language.
I applied L'hospital in the last equal sign.
$endgroup$
$begingroup$
I'm sorry this may sound embarrassing, even though I'm a 3rd year math major. Can you elaborate more on your hint? How does $lim_{xto0}frac{e^{-1/x^2}}x$ becomes $lim_{xtoinfty}e^{-x^2}{x}$?
$endgroup$
– Jeffry Santosa
Dec 7 '18 at 6:12
$begingroup$
If you need more explanation, just ask.
$endgroup$
– Kemono Chen
Dec 7 '18 at 6:17
$begingroup$
Note that $lim_{xto 0} f(x) = lim_{x to infty} f(1/x)$ is not true in general. If the function is not continuous at zero the latter limit may still exist.
$endgroup$
– Pjotr5
Dec 7 '18 at 8:09
$begingroup$
@Pjotr5 Here $xtoinfty$ denotes $xtopminfty$.
$endgroup$
– Kemono Chen
Dec 7 '18 at 8:10
$begingroup$
@KemonoChen To be very precise it would be good to mention this, because that is not standard notation for real limits.
$endgroup$
– Pjotr5
Dec 7 '18 at 8:19
add a comment |
$begingroup$
Hint
$$lim_{xto0}frac{e^{-1/x^2}}x=lim_{xtopminfty}e^{-x^2}{x}=lim_{xtopminfty}frac{x}{e^{x^2}}=lim_{xtopminfty}frac{1}{2xe^{x^2}}$$
Explaination
$$lim_{xto0}f(x)=lim_{xtopminfty}f(1/x)$$
It can be easily proved by using epsilon-delta language.
I applied L'hospital in the last equal sign.
$endgroup$
$begingroup$
I'm sorry this may sound embarrassing, even though I'm a 3rd year math major. Can you elaborate more on your hint? How does $lim_{xto0}frac{e^{-1/x^2}}x$ becomes $lim_{xtoinfty}e^{-x^2}{x}$?
$endgroup$
– Jeffry Santosa
Dec 7 '18 at 6:12
$begingroup$
If you need more explanation, just ask.
$endgroup$
– Kemono Chen
Dec 7 '18 at 6:17
$begingroup$
Note that $lim_{xto 0} f(x) = lim_{x to infty} f(1/x)$ is not true in general. If the function is not continuous at zero the latter limit may still exist.
$endgroup$
– Pjotr5
Dec 7 '18 at 8:09
$begingroup$
@Pjotr5 Here $xtoinfty$ denotes $xtopminfty$.
$endgroup$
– Kemono Chen
Dec 7 '18 at 8:10
$begingroup$
@KemonoChen To be very precise it would be good to mention this, because that is not standard notation for real limits.
$endgroup$
– Pjotr5
Dec 7 '18 at 8:19
add a comment |
$begingroup$
Hint
$$lim_{xto0}frac{e^{-1/x^2}}x=lim_{xtopminfty}e^{-x^2}{x}=lim_{xtopminfty}frac{x}{e^{x^2}}=lim_{xtopminfty}frac{1}{2xe^{x^2}}$$
Explaination
$$lim_{xto0}f(x)=lim_{xtopminfty}f(1/x)$$
It can be easily proved by using epsilon-delta language.
I applied L'hospital in the last equal sign.
$endgroup$
Hint
$$lim_{xto0}frac{e^{-1/x^2}}x=lim_{xtopminfty}e^{-x^2}{x}=lim_{xtopminfty}frac{x}{e^{x^2}}=lim_{xtopminfty}frac{1}{2xe^{x^2}}$$
Explaination
$$lim_{xto0}f(x)=lim_{xtopminfty}f(1/x)$$
It can be easily proved by using epsilon-delta language.
I applied L'hospital in the last equal sign.
edited Dec 7 '18 at 8:21
answered Dec 7 '18 at 6:04
Kemono ChenKemono Chen
3,0521743
3,0521743
$begingroup$
I'm sorry this may sound embarrassing, even though I'm a 3rd year math major. Can you elaborate more on your hint? How does $lim_{xto0}frac{e^{-1/x^2}}x$ becomes $lim_{xtoinfty}e^{-x^2}{x}$?
$endgroup$
– Jeffry Santosa
Dec 7 '18 at 6:12
$begingroup$
If you need more explanation, just ask.
$endgroup$
– Kemono Chen
Dec 7 '18 at 6:17
$begingroup$
Note that $lim_{xto 0} f(x) = lim_{x to infty} f(1/x)$ is not true in general. If the function is not continuous at zero the latter limit may still exist.
$endgroup$
– Pjotr5
Dec 7 '18 at 8:09
$begingroup$
@Pjotr5 Here $xtoinfty$ denotes $xtopminfty$.
$endgroup$
– Kemono Chen
Dec 7 '18 at 8:10
$begingroup$
@KemonoChen To be very precise it would be good to mention this, because that is not standard notation for real limits.
$endgroup$
– Pjotr5
Dec 7 '18 at 8:19
add a comment |
$begingroup$
I'm sorry this may sound embarrassing, even though I'm a 3rd year math major. Can you elaborate more on your hint? How does $lim_{xto0}frac{e^{-1/x^2}}x$ becomes $lim_{xtoinfty}e^{-x^2}{x}$?
$endgroup$
– Jeffry Santosa
Dec 7 '18 at 6:12
$begingroup$
If you need more explanation, just ask.
$endgroup$
– Kemono Chen
Dec 7 '18 at 6:17
$begingroup$
Note that $lim_{xto 0} f(x) = lim_{x to infty} f(1/x)$ is not true in general. If the function is not continuous at zero the latter limit may still exist.
$endgroup$
– Pjotr5
Dec 7 '18 at 8:09
$begingroup$
@Pjotr5 Here $xtoinfty$ denotes $xtopminfty$.
$endgroup$
– Kemono Chen
Dec 7 '18 at 8:10
$begingroup$
@KemonoChen To be very precise it would be good to mention this, because that is not standard notation for real limits.
$endgroup$
– Pjotr5
Dec 7 '18 at 8:19
$begingroup$
I'm sorry this may sound embarrassing, even though I'm a 3rd year math major. Can you elaborate more on your hint? How does $lim_{xto0}frac{e^{-1/x^2}}x$ becomes $lim_{xtoinfty}e^{-x^2}{x}$?
$endgroup$
– Jeffry Santosa
Dec 7 '18 at 6:12
$begingroup$
I'm sorry this may sound embarrassing, even though I'm a 3rd year math major. Can you elaborate more on your hint? How does $lim_{xto0}frac{e^{-1/x^2}}x$ becomes $lim_{xtoinfty}e^{-x^2}{x}$?
$endgroup$
– Jeffry Santosa
Dec 7 '18 at 6:12
$begingroup$
If you need more explanation, just ask.
$endgroup$
– Kemono Chen
Dec 7 '18 at 6:17
$begingroup$
If you need more explanation, just ask.
$endgroup$
– Kemono Chen
Dec 7 '18 at 6:17
$begingroup$
Note that $lim_{xto 0} f(x) = lim_{x to infty} f(1/x)$ is not true in general. If the function is not continuous at zero the latter limit may still exist.
$endgroup$
– Pjotr5
Dec 7 '18 at 8:09
$begingroup$
Note that $lim_{xto 0} f(x) = lim_{x to infty} f(1/x)$ is not true in general. If the function is not continuous at zero the latter limit may still exist.
$endgroup$
– Pjotr5
Dec 7 '18 at 8:09
$begingroup$
@Pjotr5 Here $xtoinfty$ denotes $xtopminfty$.
$endgroup$
– Kemono Chen
Dec 7 '18 at 8:10
$begingroup$
@Pjotr5 Here $xtoinfty$ denotes $xtopminfty$.
$endgroup$
– Kemono Chen
Dec 7 '18 at 8:10
$begingroup$
@KemonoChen To be very precise it would be good to mention this, because that is not standard notation for real limits.
$endgroup$
– Pjotr5
Dec 7 '18 at 8:19
$begingroup$
@KemonoChen To be very precise it would be good to mention this, because that is not standard notation for real limits.
$endgroup$
– Pjotr5
Dec 7 '18 at 8:19
add a comment |
$begingroup$
We have
$$lim_{xrightarrow 0}frac{e^{-1/x^2}}{x}=lim_{trightarrow infty}frac{t}{e^{t^2}}=lim_{trightarrow infty}frac{1}{2te^{t^2}}=0 $$
by $t=frac{1}{x}$ and L'Hospital's rules.
$endgroup$
add a comment |
$begingroup$
We have
$$lim_{xrightarrow 0}frac{e^{-1/x^2}}{x}=lim_{trightarrow infty}frac{t}{e^{t^2}}=lim_{trightarrow infty}frac{1}{2te^{t^2}}=0 $$
by $t=frac{1}{x}$ and L'Hospital's rules.
$endgroup$
add a comment |
$begingroup$
We have
$$lim_{xrightarrow 0}frac{e^{-1/x^2}}{x}=lim_{trightarrow infty}frac{t}{e^{t^2}}=lim_{trightarrow infty}frac{1}{2te^{t^2}}=0 $$
by $t=frac{1}{x}$ and L'Hospital's rules.
$endgroup$
We have
$$lim_{xrightarrow 0}frac{e^{-1/x^2}}{x}=lim_{trightarrow infty}frac{t}{e^{t^2}}=lim_{trightarrow infty}frac{1}{2te^{t^2}}=0 $$
by $t=frac{1}{x}$ and L'Hospital's rules.
answered Dec 7 '18 at 6:07
LauLau
527315
527315
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029532%2fshowing-that-a-function-is-differentiable-at-0-with-f0-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown