If $E[h(M_n)]to h(x)$ for all bounded and continuous functions $h$ then $M_nto x$ in probability












2












$begingroup$


Let $M_n$ be a sequence of random variables and let $xinmathbb{R}$ such that
$$mathbb{E}[h(M_n)]to h(x)$$
as $ntoinfty$ for all bounded and continuous functions $h$.




How to show that for all $delta>0$ we have $mathbb{P}(|M_n-x|>delta)to0$?




What I thought:

Convergence of $mathbb{E}[h(M_n)]$ means that for all $epsilon>0$ there is an $Ngeq0$ such that $mathbb{E}[h(M_n)-h(x)]<epsilon$.

Further we hav $mathbb{P}(|M_n-x|>delta)=mathbb{E}[1_{|M_n-x|>delta}]$, however the indicator function is not continuous. How do I fix this?










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    Let $M_n$ be a sequence of random variables and let $xinmathbb{R}$ such that
    $$mathbb{E}[h(M_n)]to h(x)$$
    as $ntoinfty$ for all bounded and continuous functions $h$.




    How to show that for all $delta>0$ we have $mathbb{P}(|M_n-x|>delta)to0$?




    What I thought:

    Convergence of $mathbb{E}[h(M_n)]$ means that for all $epsilon>0$ there is an $Ngeq0$ such that $mathbb{E}[h(M_n)-h(x)]<epsilon$.

    Further we hav $mathbb{P}(|M_n-x|>delta)=mathbb{E}[1_{|M_n-x|>delta}]$, however the indicator function is not continuous. How do I fix this?










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$


      Let $M_n$ be a sequence of random variables and let $xinmathbb{R}$ such that
      $$mathbb{E}[h(M_n)]to h(x)$$
      as $ntoinfty$ for all bounded and continuous functions $h$.




      How to show that for all $delta>0$ we have $mathbb{P}(|M_n-x|>delta)to0$?




      What I thought:

      Convergence of $mathbb{E}[h(M_n)]$ means that for all $epsilon>0$ there is an $Ngeq0$ such that $mathbb{E}[h(M_n)-h(x)]<epsilon$.

      Further we hav $mathbb{P}(|M_n-x|>delta)=mathbb{E}[1_{|M_n-x|>delta}]$, however the indicator function is not continuous. How do I fix this?










      share|cite|improve this question











      $endgroup$




      Let $M_n$ be a sequence of random variables and let $xinmathbb{R}$ such that
      $$mathbb{E}[h(M_n)]to h(x)$$
      as $ntoinfty$ for all bounded and continuous functions $h$.




      How to show that for all $delta>0$ we have $mathbb{P}(|M_n-x|>delta)to0$?




      What I thought:

      Convergence of $mathbb{E}[h(M_n)]$ means that for all $epsilon>0$ there is an $Ngeq0$ such that $mathbb{E}[h(M_n)-h(x)]<epsilon$.

      Further we hav $mathbb{P}(|M_n-x|>delta)=mathbb{E}[1_{|M_n-x|>delta}]$, however the indicator function is not continuous. How do I fix this?







      probability-theory random-variables weak-convergence






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 4 '18 at 18:34









      Did

      247k23222458




      247k23222458










      asked Dec 4 '18 at 9:51









      Yaroslav MlynárYaroslav Mlynár

      253




      253






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          The stated assumption implies that $M_nxrightarrow{d}x$ and, thus, $M_nxrightarrow{p} x$.





          Direct proof. For any $delta>0$,
          begin{align}
          mathsf{P}(|M_n-x|>delta)&=mathsf{P}(M_n>x+delta)+mathsf{P}(M_n<x-delta) \
          &le 1+mathsf{E}h_{delta}(M_n-x)-mathsf{E}h_{delta}(M_n+delta-x),tag{1}
          end{align}

          where $h_delta(v):=1wedge(0vee v/delta)$. Since $h_{delta}$ is a continuous bounded function, $(1)$ converges to
          $$
          1+h_{delta}(0)-h_{delta}(delta)=0.
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            But I do not want to use convergence in distribution, I would prefer to prove this without using the implications you give, i.e. without the portmanteau lemma
            $endgroup$
            – Yaroslav Mlynár
            Dec 4 '18 at 10:21













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025363%2fif-ehm-n-to-hx-for-all-bounded-and-continuous-functions-h-then-m-n-to%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          The stated assumption implies that $M_nxrightarrow{d}x$ and, thus, $M_nxrightarrow{p} x$.





          Direct proof. For any $delta>0$,
          begin{align}
          mathsf{P}(|M_n-x|>delta)&=mathsf{P}(M_n>x+delta)+mathsf{P}(M_n<x-delta) \
          &le 1+mathsf{E}h_{delta}(M_n-x)-mathsf{E}h_{delta}(M_n+delta-x),tag{1}
          end{align}

          where $h_delta(v):=1wedge(0vee v/delta)$. Since $h_{delta}$ is a continuous bounded function, $(1)$ converges to
          $$
          1+h_{delta}(0)-h_{delta}(delta)=0.
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            But I do not want to use convergence in distribution, I would prefer to prove this without using the implications you give, i.e. without the portmanteau lemma
            $endgroup$
            – Yaroslav Mlynár
            Dec 4 '18 at 10:21


















          3












          $begingroup$

          The stated assumption implies that $M_nxrightarrow{d}x$ and, thus, $M_nxrightarrow{p} x$.





          Direct proof. For any $delta>0$,
          begin{align}
          mathsf{P}(|M_n-x|>delta)&=mathsf{P}(M_n>x+delta)+mathsf{P}(M_n<x-delta) \
          &le 1+mathsf{E}h_{delta}(M_n-x)-mathsf{E}h_{delta}(M_n+delta-x),tag{1}
          end{align}

          where $h_delta(v):=1wedge(0vee v/delta)$. Since $h_{delta}$ is a continuous bounded function, $(1)$ converges to
          $$
          1+h_{delta}(0)-h_{delta}(delta)=0.
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            But I do not want to use convergence in distribution, I would prefer to prove this without using the implications you give, i.e. without the portmanteau lemma
            $endgroup$
            – Yaroslav Mlynár
            Dec 4 '18 at 10:21
















          3












          3








          3





          $begingroup$

          The stated assumption implies that $M_nxrightarrow{d}x$ and, thus, $M_nxrightarrow{p} x$.





          Direct proof. For any $delta>0$,
          begin{align}
          mathsf{P}(|M_n-x|>delta)&=mathsf{P}(M_n>x+delta)+mathsf{P}(M_n<x-delta) \
          &le 1+mathsf{E}h_{delta}(M_n-x)-mathsf{E}h_{delta}(M_n+delta-x),tag{1}
          end{align}

          where $h_delta(v):=1wedge(0vee v/delta)$. Since $h_{delta}$ is a continuous bounded function, $(1)$ converges to
          $$
          1+h_{delta}(0)-h_{delta}(delta)=0.
          $$






          share|cite|improve this answer











          $endgroup$



          The stated assumption implies that $M_nxrightarrow{d}x$ and, thus, $M_nxrightarrow{p} x$.





          Direct proof. For any $delta>0$,
          begin{align}
          mathsf{P}(|M_n-x|>delta)&=mathsf{P}(M_n>x+delta)+mathsf{P}(M_n<x-delta) \
          &le 1+mathsf{E}h_{delta}(M_n-x)-mathsf{E}h_{delta}(M_n+delta-x),tag{1}
          end{align}

          where $h_delta(v):=1wedge(0vee v/delta)$. Since $h_{delta}$ is a continuous bounded function, $(1)$ converges to
          $$
          1+h_{delta}(0)-h_{delta}(delta)=0.
          $$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 4 '18 at 18:14

























          answered Dec 4 '18 at 10:06









          d.k.o.d.k.o.

          8,777628




          8,777628












          • $begingroup$
            But I do not want to use convergence in distribution, I would prefer to prove this without using the implications you give, i.e. without the portmanteau lemma
            $endgroup$
            – Yaroslav Mlynár
            Dec 4 '18 at 10:21




















          • $begingroup$
            But I do not want to use convergence in distribution, I would prefer to prove this without using the implications you give, i.e. without the portmanteau lemma
            $endgroup$
            – Yaroslav Mlynár
            Dec 4 '18 at 10:21


















          $begingroup$
          But I do not want to use convergence in distribution, I would prefer to prove this without using the implications you give, i.e. without the portmanteau lemma
          $endgroup$
          – Yaroslav Mlynár
          Dec 4 '18 at 10:21






          $begingroup$
          But I do not want to use convergence in distribution, I would prefer to prove this without using the implications you give, i.e. without the portmanteau lemma
          $endgroup$
          – Yaroslav Mlynár
          Dec 4 '18 at 10:21




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025363%2fif-ehm-n-to-hx-for-all-bounded-and-continuous-functions-h-then-m-n-to%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Aardman Animations

          Are they similar matrix

          “minimization” problem in Euclidean space related to orthonormal basis