Limit, Riemann Sum, Integration, Natural logarithm












3












$begingroup$


For any natural number $m$, $lim_{nrightarrow infty }left ( frac{1}{n+1}+frac{1}{n+2}+frac{1}{n+3}+cdots +frac{1}{mn} right )=ln (m)$.



I tried to prove the statement in the following way.



Proof:



$$lim_{nrightarrow infty }left ( frac{1}{n+1}+frac{1}{n+2}+frac{1}{n+3}+cdots +frac{1}{mn} right )=lim_{nrightarrow infty }sum_{r=1}^{(m-1)n}frac{1}{n+r}$$



Dividing the numerator and the denominator of $frac{1}{n+r}$ by $n$, we get $frac{1/n}{1+r/n}$.



Therefore,



$$lim_{nrightarrow infty }sum_{r=1}^{(m-1)n}frac{1}{n+r}=lim_{nrightarrow infty }frac{1}{n}sum_{r=1}^{(m-1)n}frac{1}{1+r/n}$$



this is a Riemann sum, so replacing $frac{1}{n}$ with $dx$, $frac{r}{n}$ with $x$, and integrating between the limits $x=0$ and $x=m-1$



we get $



$$int_{0}^{m-1}frac{dx}{1+x}=ln(1+x)|_{0}^{m-1}=ln(m)-ln(1)=ln(m)blacksquare$$



Is this a valid way?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Why $$lim_{nrightarrow infty }left ( frac{1}{n+1}+frac{1}{n+2}+frac{1}{n+3}+cdots +frac{1}{m+n} right )=lim_{nrightarrow infty }sum_{r=1}^{(m-1)n}frac{1}{n+r}$$ it should be $$=lim_{nrightarrow infty }sum_{r=1}^{m}frac{1}{n+r}$$
    $endgroup$
    – gimusi
    Dec 4 '18 at 8:38












  • $begingroup$
    @gimusi Oops! The denominator of the last term in the expression of the limit should be $mn$ instead of $m+n$.
    $endgroup$
    – Hussain-Alqatari
    Dec 4 '18 at 8:46












  • $begingroup$
    Ah ok! I revise my answer accordingly!
    $endgroup$
    – gimusi
    Dec 4 '18 at 8:47
















3












$begingroup$


For any natural number $m$, $lim_{nrightarrow infty }left ( frac{1}{n+1}+frac{1}{n+2}+frac{1}{n+3}+cdots +frac{1}{mn} right )=ln (m)$.



I tried to prove the statement in the following way.



Proof:



$$lim_{nrightarrow infty }left ( frac{1}{n+1}+frac{1}{n+2}+frac{1}{n+3}+cdots +frac{1}{mn} right )=lim_{nrightarrow infty }sum_{r=1}^{(m-1)n}frac{1}{n+r}$$



Dividing the numerator and the denominator of $frac{1}{n+r}$ by $n$, we get $frac{1/n}{1+r/n}$.



Therefore,



$$lim_{nrightarrow infty }sum_{r=1}^{(m-1)n}frac{1}{n+r}=lim_{nrightarrow infty }frac{1}{n}sum_{r=1}^{(m-1)n}frac{1}{1+r/n}$$



this is a Riemann sum, so replacing $frac{1}{n}$ with $dx$, $frac{r}{n}$ with $x$, and integrating between the limits $x=0$ and $x=m-1$



we get $



$$int_{0}^{m-1}frac{dx}{1+x}=ln(1+x)|_{0}^{m-1}=ln(m)-ln(1)=ln(m)blacksquare$$



Is this a valid way?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Why $$lim_{nrightarrow infty }left ( frac{1}{n+1}+frac{1}{n+2}+frac{1}{n+3}+cdots +frac{1}{m+n} right )=lim_{nrightarrow infty }sum_{r=1}^{(m-1)n}frac{1}{n+r}$$ it should be $$=lim_{nrightarrow infty }sum_{r=1}^{m}frac{1}{n+r}$$
    $endgroup$
    – gimusi
    Dec 4 '18 at 8:38












  • $begingroup$
    @gimusi Oops! The denominator of the last term in the expression of the limit should be $mn$ instead of $m+n$.
    $endgroup$
    – Hussain-Alqatari
    Dec 4 '18 at 8:46












  • $begingroup$
    Ah ok! I revise my answer accordingly!
    $endgroup$
    – gimusi
    Dec 4 '18 at 8:47














3












3








3





$begingroup$


For any natural number $m$, $lim_{nrightarrow infty }left ( frac{1}{n+1}+frac{1}{n+2}+frac{1}{n+3}+cdots +frac{1}{mn} right )=ln (m)$.



I tried to prove the statement in the following way.



Proof:



$$lim_{nrightarrow infty }left ( frac{1}{n+1}+frac{1}{n+2}+frac{1}{n+3}+cdots +frac{1}{mn} right )=lim_{nrightarrow infty }sum_{r=1}^{(m-1)n}frac{1}{n+r}$$



Dividing the numerator and the denominator of $frac{1}{n+r}$ by $n$, we get $frac{1/n}{1+r/n}$.



Therefore,



$$lim_{nrightarrow infty }sum_{r=1}^{(m-1)n}frac{1}{n+r}=lim_{nrightarrow infty }frac{1}{n}sum_{r=1}^{(m-1)n}frac{1}{1+r/n}$$



this is a Riemann sum, so replacing $frac{1}{n}$ with $dx$, $frac{r}{n}$ with $x$, and integrating between the limits $x=0$ and $x=m-1$



we get $



$$int_{0}^{m-1}frac{dx}{1+x}=ln(1+x)|_{0}^{m-1}=ln(m)-ln(1)=ln(m)blacksquare$$



Is this a valid way?










share|cite|improve this question











$endgroup$




For any natural number $m$, $lim_{nrightarrow infty }left ( frac{1}{n+1}+frac{1}{n+2}+frac{1}{n+3}+cdots +frac{1}{mn} right )=ln (m)$.



I tried to prove the statement in the following way.



Proof:



$$lim_{nrightarrow infty }left ( frac{1}{n+1}+frac{1}{n+2}+frac{1}{n+3}+cdots +frac{1}{mn} right )=lim_{nrightarrow infty }sum_{r=1}^{(m-1)n}frac{1}{n+r}$$



Dividing the numerator and the denominator of $frac{1}{n+r}$ by $n$, we get $frac{1/n}{1+r/n}$.



Therefore,



$$lim_{nrightarrow infty }sum_{r=1}^{(m-1)n}frac{1}{n+r}=lim_{nrightarrow infty }frac{1}{n}sum_{r=1}^{(m-1)n}frac{1}{1+r/n}$$



this is a Riemann sum, so replacing $frac{1}{n}$ with $dx$, $frac{r}{n}$ with $x$, and integrating between the limits $x=0$ and $x=m-1$



we get $



$$int_{0}^{m-1}frac{dx}{1+x}=ln(1+x)|_{0}^{m-1}=ln(m)-ln(1)=ln(m)blacksquare$$



Is this a valid way?







integration limits logarithms riemann-integration riemann-sum






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 4 '18 at 10:45









gimusi

92.9k94494




92.9k94494










asked Dec 4 '18 at 8:16









Hussain-AlqatariHussain-Alqatari

3187




3187












  • $begingroup$
    Why $$lim_{nrightarrow infty }left ( frac{1}{n+1}+frac{1}{n+2}+frac{1}{n+3}+cdots +frac{1}{m+n} right )=lim_{nrightarrow infty }sum_{r=1}^{(m-1)n}frac{1}{n+r}$$ it should be $$=lim_{nrightarrow infty }sum_{r=1}^{m}frac{1}{n+r}$$
    $endgroup$
    – gimusi
    Dec 4 '18 at 8:38












  • $begingroup$
    @gimusi Oops! The denominator of the last term in the expression of the limit should be $mn$ instead of $m+n$.
    $endgroup$
    – Hussain-Alqatari
    Dec 4 '18 at 8:46












  • $begingroup$
    Ah ok! I revise my answer accordingly!
    $endgroup$
    – gimusi
    Dec 4 '18 at 8:47


















  • $begingroup$
    Why $$lim_{nrightarrow infty }left ( frac{1}{n+1}+frac{1}{n+2}+frac{1}{n+3}+cdots +frac{1}{m+n} right )=lim_{nrightarrow infty }sum_{r=1}^{(m-1)n}frac{1}{n+r}$$ it should be $$=lim_{nrightarrow infty }sum_{r=1}^{m}frac{1}{n+r}$$
    $endgroup$
    – gimusi
    Dec 4 '18 at 8:38












  • $begingroup$
    @gimusi Oops! The denominator of the last term in the expression of the limit should be $mn$ instead of $m+n$.
    $endgroup$
    – Hussain-Alqatari
    Dec 4 '18 at 8:46












  • $begingroup$
    Ah ok! I revise my answer accordingly!
    $endgroup$
    – gimusi
    Dec 4 '18 at 8:47
















$begingroup$
Why $$lim_{nrightarrow infty }left ( frac{1}{n+1}+frac{1}{n+2}+frac{1}{n+3}+cdots +frac{1}{m+n} right )=lim_{nrightarrow infty }sum_{r=1}^{(m-1)n}frac{1}{n+r}$$ it should be $$=lim_{nrightarrow infty }sum_{r=1}^{m}frac{1}{n+r}$$
$endgroup$
– gimusi
Dec 4 '18 at 8:38






$begingroup$
Why $$lim_{nrightarrow infty }left ( frac{1}{n+1}+frac{1}{n+2}+frac{1}{n+3}+cdots +frac{1}{m+n} right )=lim_{nrightarrow infty }sum_{r=1}^{(m-1)n}frac{1}{n+r}$$ it should be $$=lim_{nrightarrow infty }sum_{r=1}^{m}frac{1}{n+r}$$
$endgroup$
– gimusi
Dec 4 '18 at 8:38














$begingroup$
@gimusi Oops! The denominator of the last term in the expression of the limit should be $mn$ instead of $m+n$.
$endgroup$
– Hussain-Alqatari
Dec 4 '18 at 8:46






$begingroup$
@gimusi Oops! The denominator of the last term in the expression of the limit should be $mn$ instead of $m+n$.
$endgroup$
– Hussain-Alqatari
Dec 4 '18 at 8:46














$begingroup$
Ah ok! I revise my answer accordingly!
$endgroup$
– gimusi
Dec 4 '18 at 8:47




$begingroup$
Ah ok! I revise my answer accordingly!
$endgroup$
– gimusi
Dec 4 '18 at 8:47










2 Answers
2






active

oldest

votes


















1












$begingroup$

Yes your method is correct.



As an alternative by harmonic series



$$sum_{r=1}^{(m-1)n}frac{1}{n+r}=sum_{r=1}^{mn}frac{1}{r}-sum_{r=1}^{n}frac{1}{r}sim ln(mn)-ln(n)=ln m$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Can you please check again?
    $endgroup$
    – Hussain-Alqatari
    Dec 4 '18 at 8:50










  • $begingroup$
    Thanks dear gimusi
    $endgroup$
    – Hussain-Alqatari
    Dec 5 '18 at 15:25










  • $begingroup$
    @Hussain-Alqatari You are welcome and you did a great work there! Bye
    $endgroup$
    – gimusi
    Dec 5 '18 at 15:27





















2












$begingroup$

A simpler and more direct choice is to write
$$lim_{n to infty} left( frac{1}{n+1} + frac{1}{n+2} + cdots + frac{1}{mn} right) = lim_{n to infty} sum_{r=n+1}^{mn} frac{1}{r} = lim_{n to infty} frac{1}{n} sum_{r=n+1}^{mn} frac{1}{r/n} = int_{x=1}^m frac{1}{x} , dx = log m,$$ but your solution is valid.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Many Thanks heropup!
    $endgroup$
    – Hussain-Alqatari
    Dec 5 '18 at 15:22











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025282%2flimit-riemann-sum-integration-natural-logarithm%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Yes your method is correct.



As an alternative by harmonic series



$$sum_{r=1}^{(m-1)n}frac{1}{n+r}=sum_{r=1}^{mn}frac{1}{r}-sum_{r=1}^{n}frac{1}{r}sim ln(mn)-ln(n)=ln m$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Can you please check again?
    $endgroup$
    – Hussain-Alqatari
    Dec 4 '18 at 8:50










  • $begingroup$
    Thanks dear gimusi
    $endgroup$
    – Hussain-Alqatari
    Dec 5 '18 at 15:25










  • $begingroup$
    @Hussain-Alqatari You are welcome and you did a great work there! Bye
    $endgroup$
    – gimusi
    Dec 5 '18 at 15:27


















1












$begingroup$

Yes your method is correct.



As an alternative by harmonic series



$$sum_{r=1}^{(m-1)n}frac{1}{n+r}=sum_{r=1}^{mn}frac{1}{r}-sum_{r=1}^{n}frac{1}{r}sim ln(mn)-ln(n)=ln m$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Can you please check again?
    $endgroup$
    – Hussain-Alqatari
    Dec 4 '18 at 8:50










  • $begingroup$
    Thanks dear gimusi
    $endgroup$
    – Hussain-Alqatari
    Dec 5 '18 at 15:25










  • $begingroup$
    @Hussain-Alqatari You are welcome and you did a great work there! Bye
    $endgroup$
    – gimusi
    Dec 5 '18 at 15:27
















1












1








1





$begingroup$

Yes your method is correct.



As an alternative by harmonic series



$$sum_{r=1}^{(m-1)n}frac{1}{n+r}=sum_{r=1}^{mn}frac{1}{r}-sum_{r=1}^{n}frac{1}{r}sim ln(mn)-ln(n)=ln m$$






share|cite|improve this answer











$endgroup$



Yes your method is correct.



As an alternative by harmonic series



$$sum_{r=1}^{(m-1)n}frac{1}{n+r}=sum_{r=1}^{mn}frac{1}{r}-sum_{r=1}^{n}frac{1}{r}sim ln(mn)-ln(n)=ln m$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 4 '18 at 8:51

























answered Dec 4 '18 at 8:21









gimusigimusi

92.9k94494




92.9k94494












  • $begingroup$
    Can you please check again?
    $endgroup$
    – Hussain-Alqatari
    Dec 4 '18 at 8:50










  • $begingroup$
    Thanks dear gimusi
    $endgroup$
    – Hussain-Alqatari
    Dec 5 '18 at 15:25










  • $begingroup$
    @Hussain-Alqatari You are welcome and you did a great work there! Bye
    $endgroup$
    – gimusi
    Dec 5 '18 at 15:27




















  • $begingroup$
    Can you please check again?
    $endgroup$
    – Hussain-Alqatari
    Dec 4 '18 at 8:50










  • $begingroup$
    Thanks dear gimusi
    $endgroup$
    – Hussain-Alqatari
    Dec 5 '18 at 15:25










  • $begingroup$
    @Hussain-Alqatari You are welcome and you did a great work there! Bye
    $endgroup$
    – gimusi
    Dec 5 '18 at 15:27


















$begingroup$
Can you please check again?
$endgroup$
– Hussain-Alqatari
Dec 4 '18 at 8:50




$begingroup$
Can you please check again?
$endgroup$
– Hussain-Alqatari
Dec 4 '18 at 8:50












$begingroup$
Thanks dear gimusi
$endgroup$
– Hussain-Alqatari
Dec 5 '18 at 15:25




$begingroup$
Thanks dear gimusi
$endgroup$
– Hussain-Alqatari
Dec 5 '18 at 15:25












$begingroup$
@Hussain-Alqatari You are welcome and you did a great work there! Bye
$endgroup$
– gimusi
Dec 5 '18 at 15:27






$begingroup$
@Hussain-Alqatari You are welcome and you did a great work there! Bye
$endgroup$
– gimusi
Dec 5 '18 at 15:27













2












$begingroup$

A simpler and more direct choice is to write
$$lim_{n to infty} left( frac{1}{n+1} + frac{1}{n+2} + cdots + frac{1}{mn} right) = lim_{n to infty} sum_{r=n+1}^{mn} frac{1}{r} = lim_{n to infty} frac{1}{n} sum_{r=n+1}^{mn} frac{1}{r/n} = int_{x=1}^m frac{1}{x} , dx = log m,$$ but your solution is valid.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Many Thanks heropup!
    $endgroup$
    – Hussain-Alqatari
    Dec 5 '18 at 15:22
















2












$begingroup$

A simpler and more direct choice is to write
$$lim_{n to infty} left( frac{1}{n+1} + frac{1}{n+2} + cdots + frac{1}{mn} right) = lim_{n to infty} sum_{r=n+1}^{mn} frac{1}{r} = lim_{n to infty} frac{1}{n} sum_{r=n+1}^{mn} frac{1}{r/n} = int_{x=1}^m frac{1}{x} , dx = log m,$$ but your solution is valid.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Many Thanks heropup!
    $endgroup$
    – Hussain-Alqatari
    Dec 5 '18 at 15:22














2












2








2





$begingroup$

A simpler and more direct choice is to write
$$lim_{n to infty} left( frac{1}{n+1} + frac{1}{n+2} + cdots + frac{1}{mn} right) = lim_{n to infty} sum_{r=n+1}^{mn} frac{1}{r} = lim_{n to infty} frac{1}{n} sum_{r=n+1}^{mn} frac{1}{r/n} = int_{x=1}^m frac{1}{x} , dx = log m,$$ but your solution is valid.






share|cite|improve this answer









$endgroup$



A simpler and more direct choice is to write
$$lim_{n to infty} left( frac{1}{n+1} + frac{1}{n+2} + cdots + frac{1}{mn} right) = lim_{n to infty} sum_{r=n+1}^{mn} frac{1}{r} = lim_{n to infty} frac{1}{n} sum_{r=n+1}^{mn} frac{1}{r/n} = int_{x=1}^m frac{1}{x} , dx = log m,$$ but your solution is valid.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 5 '18 at 10:17









heropupheropup

62.9k66099




62.9k66099












  • $begingroup$
    Many Thanks heropup!
    $endgroup$
    – Hussain-Alqatari
    Dec 5 '18 at 15:22


















  • $begingroup$
    Many Thanks heropup!
    $endgroup$
    – Hussain-Alqatari
    Dec 5 '18 at 15:22
















$begingroup$
Many Thanks heropup!
$endgroup$
– Hussain-Alqatari
Dec 5 '18 at 15:22




$begingroup$
Many Thanks heropup!
$endgroup$
– Hussain-Alqatari
Dec 5 '18 at 15:22


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025282%2flimit-riemann-sum-integration-natural-logarithm%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Aardman Animations

Are they similar matrix

“minimization” problem in Euclidean space related to orthonormal basis