Python function that identifies if the numbers in a list or array are closer to 0 or 1












17














I have a numpy array of numbers. Below is an example:



[[-2.10044520e-04  1.72314372e-04  1.77235336e-04 -1.06613465e-04
6.76617611e-07 2.71623057e-03 -3.32789944e-05 1.44899758e-05
5.79249863e-05 4.06502549e-04 -1.35823707e-05 -4.13955189e-04
5.29862793e-05 -1.98286005e-04 -2.22829175e-04 -8.88758230e-04
5.62228710e-05 1.36249752e-05 -2.00474996e-05 -2.10090068e-05
1.00007518e+00 1.00007569e+00 -4.44597417e-05 -2.93724453e-04
1.00007513e+00 1.00007496e+00 1.00007532e+00 -1.22357142e-03
3.27903892e-06 1.00007592e+00 1.00007468e+00 1.00007558e+00
2.09869172e-05 -1.97610235e-05 1.00007529e+00 1.00007530e+00
1.00007503e+00 -2.68725642e-05 -3.00372853e-03 1.00007386e+00
1.00007443e+00 1.00007388e+00 5.86993822e-05 -8.69989983e-06
1.00007590e+00 1.00007488e+00 1.00007515e+00 8.81850779e-04
2.03875532e-05 1.00007480e+00 1.00007425e+00 1.00007517e+00
-2.44678912e-05 -4.36556267e-08 1.00007436e+00 1.00007558e+00
1.00007571e+00 -5.42990711e-04 1.45517859e-04 1.00007522e+00
1.00007469e+00 1.00007575e+00 -2.52271817e-05 -7.46339417e-05
1.00007427e+00]]


I want to know if each of the numbers is closer to 0 or 1. Is there a function in Python that could do it or do I have to do it manually?










share|improve this question




















  • 1




    You may want to take a look at numpy.rint. Although it returns floats and not ints, for whatever reason, but you can cast the result to int after applying this function.
    – ForceBru
    Nov 25 at 13:15












  • @ForceBru: It returns floats because float to int conversion can overflow.
    – Kevin
    Nov 25 at 15:31






  • 5




    What behaviour do you want for 0.5?
    – Eric Towers
    Nov 25 at 16:46






  • 4




    @ForceBru or even just (x >= 0.5).
    – The Great Duck
    Nov 26 at 0:50
















17














I have a numpy array of numbers. Below is an example:



[[-2.10044520e-04  1.72314372e-04  1.77235336e-04 -1.06613465e-04
6.76617611e-07 2.71623057e-03 -3.32789944e-05 1.44899758e-05
5.79249863e-05 4.06502549e-04 -1.35823707e-05 -4.13955189e-04
5.29862793e-05 -1.98286005e-04 -2.22829175e-04 -8.88758230e-04
5.62228710e-05 1.36249752e-05 -2.00474996e-05 -2.10090068e-05
1.00007518e+00 1.00007569e+00 -4.44597417e-05 -2.93724453e-04
1.00007513e+00 1.00007496e+00 1.00007532e+00 -1.22357142e-03
3.27903892e-06 1.00007592e+00 1.00007468e+00 1.00007558e+00
2.09869172e-05 -1.97610235e-05 1.00007529e+00 1.00007530e+00
1.00007503e+00 -2.68725642e-05 -3.00372853e-03 1.00007386e+00
1.00007443e+00 1.00007388e+00 5.86993822e-05 -8.69989983e-06
1.00007590e+00 1.00007488e+00 1.00007515e+00 8.81850779e-04
2.03875532e-05 1.00007480e+00 1.00007425e+00 1.00007517e+00
-2.44678912e-05 -4.36556267e-08 1.00007436e+00 1.00007558e+00
1.00007571e+00 -5.42990711e-04 1.45517859e-04 1.00007522e+00
1.00007469e+00 1.00007575e+00 -2.52271817e-05 -7.46339417e-05
1.00007427e+00]]


I want to know if each of the numbers is closer to 0 or 1. Is there a function in Python that could do it or do I have to do it manually?










share|improve this question




















  • 1




    You may want to take a look at numpy.rint. Although it returns floats and not ints, for whatever reason, but you can cast the result to int after applying this function.
    – ForceBru
    Nov 25 at 13:15












  • @ForceBru: It returns floats because float to int conversion can overflow.
    – Kevin
    Nov 25 at 15:31






  • 5




    What behaviour do you want for 0.5?
    – Eric Towers
    Nov 25 at 16:46






  • 4




    @ForceBru or even just (x >= 0.5).
    – The Great Duck
    Nov 26 at 0:50














17












17








17


1





I have a numpy array of numbers. Below is an example:



[[-2.10044520e-04  1.72314372e-04  1.77235336e-04 -1.06613465e-04
6.76617611e-07 2.71623057e-03 -3.32789944e-05 1.44899758e-05
5.79249863e-05 4.06502549e-04 -1.35823707e-05 -4.13955189e-04
5.29862793e-05 -1.98286005e-04 -2.22829175e-04 -8.88758230e-04
5.62228710e-05 1.36249752e-05 -2.00474996e-05 -2.10090068e-05
1.00007518e+00 1.00007569e+00 -4.44597417e-05 -2.93724453e-04
1.00007513e+00 1.00007496e+00 1.00007532e+00 -1.22357142e-03
3.27903892e-06 1.00007592e+00 1.00007468e+00 1.00007558e+00
2.09869172e-05 -1.97610235e-05 1.00007529e+00 1.00007530e+00
1.00007503e+00 -2.68725642e-05 -3.00372853e-03 1.00007386e+00
1.00007443e+00 1.00007388e+00 5.86993822e-05 -8.69989983e-06
1.00007590e+00 1.00007488e+00 1.00007515e+00 8.81850779e-04
2.03875532e-05 1.00007480e+00 1.00007425e+00 1.00007517e+00
-2.44678912e-05 -4.36556267e-08 1.00007436e+00 1.00007558e+00
1.00007571e+00 -5.42990711e-04 1.45517859e-04 1.00007522e+00
1.00007469e+00 1.00007575e+00 -2.52271817e-05 -7.46339417e-05
1.00007427e+00]]


I want to know if each of the numbers is closer to 0 or 1. Is there a function in Python that could do it or do I have to do it manually?










share|improve this question















I have a numpy array of numbers. Below is an example:



[[-2.10044520e-04  1.72314372e-04  1.77235336e-04 -1.06613465e-04
6.76617611e-07 2.71623057e-03 -3.32789944e-05 1.44899758e-05
5.79249863e-05 4.06502549e-04 -1.35823707e-05 -4.13955189e-04
5.29862793e-05 -1.98286005e-04 -2.22829175e-04 -8.88758230e-04
5.62228710e-05 1.36249752e-05 -2.00474996e-05 -2.10090068e-05
1.00007518e+00 1.00007569e+00 -4.44597417e-05 -2.93724453e-04
1.00007513e+00 1.00007496e+00 1.00007532e+00 -1.22357142e-03
3.27903892e-06 1.00007592e+00 1.00007468e+00 1.00007558e+00
2.09869172e-05 -1.97610235e-05 1.00007529e+00 1.00007530e+00
1.00007503e+00 -2.68725642e-05 -3.00372853e-03 1.00007386e+00
1.00007443e+00 1.00007388e+00 5.86993822e-05 -8.69989983e-06
1.00007590e+00 1.00007488e+00 1.00007515e+00 8.81850779e-04
2.03875532e-05 1.00007480e+00 1.00007425e+00 1.00007517e+00
-2.44678912e-05 -4.36556267e-08 1.00007436e+00 1.00007558e+00
1.00007571e+00 -5.42990711e-04 1.45517859e-04 1.00007522e+00
1.00007469e+00 1.00007575e+00 -2.52271817e-05 -7.46339417e-05
1.00007427e+00]]


I want to know if each of the numbers is closer to 0 or 1. Is there a function in Python that could do it or do I have to do it manually?







python arrays list function numpy






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 26 at 7:51









timgeb

48.8k116390




48.8k116390










asked Nov 25 at 13:12









Eliyah

3391525




3391525








  • 1




    You may want to take a look at numpy.rint. Although it returns floats and not ints, for whatever reason, but you can cast the result to int after applying this function.
    – ForceBru
    Nov 25 at 13:15












  • @ForceBru: It returns floats because float to int conversion can overflow.
    – Kevin
    Nov 25 at 15:31






  • 5




    What behaviour do you want for 0.5?
    – Eric Towers
    Nov 25 at 16:46






  • 4




    @ForceBru or even just (x >= 0.5).
    – The Great Duck
    Nov 26 at 0:50














  • 1




    You may want to take a look at numpy.rint. Although it returns floats and not ints, for whatever reason, but you can cast the result to int after applying this function.
    – ForceBru
    Nov 25 at 13:15












  • @ForceBru: It returns floats because float to int conversion can overflow.
    – Kevin
    Nov 25 at 15:31






  • 5




    What behaviour do you want for 0.5?
    – Eric Towers
    Nov 25 at 16:46






  • 4




    @ForceBru or even just (x >= 0.5).
    – The Great Duck
    Nov 26 at 0:50








1




1




You may want to take a look at numpy.rint. Although it returns floats and not ints, for whatever reason, but you can cast the result to int after applying this function.
– ForceBru
Nov 25 at 13:15






You may want to take a look at numpy.rint. Although it returns floats and not ints, for whatever reason, but you can cast the result to int after applying this function.
– ForceBru
Nov 25 at 13:15














@ForceBru: It returns floats because float to int conversion can overflow.
– Kevin
Nov 25 at 15:31




@ForceBru: It returns floats because float to int conversion can overflow.
– Kevin
Nov 25 at 15:31




5




5




What behaviour do you want for 0.5?
– Eric Towers
Nov 25 at 16:46




What behaviour do you want for 0.5?
– Eric Towers
Nov 25 at 16:46




4




4




@ForceBru or even just (x >= 0.5).
– The Great Duck
Nov 26 at 0:50




@ForceBru or even just (x >= 0.5).
– The Great Duck
Nov 26 at 0:50












10 Answers
10






active

oldest

votes


















15














numpy.rint is a ufunc that will round the elements of an array to the nearest integer.



>>> a = np.arange(0, 1.1, 0.1)
>>> a
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])
>>> np.rint(a)
array([0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1.])



What if the numbers don't have to be between 0 and 1?




In that case, I'd use numpy.where.



>>> a = np.arange(-2, 2.1, 0.1)
>>> a
array([-2.00000000e+00, -1.90000000e+00, -1.80000000e+00, -1.70000000e+00,
-1.60000000e+00, -1.50000000e+00, -1.40000000e+00, -1.30000000e+00,
-1.20000000e+00, -1.10000000e+00, -1.00000000e+00, -9.00000000e-01,
-8.00000000e-01, -7.00000000e-01, -6.00000000e-01, -5.00000000e-01,
-4.00000000e-01, -3.00000000e-01, -2.00000000e-01, -1.00000000e-01,
1.77635684e-15, 1.00000000e-01, 2.00000000e-01, 3.00000000e-01,
4.00000000e-01, 5.00000000e-01, 6.00000000e-01, 7.00000000e-01,
8.00000000e-01, 9.00000000e-01, 1.00000000e+00, 1.10000000e+00,
1.20000000e+00, 1.30000000e+00, 1.40000000e+00, 1.50000000e+00,
1.60000000e+00, 1.70000000e+00, 1.80000000e+00, 1.90000000e+00,
2.00000000e+00])
>>> np.where(a <= 0.5, 0, 1)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])





share|improve this answer



















  • 1




    What if my numbers is above 2?
    – Eliyah
    Nov 25 at 13:23






  • 2




    @Eliyah then np.where!
    – timgeb
    Nov 25 at 13:29










  • np.minimum(np.rint(a),1) returns 0 for a<0.5 and 1 for a>=0.5.
    – Tls Chris
    Nov 25 at 13:31










  • @TlsChris On my machine: np.minimum(np.rint(0.5),1) -> 0 because np.rint(0.5) -> 0.
    – timgeb
    Nov 25 at 13:34








  • 1




    @timgeb. np.rint(0.5) rounds down on my machine too. I shouldn't make assumptions :-).
    – Tls Chris
    Nov 25 at 15:27



















21














A straightforward way:



lst=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

closerTo1 = [x >= 0.5 for x in lst]


Or you can use np:



import numpy as np
lst=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

arr = np.array(lst)
closerTo1 = arr >= 0.5


Note that >= 0.5 can be changed to > 0.5, however you choose to treat it.






share|improve this answer

















  • 3




    Best to use NumPy for NumPy arrays, +1. Also worth mentioning other options if performance is an issue.
    – jpp
    Nov 25 at 13:22








  • 1




    Did not mention rounding solutions, as no range was defined.
    – Dinari
    Nov 25 at 13:24



















6














Here is one simple way to do this:



>>> a = np.arange(-2, 2.1, 0.1)
>>> (a >= .5).astype(np.float)
array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1.])


(Change np.float to np.int if you want integers.)






share|improve this answer





















  • Cleanest and probably fastest solution. Pity it did not attract many votes so far.
    – Luca Citi
    Nov 26 at 0:30










  • You don't have to use np.float or np.int in .astype, a regular float or int will do just fine. Numpy will interpret it as the equivalent numpy variant.
    – Rob
    Nov 26 at 10:47



















5














You could use numpy.where:



import numpy as np

arr = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 2.0])
result = np.where(arr >= 0.5, 1, 0)
print(result)


Output



[0 0 0 0 1 1 1 1 1 1]


Note that this will return 1 for numbers above 1 (for instance 2).






share|improve this answer





























    4














    You could use abs() to measure distances between your number and 0 and 1 and check which on is shorter.



    x = [[-2.10044520e-04,  1.72314372e-04,  1.77235336e-04, -1.06613465e-04,
    6.76617611e-07, 2.71623057e-03, -3.32789944e-05, 1.44899758e-05,
    5.79249863e-05, 4.06502549e-04, -1.35823707e-05, -4.13955189e-04,
    5.29862793e-05, -1.98286005e-04, -2.22829175e-04, -8.88758230e-04,
    5.62228710e-05, 1.36249752e-05, -2.00474996e-05, -2.10090068e-05,
    1.00007518e+00, 1.00007569e+00, -4.44597417e-05, -2.93724453e-04,
    1.00007513e+00, 1.00007496e+00, 1.00007532e+00, -1.22357142e-03,
    3.27903892e-06, 1.00007592e+00, 1.00007468e+00, 1.00007558e+00,
    2.09869172e-05, -1.97610235e-05, 1.00007529e+00, 1.00007530e+00,
    1.00007503e+00, -2.68725642e-05, -3.00372853e-03, 1.00007386e+00,
    1.00007443e+00, 1.00007388e+00, 5.86993822e-05, -8.69989983e-06,
    1.00007590e+00, 1.00007488e+00, 1.00007515e+00, 8.81850779e-04,
    2.03875532e-05, 1.00007480e+00, 1.00007425e+00, 1.00007517e+00,
    -2.44678912e-05, -4.36556267e-08, 1.00007436e+00, 1.00007558e+00,
    1.00007571e+00, -5.42990711e-04, 1.45517859e-04, 1.00007522e+00,
    1.00007469e+00, 1.00007575e+00, -2.52271817e-05, -7.46339417e-05,
    1.00007427e+00]]

    rounded_x = [0 if abs(i) < abs(1-i) else 1 for i in x[0]]
    print(rounded_x)


    Output:



    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1]





    share|improve this answer





























      4














      Here's a simple generalization for any arbitrary numbers a and b, instead of just 0 and 1:



      def closerab(l, a=0, b=1):
      l = np.asarray(l)
      boolarr = (np.abs(l - b) > np.abs(l - a))

      # returns two lists of indices, one for numbers closer to a and one for numbers closer to b
      return boolarr.nonzero()[0], (boolarr==0).nonzero()[0]


      This'll return two lists, one with the indices of the numbers closer to a, and one with the indices of the numbers closer to b.



      Testing it out:



      l = [
      -2.10044520e-04, 1.72314372e-04, 1.77235336e-04, 1.06613465e-04,
      6.76617611e-07, 2.71623057e-03, 3.32789944e-05, 1.44899758e-05,
      5.79249863e-05, 4.06502549e-04, 1.35823707e-05, 4.13955189e-04,
      5.29862793e-05, 1.98286005e-04, 2.22829175e-04, 8.88758230e-04,
      5.62228710e-05, 1.36249752e-05, 2.00474996e-05, 2.10090068e-05,
      1.00007518e+00, 1.00007569e+00, 4.44597417e-05, 2.93724453e-04,
      1.00007513e+00, 1.00007496e+00, 1.00007532e+00, 1.22357142e-03,
      3.27903892e-06, 1.00007592e+00, 1.00007468e+00, 1.00007558e+00,
      2.09869172e-05, 1.97610235e-05, 1.00007529e+00, 1.00007530e+00,
      1.00007503e+00, 2.68725642e-05, 3.00372853e-03, 1.00007386e+00,
      1.00007443e+00, 1.00007388e+00, 5.86993822e-05, 8.69989983e-06,
      1.00007590e+00, 1.00007488e+00, 1.00007515e+00, 8.81850779e-04,
      2.03875532e-05, 1.00007480e+00, 1.00007425e+00, 1.00007517e+00,
      -2.44678912e-05, 4.36556267e-08, 1.00007436e+00, 1.00007558e+00,
      1.00007571e+00, 5.42990711e-04, 1.45517859e-04, 1.00007522e+00,
      1.00007469e+00, 1.00007575e+00, 2.52271817e-05, 7.46339417e-05,
      1.00007427e+00
      ]

      print(closerab(l, 0, 1))


      This outputs:



      (array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
      17, 18, 19, 22, 23, 27, 28, 32, 33, 37, 38, 42, 43, 47, 48, 52, 53,
      57, 58, 62, 63]),
      array([20, 21, 24, 25, 26, 29, 30, 31, 34, 35, 36, 39, 40, 41, 44, 45, 46,
      49, 50, 51, 54, 55, 56, 59, 60, 61, 64]))





      share|improve this answer





























        3














        Alternatively, you can use a ternary operator.



        x = [-0.2, 0.1, 1.1, 0.75, 0.4, 0.2, 1.5, 0.9]

        a = 0
        b = 1

        [a if i <= (a+b)/2 else b for i in x]





        share|improve this answer





























          2














          From the Python built-in function docs round(number[, ndigits]):




          Return the floating point value number rounded to ndigits digits after the decimal point. If ndigits is omitted, it defaults to zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the power minus ndigits; if two multiples are equally close, rounding is done away from 0 (so, for example, round(0.5) is 1.0 and round(-0.5) is -1.0).




          For numpy arrays in particular, you can use the numpy.round_ function.






          share|improve this answer





















          • What about numbers that are not in range of 0 and 1?
            – Filip Młynarski
            Nov 25 at 13:19






          • 1




            Round works outside of the [0, 1] range. So round(2.2) would be 2.0, round(-1.2) would be -1.0, and round(3.141, 2) would be 3.14.
            – Andrew F
            Nov 25 at 13:22










          • @AndrewFiorillo But I just wanted an output 0 and 1 :)
            – Eliyah
            Nov 25 at 13:24












          • Then @FilipMłynarski 's answer above is probably the most robust.
            – Andrew F
            Nov 25 at 13:30



















          2














          your_list=[[-2.10044520e-04, 1.72314372e-04, 1.77235336e-04, 1.06613465e-04,
          6.76617611e-07, 2.71623057e-03, 3.32789944e-05, 1.44899758e-05,
          5.79249863e-05, 4.06502549e-04, 1.35823707e-05, 4.13955189e-04,
          5.29862793e-05, 1.98286005e-04, 2.22829175e-04, 8.88758230e-04,
          5.62228710e-05, 1.36249752e-05, 2.00474996e-05, 2.10090068e-05,
          1.00007518e+00, 1.00007569e+00, 4.44597417e-05, 2.93724453e-04,
          1.00007513e+00, 1.00007496e+00, 1.00007532e+00, 1.22357142e-03,
          3.27903892e-06, 1.00007592e+00, 1.00007468e+00, 1.00007558e+00,
          2.09869172e-05, 1.97610235e-05, 1.00007529e+00, 1.00007530e+00,
          1.00007503e+00, 2.68725642e-05, 3.00372853e-03, 1.00007386e+00,
          1.00007443e+00, 1.00007388e+00, 5.86993822e-05, 8.69989983e-06,
          1.00007590e+00, 1.00007488e+00, 1.00007515e+00, 8.81850779e-04,
          2.03875532e-05, 1.00007480e+00, 1.00007425e+00, 1.00007517e+00,
          -2.44678912e-05, 4.36556267e-08, 1.00007436e+00, 1.00007558e+00,
          1.00007571e+00, 5.42990711e-04, 1.45517859e-04, 1.00007522e+00,
          1.00007469e+00, 1.00007575e+00, 2.52271817e-05, 7.46339417e-05,
          1.00007427e+00]]

          close_to_one_or_zero=[1 if x > 0.5 else 0 for x in your_list[0]]
          close_to_one_or_zero
          [0, 0, 0, 0, 0,....... 1, 1, 1, 0, 0, 1]





          share|improve this answer





























            2














            You can use round:



            [round(i) for i in [0.1,0.2,0.3,0.8,0.9]]





            share|improve this answer























              Your Answer






              StackExchange.ifUsing("editor", function () {
              StackExchange.using("externalEditor", function () {
              StackExchange.using("snippets", function () {
              StackExchange.snippets.init();
              });
              });
              }, "code-snippets");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "1"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53467807%2fpython-function-that-identifies-if-the-numbers-in-a-list-or-array-are-closer-to%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              10 Answers
              10






              active

              oldest

              votes








              10 Answers
              10






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              15














              numpy.rint is a ufunc that will round the elements of an array to the nearest integer.



              >>> a = np.arange(0, 1.1, 0.1)
              >>> a
              array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])
              >>> np.rint(a)
              array([0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1.])



              What if the numbers don't have to be between 0 and 1?




              In that case, I'd use numpy.where.



              >>> a = np.arange(-2, 2.1, 0.1)
              >>> a
              array([-2.00000000e+00, -1.90000000e+00, -1.80000000e+00, -1.70000000e+00,
              -1.60000000e+00, -1.50000000e+00, -1.40000000e+00, -1.30000000e+00,
              -1.20000000e+00, -1.10000000e+00, -1.00000000e+00, -9.00000000e-01,
              -8.00000000e-01, -7.00000000e-01, -6.00000000e-01, -5.00000000e-01,
              -4.00000000e-01, -3.00000000e-01, -2.00000000e-01, -1.00000000e-01,
              1.77635684e-15, 1.00000000e-01, 2.00000000e-01, 3.00000000e-01,
              4.00000000e-01, 5.00000000e-01, 6.00000000e-01, 7.00000000e-01,
              8.00000000e-01, 9.00000000e-01, 1.00000000e+00, 1.10000000e+00,
              1.20000000e+00, 1.30000000e+00, 1.40000000e+00, 1.50000000e+00,
              1.60000000e+00, 1.70000000e+00, 1.80000000e+00, 1.90000000e+00,
              2.00000000e+00])
              >>> np.where(a <= 0.5, 0, 1)
              array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])





              share|improve this answer



















              • 1




                What if my numbers is above 2?
                – Eliyah
                Nov 25 at 13:23






              • 2




                @Eliyah then np.where!
                – timgeb
                Nov 25 at 13:29










              • np.minimum(np.rint(a),1) returns 0 for a<0.5 and 1 for a>=0.5.
                – Tls Chris
                Nov 25 at 13:31










              • @TlsChris On my machine: np.minimum(np.rint(0.5),1) -> 0 because np.rint(0.5) -> 0.
                – timgeb
                Nov 25 at 13:34








              • 1




                @timgeb. np.rint(0.5) rounds down on my machine too. I shouldn't make assumptions :-).
                – Tls Chris
                Nov 25 at 15:27
















              15














              numpy.rint is a ufunc that will round the elements of an array to the nearest integer.



              >>> a = np.arange(0, 1.1, 0.1)
              >>> a
              array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])
              >>> np.rint(a)
              array([0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1.])



              What if the numbers don't have to be between 0 and 1?




              In that case, I'd use numpy.where.



              >>> a = np.arange(-2, 2.1, 0.1)
              >>> a
              array([-2.00000000e+00, -1.90000000e+00, -1.80000000e+00, -1.70000000e+00,
              -1.60000000e+00, -1.50000000e+00, -1.40000000e+00, -1.30000000e+00,
              -1.20000000e+00, -1.10000000e+00, -1.00000000e+00, -9.00000000e-01,
              -8.00000000e-01, -7.00000000e-01, -6.00000000e-01, -5.00000000e-01,
              -4.00000000e-01, -3.00000000e-01, -2.00000000e-01, -1.00000000e-01,
              1.77635684e-15, 1.00000000e-01, 2.00000000e-01, 3.00000000e-01,
              4.00000000e-01, 5.00000000e-01, 6.00000000e-01, 7.00000000e-01,
              8.00000000e-01, 9.00000000e-01, 1.00000000e+00, 1.10000000e+00,
              1.20000000e+00, 1.30000000e+00, 1.40000000e+00, 1.50000000e+00,
              1.60000000e+00, 1.70000000e+00, 1.80000000e+00, 1.90000000e+00,
              2.00000000e+00])
              >>> np.where(a <= 0.5, 0, 1)
              array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])





              share|improve this answer



















              • 1




                What if my numbers is above 2?
                – Eliyah
                Nov 25 at 13:23






              • 2




                @Eliyah then np.where!
                – timgeb
                Nov 25 at 13:29










              • np.minimum(np.rint(a),1) returns 0 for a<0.5 and 1 for a>=0.5.
                – Tls Chris
                Nov 25 at 13:31










              • @TlsChris On my machine: np.minimum(np.rint(0.5),1) -> 0 because np.rint(0.5) -> 0.
                – timgeb
                Nov 25 at 13:34








              • 1




                @timgeb. np.rint(0.5) rounds down on my machine too. I shouldn't make assumptions :-).
                – Tls Chris
                Nov 25 at 15:27














              15












              15








              15






              numpy.rint is a ufunc that will round the elements of an array to the nearest integer.



              >>> a = np.arange(0, 1.1, 0.1)
              >>> a
              array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])
              >>> np.rint(a)
              array([0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1.])



              What if the numbers don't have to be between 0 and 1?




              In that case, I'd use numpy.where.



              >>> a = np.arange(-2, 2.1, 0.1)
              >>> a
              array([-2.00000000e+00, -1.90000000e+00, -1.80000000e+00, -1.70000000e+00,
              -1.60000000e+00, -1.50000000e+00, -1.40000000e+00, -1.30000000e+00,
              -1.20000000e+00, -1.10000000e+00, -1.00000000e+00, -9.00000000e-01,
              -8.00000000e-01, -7.00000000e-01, -6.00000000e-01, -5.00000000e-01,
              -4.00000000e-01, -3.00000000e-01, -2.00000000e-01, -1.00000000e-01,
              1.77635684e-15, 1.00000000e-01, 2.00000000e-01, 3.00000000e-01,
              4.00000000e-01, 5.00000000e-01, 6.00000000e-01, 7.00000000e-01,
              8.00000000e-01, 9.00000000e-01, 1.00000000e+00, 1.10000000e+00,
              1.20000000e+00, 1.30000000e+00, 1.40000000e+00, 1.50000000e+00,
              1.60000000e+00, 1.70000000e+00, 1.80000000e+00, 1.90000000e+00,
              2.00000000e+00])
              >>> np.where(a <= 0.5, 0, 1)
              array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])





              share|improve this answer














              numpy.rint is a ufunc that will round the elements of an array to the nearest integer.



              >>> a = np.arange(0, 1.1, 0.1)
              >>> a
              array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])
              >>> np.rint(a)
              array([0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1.])



              What if the numbers don't have to be between 0 and 1?




              In that case, I'd use numpy.where.



              >>> a = np.arange(-2, 2.1, 0.1)
              >>> a
              array([-2.00000000e+00, -1.90000000e+00, -1.80000000e+00, -1.70000000e+00,
              -1.60000000e+00, -1.50000000e+00, -1.40000000e+00, -1.30000000e+00,
              -1.20000000e+00, -1.10000000e+00, -1.00000000e+00, -9.00000000e-01,
              -8.00000000e-01, -7.00000000e-01, -6.00000000e-01, -5.00000000e-01,
              -4.00000000e-01, -3.00000000e-01, -2.00000000e-01, -1.00000000e-01,
              1.77635684e-15, 1.00000000e-01, 2.00000000e-01, 3.00000000e-01,
              4.00000000e-01, 5.00000000e-01, 6.00000000e-01, 7.00000000e-01,
              8.00000000e-01, 9.00000000e-01, 1.00000000e+00, 1.10000000e+00,
              1.20000000e+00, 1.30000000e+00, 1.40000000e+00, 1.50000000e+00,
              1.60000000e+00, 1.70000000e+00, 1.80000000e+00, 1.90000000e+00,
              2.00000000e+00])
              >>> np.where(a <= 0.5, 0, 1)
              array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])






              share|improve this answer














              share|improve this answer



              share|improve this answer








              edited Nov 25 at 13:28

























              answered Nov 25 at 13:22









              timgeb

              48.8k116390




              48.8k116390








              • 1




                What if my numbers is above 2?
                – Eliyah
                Nov 25 at 13:23






              • 2




                @Eliyah then np.where!
                – timgeb
                Nov 25 at 13:29










              • np.minimum(np.rint(a),1) returns 0 for a<0.5 and 1 for a>=0.5.
                – Tls Chris
                Nov 25 at 13:31










              • @TlsChris On my machine: np.minimum(np.rint(0.5),1) -> 0 because np.rint(0.5) -> 0.
                – timgeb
                Nov 25 at 13:34








              • 1




                @timgeb. np.rint(0.5) rounds down on my machine too. I shouldn't make assumptions :-).
                – Tls Chris
                Nov 25 at 15:27














              • 1




                What if my numbers is above 2?
                – Eliyah
                Nov 25 at 13:23






              • 2




                @Eliyah then np.where!
                – timgeb
                Nov 25 at 13:29










              • np.minimum(np.rint(a),1) returns 0 for a<0.5 and 1 for a>=0.5.
                – Tls Chris
                Nov 25 at 13:31










              • @TlsChris On my machine: np.minimum(np.rint(0.5),1) -> 0 because np.rint(0.5) -> 0.
                – timgeb
                Nov 25 at 13:34








              • 1




                @timgeb. np.rint(0.5) rounds down on my machine too. I shouldn't make assumptions :-).
                – Tls Chris
                Nov 25 at 15:27








              1




              1




              What if my numbers is above 2?
              – Eliyah
              Nov 25 at 13:23




              What if my numbers is above 2?
              – Eliyah
              Nov 25 at 13:23




              2




              2




              @Eliyah then np.where!
              – timgeb
              Nov 25 at 13:29




              @Eliyah then np.where!
              – timgeb
              Nov 25 at 13:29












              np.minimum(np.rint(a),1) returns 0 for a<0.5 and 1 for a>=0.5.
              – Tls Chris
              Nov 25 at 13:31




              np.minimum(np.rint(a),1) returns 0 for a<0.5 and 1 for a>=0.5.
              – Tls Chris
              Nov 25 at 13:31












              @TlsChris On my machine: np.minimum(np.rint(0.5),1) -> 0 because np.rint(0.5) -> 0.
              – timgeb
              Nov 25 at 13:34






              @TlsChris On my machine: np.minimum(np.rint(0.5),1) -> 0 because np.rint(0.5) -> 0.
              – timgeb
              Nov 25 at 13:34






              1




              1




              @timgeb. np.rint(0.5) rounds down on my machine too. I shouldn't make assumptions :-).
              – Tls Chris
              Nov 25 at 15:27




              @timgeb. np.rint(0.5) rounds down on my machine too. I shouldn't make assumptions :-).
              – Tls Chris
              Nov 25 at 15:27













              21














              A straightforward way:



              lst=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

              closerTo1 = [x >= 0.5 for x in lst]


              Or you can use np:



              import numpy as np
              lst=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

              arr = np.array(lst)
              closerTo1 = arr >= 0.5


              Note that >= 0.5 can be changed to > 0.5, however you choose to treat it.






              share|improve this answer

















              • 3




                Best to use NumPy for NumPy arrays, +1. Also worth mentioning other options if performance is an issue.
                – jpp
                Nov 25 at 13:22








              • 1




                Did not mention rounding solutions, as no range was defined.
                – Dinari
                Nov 25 at 13:24
















              21














              A straightforward way:



              lst=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

              closerTo1 = [x >= 0.5 for x in lst]


              Or you can use np:



              import numpy as np
              lst=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

              arr = np.array(lst)
              closerTo1 = arr >= 0.5


              Note that >= 0.5 can be changed to > 0.5, however you choose to treat it.






              share|improve this answer

















              • 3




                Best to use NumPy for NumPy arrays, +1. Also worth mentioning other options if performance is an issue.
                – jpp
                Nov 25 at 13:22








              • 1




                Did not mention rounding solutions, as no range was defined.
                – Dinari
                Nov 25 at 13:24














              21












              21








              21






              A straightforward way:



              lst=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

              closerTo1 = [x >= 0.5 for x in lst]


              Or you can use np:



              import numpy as np
              lst=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

              arr = np.array(lst)
              closerTo1 = arr >= 0.5


              Note that >= 0.5 can be changed to > 0.5, however you choose to treat it.






              share|improve this answer












              A straightforward way:



              lst=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

              closerTo1 = [x >= 0.5 for x in lst]


              Or you can use np:



              import numpy as np
              lst=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

              arr = np.array(lst)
              closerTo1 = arr >= 0.5


              Note that >= 0.5 can be changed to > 0.5, however you choose to treat it.







              share|improve this answer












              share|improve this answer



              share|improve this answer










              answered Nov 25 at 13:19









              Dinari

              1,562422




              1,562422








              • 3




                Best to use NumPy for NumPy arrays, +1. Also worth mentioning other options if performance is an issue.
                – jpp
                Nov 25 at 13:22








              • 1




                Did not mention rounding solutions, as no range was defined.
                – Dinari
                Nov 25 at 13:24














              • 3




                Best to use NumPy for NumPy arrays, +1. Also worth mentioning other options if performance is an issue.
                – jpp
                Nov 25 at 13:22








              • 1




                Did not mention rounding solutions, as no range was defined.
                – Dinari
                Nov 25 at 13:24








              3




              3




              Best to use NumPy for NumPy arrays, +1. Also worth mentioning other options if performance is an issue.
              – jpp
              Nov 25 at 13:22






              Best to use NumPy for NumPy arrays, +1. Also worth mentioning other options if performance is an issue.
              – jpp
              Nov 25 at 13:22






              1




              1




              Did not mention rounding solutions, as no range was defined.
              – Dinari
              Nov 25 at 13:24




              Did not mention rounding solutions, as no range was defined.
              – Dinari
              Nov 25 at 13:24











              6














              Here is one simple way to do this:



              >>> a = np.arange(-2, 2.1, 0.1)
              >>> (a >= .5).astype(np.float)
              array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
              0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
              1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
              1., 1.])


              (Change np.float to np.int if you want integers.)






              share|improve this answer





















              • Cleanest and probably fastest solution. Pity it did not attract many votes so far.
                – Luca Citi
                Nov 26 at 0:30










              • You don't have to use np.float or np.int in .astype, a regular float or int will do just fine. Numpy will interpret it as the equivalent numpy variant.
                – Rob
                Nov 26 at 10:47
















              6














              Here is one simple way to do this:



              >>> a = np.arange(-2, 2.1, 0.1)
              >>> (a >= .5).astype(np.float)
              array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
              0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
              1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
              1., 1.])


              (Change np.float to np.int if you want integers.)






              share|improve this answer





















              • Cleanest and probably fastest solution. Pity it did not attract many votes so far.
                – Luca Citi
                Nov 26 at 0:30










              • You don't have to use np.float or np.int in .astype, a regular float or int will do just fine. Numpy will interpret it as the equivalent numpy variant.
                – Rob
                Nov 26 at 10:47














              6












              6








              6






              Here is one simple way to do this:



              >>> a = np.arange(-2, 2.1, 0.1)
              >>> (a >= .5).astype(np.float)
              array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
              0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
              1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
              1., 1.])


              (Change np.float to np.int if you want integers.)






              share|improve this answer












              Here is one simple way to do this:



              >>> a = np.arange(-2, 2.1, 0.1)
              >>> (a >= .5).astype(np.float)
              array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
              0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
              1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
              1., 1.])


              (Change np.float to np.int if you want integers.)







              share|improve this answer












              share|improve this answer



              share|improve this answer










              answered Nov 25 at 19:22









              NPE

              346k60740872




              346k60740872












              • Cleanest and probably fastest solution. Pity it did not attract many votes so far.
                – Luca Citi
                Nov 26 at 0:30










              • You don't have to use np.float or np.int in .astype, a regular float or int will do just fine. Numpy will interpret it as the equivalent numpy variant.
                – Rob
                Nov 26 at 10:47


















              • Cleanest and probably fastest solution. Pity it did not attract many votes so far.
                – Luca Citi
                Nov 26 at 0:30










              • You don't have to use np.float or np.int in .astype, a regular float or int will do just fine. Numpy will interpret it as the equivalent numpy variant.
                – Rob
                Nov 26 at 10:47
















              Cleanest and probably fastest solution. Pity it did not attract many votes so far.
              – Luca Citi
              Nov 26 at 0:30




              Cleanest and probably fastest solution. Pity it did not attract many votes so far.
              – Luca Citi
              Nov 26 at 0:30












              You don't have to use np.float or np.int in .astype, a regular float or int will do just fine. Numpy will interpret it as the equivalent numpy variant.
              – Rob
              Nov 26 at 10:47




              You don't have to use np.float or np.int in .astype, a regular float or int will do just fine. Numpy will interpret it as the equivalent numpy variant.
              – Rob
              Nov 26 at 10:47











              5














              You could use numpy.where:



              import numpy as np

              arr = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 2.0])
              result = np.where(arr >= 0.5, 1, 0)
              print(result)


              Output



              [0 0 0 0 1 1 1 1 1 1]


              Note that this will return 1 for numbers above 1 (for instance 2).






              share|improve this answer


























                5














                You could use numpy.where:



                import numpy as np

                arr = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 2.0])
                result = np.where(arr >= 0.5, 1, 0)
                print(result)


                Output



                [0 0 0 0 1 1 1 1 1 1]


                Note that this will return 1 for numbers above 1 (for instance 2).






                share|improve this answer
























                  5












                  5








                  5






                  You could use numpy.where:



                  import numpy as np

                  arr = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 2.0])
                  result = np.where(arr >= 0.5, 1, 0)
                  print(result)


                  Output



                  [0 0 0 0 1 1 1 1 1 1]


                  Note that this will return 1 for numbers above 1 (for instance 2).






                  share|improve this answer












                  You could use numpy.where:



                  import numpy as np

                  arr = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 2.0])
                  result = np.where(arr >= 0.5, 1, 0)
                  print(result)


                  Output



                  [0 0 0 0 1 1 1 1 1 1]


                  Note that this will return 1 for numbers above 1 (for instance 2).







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered Nov 25 at 13:23









                  Daniel Mesejo

                  12k1924




                  12k1924























                      4














                      You could use abs() to measure distances between your number and 0 and 1 and check which on is shorter.



                      x = [[-2.10044520e-04,  1.72314372e-04,  1.77235336e-04, -1.06613465e-04,
                      6.76617611e-07, 2.71623057e-03, -3.32789944e-05, 1.44899758e-05,
                      5.79249863e-05, 4.06502549e-04, -1.35823707e-05, -4.13955189e-04,
                      5.29862793e-05, -1.98286005e-04, -2.22829175e-04, -8.88758230e-04,
                      5.62228710e-05, 1.36249752e-05, -2.00474996e-05, -2.10090068e-05,
                      1.00007518e+00, 1.00007569e+00, -4.44597417e-05, -2.93724453e-04,
                      1.00007513e+00, 1.00007496e+00, 1.00007532e+00, -1.22357142e-03,
                      3.27903892e-06, 1.00007592e+00, 1.00007468e+00, 1.00007558e+00,
                      2.09869172e-05, -1.97610235e-05, 1.00007529e+00, 1.00007530e+00,
                      1.00007503e+00, -2.68725642e-05, -3.00372853e-03, 1.00007386e+00,
                      1.00007443e+00, 1.00007388e+00, 5.86993822e-05, -8.69989983e-06,
                      1.00007590e+00, 1.00007488e+00, 1.00007515e+00, 8.81850779e-04,
                      2.03875532e-05, 1.00007480e+00, 1.00007425e+00, 1.00007517e+00,
                      -2.44678912e-05, -4.36556267e-08, 1.00007436e+00, 1.00007558e+00,
                      1.00007571e+00, -5.42990711e-04, 1.45517859e-04, 1.00007522e+00,
                      1.00007469e+00, 1.00007575e+00, -2.52271817e-05, -7.46339417e-05,
                      1.00007427e+00]]

                      rounded_x = [0 if abs(i) < abs(1-i) else 1 for i in x[0]]
                      print(rounded_x)


                      Output:



                      [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1]





                      share|improve this answer


























                        4














                        You could use abs() to measure distances between your number and 0 and 1 and check which on is shorter.



                        x = [[-2.10044520e-04,  1.72314372e-04,  1.77235336e-04, -1.06613465e-04,
                        6.76617611e-07, 2.71623057e-03, -3.32789944e-05, 1.44899758e-05,
                        5.79249863e-05, 4.06502549e-04, -1.35823707e-05, -4.13955189e-04,
                        5.29862793e-05, -1.98286005e-04, -2.22829175e-04, -8.88758230e-04,
                        5.62228710e-05, 1.36249752e-05, -2.00474996e-05, -2.10090068e-05,
                        1.00007518e+00, 1.00007569e+00, -4.44597417e-05, -2.93724453e-04,
                        1.00007513e+00, 1.00007496e+00, 1.00007532e+00, -1.22357142e-03,
                        3.27903892e-06, 1.00007592e+00, 1.00007468e+00, 1.00007558e+00,
                        2.09869172e-05, -1.97610235e-05, 1.00007529e+00, 1.00007530e+00,
                        1.00007503e+00, -2.68725642e-05, -3.00372853e-03, 1.00007386e+00,
                        1.00007443e+00, 1.00007388e+00, 5.86993822e-05, -8.69989983e-06,
                        1.00007590e+00, 1.00007488e+00, 1.00007515e+00, 8.81850779e-04,
                        2.03875532e-05, 1.00007480e+00, 1.00007425e+00, 1.00007517e+00,
                        -2.44678912e-05, -4.36556267e-08, 1.00007436e+00, 1.00007558e+00,
                        1.00007571e+00, -5.42990711e-04, 1.45517859e-04, 1.00007522e+00,
                        1.00007469e+00, 1.00007575e+00, -2.52271817e-05, -7.46339417e-05,
                        1.00007427e+00]]

                        rounded_x = [0 if abs(i) < abs(1-i) else 1 for i in x[0]]
                        print(rounded_x)


                        Output:



                        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1]





                        share|improve this answer
























                          4












                          4








                          4






                          You could use abs() to measure distances between your number and 0 and 1 and check which on is shorter.



                          x = [[-2.10044520e-04,  1.72314372e-04,  1.77235336e-04, -1.06613465e-04,
                          6.76617611e-07, 2.71623057e-03, -3.32789944e-05, 1.44899758e-05,
                          5.79249863e-05, 4.06502549e-04, -1.35823707e-05, -4.13955189e-04,
                          5.29862793e-05, -1.98286005e-04, -2.22829175e-04, -8.88758230e-04,
                          5.62228710e-05, 1.36249752e-05, -2.00474996e-05, -2.10090068e-05,
                          1.00007518e+00, 1.00007569e+00, -4.44597417e-05, -2.93724453e-04,
                          1.00007513e+00, 1.00007496e+00, 1.00007532e+00, -1.22357142e-03,
                          3.27903892e-06, 1.00007592e+00, 1.00007468e+00, 1.00007558e+00,
                          2.09869172e-05, -1.97610235e-05, 1.00007529e+00, 1.00007530e+00,
                          1.00007503e+00, -2.68725642e-05, -3.00372853e-03, 1.00007386e+00,
                          1.00007443e+00, 1.00007388e+00, 5.86993822e-05, -8.69989983e-06,
                          1.00007590e+00, 1.00007488e+00, 1.00007515e+00, 8.81850779e-04,
                          2.03875532e-05, 1.00007480e+00, 1.00007425e+00, 1.00007517e+00,
                          -2.44678912e-05, -4.36556267e-08, 1.00007436e+00, 1.00007558e+00,
                          1.00007571e+00, -5.42990711e-04, 1.45517859e-04, 1.00007522e+00,
                          1.00007469e+00, 1.00007575e+00, -2.52271817e-05, -7.46339417e-05,
                          1.00007427e+00]]

                          rounded_x = [0 if abs(i) < abs(1-i) else 1 for i in x[0]]
                          print(rounded_x)


                          Output:



                          [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1]





                          share|improve this answer












                          You could use abs() to measure distances between your number and 0 and 1 and check which on is shorter.



                          x = [[-2.10044520e-04,  1.72314372e-04,  1.77235336e-04, -1.06613465e-04,
                          6.76617611e-07, 2.71623057e-03, -3.32789944e-05, 1.44899758e-05,
                          5.79249863e-05, 4.06502549e-04, -1.35823707e-05, -4.13955189e-04,
                          5.29862793e-05, -1.98286005e-04, -2.22829175e-04, -8.88758230e-04,
                          5.62228710e-05, 1.36249752e-05, -2.00474996e-05, -2.10090068e-05,
                          1.00007518e+00, 1.00007569e+00, -4.44597417e-05, -2.93724453e-04,
                          1.00007513e+00, 1.00007496e+00, 1.00007532e+00, -1.22357142e-03,
                          3.27903892e-06, 1.00007592e+00, 1.00007468e+00, 1.00007558e+00,
                          2.09869172e-05, -1.97610235e-05, 1.00007529e+00, 1.00007530e+00,
                          1.00007503e+00, -2.68725642e-05, -3.00372853e-03, 1.00007386e+00,
                          1.00007443e+00, 1.00007388e+00, 5.86993822e-05, -8.69989983e-06,
                          1.00007590e+00, 1.00007488e+00, 1.00007515e+00, 8.81850779e-04,
                          2.03875532e-05, 1.00007480e+00, 1.00007425e+00, 1.00007517e+00,
                          -2.44678912e-05, -4.36556267e-08, 1.00007436e+00, 1.00007558e+00,
                          1.00007571e+00, -5.42990711e-04, 1.45517859e-04, 1.00007522e+00,
                          1.00007469e+00, 1.00007575e+00, -2.52271817e-05, -7.46339417e-05,
                          1.00007427e+00]]

                          rounded_x = [0 if abs(i) < abs(1-i) else 1 for i in x[0]]
                          print(rounded_x)


                          Output:



                          [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1]






                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered Nov 25 at 13:25









                          Filip Młynarski

                          1,5401311




                          1,5401311























                              4














                              Here's a simple generalization for any arbitrary numbers a and b, instead of just 0 and 1:



                              def closerab(l, a=0, b=1):
                              l = np.asarray(l)
                              boolarr = (np.abs(l - b) > np.abs(l - a))

                              # returns two lists of indices, one for numbers closer to a and one for numbers closer to b
                              return boolarr.nonzero()[0], (boolarr==0).nonzero()[0]


                              This'll return two lists, one with the indices of the numbers closer to a, and one with the indices of the numbers closer to b.



                              Testing it out:



                              l = [
                              -2.10044520e-04, 1.72314372e-04, 1.77235336e-04, 1.06613465e-04,
                              6.76617611e-07, 2.71623057e-03, 3.32789944e-05, 1.44899758e-05,
                              5.79249863e-05, 4.06502549e-04, 1.35823707e-05, 4.13955189e-04,
                              5.29862793e-05, 1.98286005e-04, 2.22829175e-04, 8.88758230e-04,
                              5.62228710e-05, 1.36249752e-05, 2.00474996e-05, 2.10090068e-05,
                              1.00007518e+00, 1.00007569e+00, 4.44597417e-05, 2.93724453e-04,
                              1.00007513e+00, 1.00007496e+00, 1.00007532e+00, 1.22357142e-03,
                              3.27903892e-06, 1.00007592e+00, 1.00007468e+00, 1.00007558e+00,
                              2.09869172e-05, 1.97610235e-05, 1.00007529e+00, 1.00007530e+00,
                              1.00007503e+00, 2.68725642e-05, 3.00372853e-03, 1.00007386e+00,
                              1.00007443e+00, 1.00007388e+00, 5.86993822e-05, 8.69989983e-06,
                              1.00007590e+00, 1.00007488e+00, 1.00007515e+00, 8.81850779e-04,
                              2.03875532e-05, 1.00007480e+00, 1.00007425e+00, 1.00007517e+00,
                              -2.44678912e-05, 4.36556267e-08, 1.00007436e+00, 1.00007558e+00,
                              1.00007571e+00, 5.42990711e-04, 1.45517859e-04, 1.00007522e+00,
                              1.00007469e+00, 1.00007575e+00, 2.52271817e-05, 7.46339417e-05,
                              1.00007427e+00
                              ]

                              print(closerab(l, 0, 1))


                              This outputs:



                              (array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
                              17, 18, 19, 22, 23, 27, 28, 32, 33, 37, 38, 42, 43, 47, 48, 52, 53,
                              57, 58, 62, 63]),
                              array([20, 21, 24, 25, 26, 29, 30, 31, 34, 35, 36, 39, 40, 41, 44, 45, 46,
                              49, 50, 51, 54, 55, 56, 59, 60, 61, 64]))





                              share|improve this answer


























                                4














                                Here's a simple generalization for any arbitrary numbers a and b, instead of just 0 and 1:



                                def closerab(l, a=0, b=1):
                                l = np.asarray(l)
                                boolarr = (np.abs(l - b) > np.abs(l - a))

                                # returns two lists of indices, one for numbers closer to a and one for numbers closer to b
                                return boolarr.nonzero()[0], (boolarr==0).nonzero()[0]


                                This'll return two lists, one with the indices of the numbers closer to a, and one with the indices of the numbers closer to b.



                                Testing it out:



                                l = [
                                -2.10044520e-04, 1.72314372e-04, 1.77235336e-04, 1.06613465e-04,
                                6.76617611e-07, 2.71623057e-03, 3.32789944e-05, 1.44899758e-05,
                                5.79249863e-05, 4.06502549e-04, 1.35823707e-05, 4.13955189e-04,
                                5.29862793e-05, 1.98286005e-04, 2.22829175e-04, 8.88758230e-04,
                                5.62228710e-05, 1.36249752e-05, 2.00474996e-05, 2.10090068e-05,
                                1.00007518e+00, 1.00007569e+00, 4.44597417e-05, 2.93724453e-04,
                                1.00007513e+00, 1.00007496e+00, 1.00007532e+00, 1.22357142e-03,
                                3.27903892e-06, 1.00007592e+00, 1.00007468e+00, 1.00007558e+00,
                                2.09869172e-05, 1.97610235e-05, 1.00007529e+00, 1.00007530e+00,
                                1.00007503e+00, 2.68725642e-05, 3.00372853e-03, 1.00007386e+00,
                                1.00007443e+00, 1.00007388e+00, 5.86993822e-05, 8.69989983e-06,
                                1.00007590e+00, 1.00007488e+00, 1.00007515e+00, 8.81850779e-04,
                                2.03875532e-05, 1.00007480e+00, 1.00007425e+00, 1.00007517e+00,
                                -2.44678912e-05, 4.36556267e-08, 1.00007436e+00, 1.00007558e+00,
                                1.00007571e+00, 5.42990711e-04, 1.45517859e-04, 1.00007522e+00,
                                1.00007469e+00, 1.00007575e+00, 2.52271817e-05, 7.46339417e-05,
                                1.00007427e+00
                                ]

                                print(closerab(l, 0, 1))


                                This outputs:



                                (array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
                                17, 18, 19, 22, 23, 27, 28, 32, 33, 37, 38, 42, 43, 47, 48, 52, 53,
                                57, 58, 62, 63]),
                                array([20, 21, 24, 25, 26, 29, 30, 31, 34, 35, 36, 39, 40, 41, 44, 45, 46,
                                49, 50, 51, 54, 55, 56, 59, 60, 61, 64]))





                                share|improve this answer
























                                  4












                                  4








                                  4






                                  Here's a simple generalization for any arbitrary numbers a and b, instead of just 0 and 1:



                                  def closerab(l, a=0, b=1):
                                  l = np.asarray(l)
                                  boolarr = (np.abs(l - b) > np.abs(l - a))

                                  # returns two lists of indices, one for numbers closer to a and one for numbers closer to b
                                  return boolarr.nonzero()[0], (boolarr==0).nonzero()[0]


                                  This'll return two lists, one with the indices of the numbers closer to a, and one with the indices of the numbers closer to b.



                                  Testing it out:



                                  l = [
                                  -2.10044520e-04, 1.72314372e-04, 1.77235336e-04, 1.06613465e-04,
                                  6.76617611e-07, 2.71623057e-03, 3.32789944e-05, 1.44899758e-05,
                                  5.79249863e-05, 4.06502549e-04, 1.35823707e-05, 4.13955189e-04,
                                  5.29862793e-05, 1.98286005e-04, 2.22829175e-04, 8.88758230e-04,
                                  5.62228710e-05, 1.36249752e-05, 2.00474996e-05, 2.10090068e-05,
                                  1.00007518e+00, 1.00007569e+00, 4.44597417e-05, 2.93724453e-04,
                                  1.00007513e+00, 1.00007496e+00, 1.00007532e+00, 1.22357142e-03,
                                  3.27903892e-06, 1.00007592e+00, 1.00007468e+00, 1.00007558e+00,
                                  2.09869172e-05, 1.97610235e-05, 1.00007529e+00, 1.00007530e+00,
                                  1.00007503e+00, 2.68725642e-05, 3.00372853e-03, 1.00007386e+00,
                                  1.00007443e+00, 1.00007388e+00, 5.86993822e-05, 8.69989983e-06,
                                  1.00007590e+00, 1.00007488e+00, 1.00007515e+00, 8.81850779e-04,
                                  2.03875532e-05, 1.00007480e+00, 1.00007425e+00, 1.00007517e+00,
                                  -2.44678912e-05, 4.36556267e-08, 1.00007436e+00, 1.00007558e+00,
                                  1.00007571e+00, 5.42990711e-04, 1.45517859e-04, 1.00007522e+00,
                                  1.00007469e+00, 1.00007575e+00, 2.52271817e-05, 7.46339417e-05,
                                  1.00007427e+00
                                  ]

                                  print(closerab(l, 0, 1))


                                  This outputs:



                                  (array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
                                  17, 18, 19, 22, 23, 27, 28, 32, 33, 37, 38, 42, 43, 47, 48, 52, 53,
                                  57, 58, 62, 63]),
                                  array([20, 21, 24, 25, 26, 29, 30, 31, 34, 35, 36, 39, 40, 41, 44, 45, 46,
                                  49, 50, 51, 54, 55, 56, 59, 60, 61, 64]))





                                  share|improve this answer












                                  Here's a simple generalization for any arbitrary numbers a and b, instead of just 0 and 1:



                                  def closerab(l, a=0, b=1):
                                  l = np.asarray(l)
                                  boolarr = (np.abs(l - b) > np.abs(l - a))

                                  # returns two lists of indices, one for numbers closer to a and one for numbers closer to b
                                  return boolarr.nonzero()[0], (boolarr==0).nonzero()[0]


                                  This'll return two lists, one with the indices of the numbers closer to a, and one with the indices of the numbers closer to b.



                                  Testing it out:



                                  l = [
                                  -2.10044520e-04, 1.72314372e-04, 1.77235336e-04, 1.06613465e-04,
                                  6.76617611e-07, 2.71623057e-03, 3.32789944e-05, 1.44899758e-05,
                                  5.79249863e-05, 4.06502549e-04, 1.35823707e-05, 4.13955189e-04,
                                  5.29862793e-05, 1.98286005e-04, 2.22829175e-04, 8.88758230e-04,
                                  5.62228710e-05, 1.36249752e-05, 2.00474996e-05, 2.10090068e-05,
                                  1.00007518e+00, 1.00007569e+00, 4.44597417e-05, 2.93724453e-04,
                                  1.00007513e+00, 1.00007496e+00, 1.00007532e+00, 1.22357142e-03,
                                  3.27903892e-06, 1.00007592e+00, 1.00007468e+00, 1.00007558e+00,
                                  2.09869172e-05, 1.97610235e-05, 1.00007529e+00, 1.00007530e+00,
                                  1.00007503e+00, 2.68725642e-05, 3.00372853e-03, 1.00007386e+00,
                                  1.00007443e+00, 1.00007388e+00, 5.86993822e-05, 8.69989983e-06,
                                  1.00007590e+00, 1.00007488e+00, 1.00007515e+00, 8.81850779e-04,
                                  2.03875532e-05, 1.00007480e+00, 1.00007425e+00, 1.00007517e+00,
                                  -2.44678912e-05, 4.36556267e-08, 1.00007436e+00, 1.00007558e+00,
                                  1.00007571e+00, 5.42990711e-04, 1.45517859e-04, 1.00007522e+00,
                                  1.00007469e+00, 1.00007575e+00, 2.52271817e-05, 7.46339417e-05,
                                  1.00007427e+00
                                  ]

                                  print(closerab(l, 0, 1))


                                  This outputs:



                                  (array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
                                  17, 18, 19, 22, 23, 27, 28, 32, 33, 37, 38, 42, 43, 47, 48, 52, 53,
                                  57, 58, 62, 63]),
                                  array([20, 21, 24, 25, 26, 29, 30, 31, 34, 35, 36, 39, 40, 41, 44, 45, 46,
                                  49, 50, 51, 54, 55, 56, 59, 60, 61, 64]))






                                  share|improve this answer












                                  share|improve this answer



                                  share|improve this answer










                                  answered Nov 25 at 14:11









                                  tel

                                  6,07011430




                                  6,07011430























                                      3














                                      Alternatively, you can use a ternary operator.



                                      x = [-0.2, 0.1, 1.1, 0.75, 0.4, 0.2, 1.5, 0.9]

                                      a = 0
                                      b = 1

                                      [a if i <= (a+b)/2 else b for i in x]





                                      share|improve this answer


























                                        3














                                        Alternatively, you can use a ternary operator.



                                        x = [-0.2, 0.1, 1.1, 0.75, 0.4, 0.2, 1.5, 0.9]

                                        a = 0
                                        b = 1

                                        [a if i <= (a+b)/2 else b for i in x]





                                        share|improve this answer
























                                          3












                                          3








                                          3






                                          Alternatively, you can use a ternary operator.



                                          x = [-0.2, 0.1, 1.1, 0.75, 0.4, 0.2, 1.5, 0.9]

                                          a = 0
                                          b = 1

                                          [a if i <= (a+b)/2 else b for i in x]





                                          share|improve this answer












                                          Alternatively, you can use a ternary operator.



                                          x = [-0.2, 0.1, 1.1, 0.75, 0.4, 0.2, 1.5, 0.9]

                                          a = 0
                                          b = 1

                                          [a if i <= (a+b)/2 else b for i in x]






                                          share|improve this answer












                                          share|improve this answer



                                          share|improve this answer










                                          answered Nov 26 at 9:41









                                          Anastasiya-Romanova 秀

                                          1,9311230




                                          1,9311230























                                              2














                                              From the Python built-in function docs round(number[, ndigits]):




                                              Return the floating point value number rounded to ndigits digits after the decimal point. If ndigits is omitted, it defaults to zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the power minus ndigits; if two multiples are equally close, rounding is done away from 0 (so, for example, round(0.5) is 1.0 and round(-0.5) is -1.0).




                                              For numpy arrays in particular, you can use the numpy.round_ function.






                                              share|improve this answer





















                                              • What about numbers that are not in range of 0 and 1?
                                                – Filip Młynarski
                                                Nov 25 at 13:19






                                              • 1




                                                Round works outside of the [0, 1] range. So round(2.2) would be 2.0, round(-1.2) would be -1.0, and round(3.141, 2) would be 3.14.
                                                – Andrew F
                                                Nov 25 at 13:22










                                              • @AndrewFiorillo But I just wanted an output 0 and 1 :)
                                                – Eliyah
                                                Nov 25 at 13:24












                                              • Then @FilipMłynarski 's answer above is probably the most robust.
                                                – Andrew F
                                                Nov 25 at 13:30
















                                              2














                                              From the Python built-in function docs round(number[, ndigits]):




                                              Return the floating point value number rounded to ndigits digits after the decimal point. If ndigits is omitted, it defaults to zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the power minus ndigits; if two multiples are equally close, rounding is done away from 0 (so, for example, round(0.5) is 1.0 and round(-0.5) is -1.0).




                                              For numpy arrays in particular, you can use the numpy.round_ function.






                                              share|improve this answer





















                                              • What about numbers that are not in range of 0 and 1?
                                                – Filip Młynarski
                                                Nov 25 at 13:19






                                              • 1




                                                Round works outside of the [0, 1] range. So round(2.2) would be 2.0, round(-1.2) would be -1.0, and round(3.141, 2) would be 3.14.
                                                – Andrew F
                                                Nov 25 at 13:22










                                              • @AndrewFiorillo But I just wanted an output 0 and 1 :)
                                                – Eliyah
                                                Nov 25 at 13:24












                                              • Then @FilipMłynarski 's answer above is probably the most robust.
                                                – Andrew F
                                                Nov 25 at 13:30














                                              2












                                              2








                                              2






                                              From the Python built-in function docs round(number[, ndigits]):




                                              Return the floating point value number rounded to ndigits digits after the decimal point. If ndigits is omitted, it defaults to zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the power minus ndigits; if two multiples are equally close, rounding is done away from 0 (so, for example, round(0.5) is 1.0 and round(-0.5) is -1.0).




                                              For numpy arrays in particular, you can use the numpy.round_ function.






                                              share|improve this answer












                                              From the Python built-in function docs round(number[, ndigits]):




                                              Return the floating point value number rounded to ndigits digits after the decimal point. If ndigits is omitted, it defaults to zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the power minus ndigits; if two multiples are equally close, rounding is done away from 0 (so, for example, round(0.5) is 1.0 and round(-0.5) is -1.0).




                                              For numpy arrays in particular, you can use the numpy.round_ function.







                                              share|improve this answer












                                              share|improve this answer



                                              share|improve this answer










                                              answered Nov 25 at 13:18









                                              Andrew F

                                              58829




                                              58829












                                              • What about numbers that are not in range of 0 and 1?
                                                – Filip Młynarski
                                                Nov 25 at 13:19






                                              • 1




                                                Round works outside of the [0, 1] range. So round(2.2) would be 2.0, round(-1.2) would be -1.0, and round(3.141, 2) would be 3.14.
                                                – Andrew F
                                                Nov 25 at 13:22










                                              • @AndrewFiorillo But I just wanted an output 0 and 1 :)
                                                – Eliyah
                                                Nov 25 at 13:24












                                              • Then @FilipMłynarski 's answer above is probably the most robust.
                                                – Andrew F
                                                Nov 25 at 13:30


















                                              • What about numbers that are not in range of 0 and 1?
                                                – Filip Młynarski
                                                Nov 25 at 13:19






                                              • 1




                                                Round works outside of the [0, 1] range. So round(2.2) would be 2.0, round(-1.2) would be -1.0, and round(3.141, 2) would be 3.14.
                                                – Andrew F
                                                Nov 25 at 13:22










                                              • @AndrewFiorillo But I just wanted an output 0 and 1 :)
                                                – Eliyah
                                                Nov 25 at 13:24












                                              • Then @FilipMłynarski 's answer above is probably the most robust.
                                                – Andrew F
                                                Nov 25 at 13:30
















                                              What about numbers that are not in range of 0 and 1?
                                              – Filip Młynarski
                                              Nov 25 at 13:19




                                              What about numbers that are not in range of 0 and 1?
                                              – Filip Młynarski
                                              Nov 25 at 13:19




                                              1




                                              1




                                              Round works outside of the [0, 1] range. So round(2.2) would be 2.0, round(-1.2) would be -1.0, and round(3.141, 2) would be 3.14.
                                              – Andrew F
                                              Nov 25 at 13:22




                                              Round works outside of the [0, 1] range. So round(2.2) would be 2.0, round(-1.2) would be -1.0, and round(3.141, 2) would be 3.14.
                                              – Andrew F
                                              Nov 25 at 13:22












                                              @AndrewFiorillo But I just wanted an output 0 and 1 :)
                                              – Eliyah
                                              Nov 25 at 13:24






                                              @AndrewFiorillo But I just wanted an output 0 and 1 :)
                                              – Eliyah
                                              Nov 25 at 13:24














                                              Then @FilipMłynarski 's answer above is probably the most robust.
                                              – Andrew F
                                              Nov 25 at 13:30




                                              Then @FilipMłynarski 's answer above is probably the most robust.
                                              – Andrew F
                                              Nov 25 at 13:30











                                              2














                                              your_list=[[-2.10044520e-04, 1.72314372e-04, 1.77235336e-04, 1.06613465e-04,
                                              6.76617611e-07, 2.71623057e-03, 3.32789944e-05, 1.44899758e-05,
                                              5.79249863e-05, 4.06502549e-04, 1.35823707e-05, 4.13955189e-04,
                                              5.29862793e-05, 1.98286005e-04, 2.22829175e-04, 8.88758230e-04,
                                              5.62228710e-05, 1.36249752e-05, 2.00474996e-05, 2.10090068e-05,
                                              1.00007518e+00, 1.00007569e+00, 4.44597417e-05, 2.93724453e-04,
                                              1.00007513e+00, 1.00007496e+00, 1.00007532e+00, 1.22357142e-03,
                                              3.27903892e-06, 1.00007592e+00, 1.00007468e+00, 1.00007558e+00,
                                              2.09869172e-05, 1.97610235e-05, 1.00007529e+00, 1.00007530e+00,
                                              1.00007503e+00, 2.68725642e-05, 3.00372853e-03, 1.00007386e+00,
                                              1.00007443e+00, 1.00007388e+00, 5.86993822e-05, 8.69989983e-06,
                                              1.00007590e+00, 1.00007488e+00, 1.00007515e+00, 8.81850779e-04,
                                              2.03875532e-05, 1.00007480e+00, 1.00007425e+00, 1.00007517e+00,
                                              -2.44678912e-05, 4.36556267e-08, 1.00007436e+00, 1.00007558e+00,
                                              1.00007571e+00, 5.42990711e-04, 1.45517859e-04, 1.00007522e+00,
                                              1.00007469e+00, 1.00007575e+00, 2.52271817e-05, 7.46339417e-05,
                                              1.00007427e+00]]

                                              close_to_one_or_zero=[1 if x > 0.5 else 0 for x in your_list[0]]
                                              close_to_one_or_zero
                                              [0, 0, 0, 0, 0,....... 1, 1, 1, 0, 0, 1]





                                              share|improve this answer


























                                                2














                                                your_list=[[-2.10044520e-04, 1.72314372e-04, 1.77235336e-04, 1.06613465e-04,
                                                6.76617611e-07, 2.71623057e-03, 3.32789944e-05, 1.44899758e-05,
                                                5.79249863e-05, 4.06502549e-04, 1.35823707e-05, 4.13955189e-04,
                                                5.29862793e-05, 1.98286005e-04, 2.22829175e-04, 8.88758230e-04,
                                                5.62228710e-05, 1.36249752e-05, 2.00474996e-05, 2.10090068e-05,
                                                1.00007518e+00, 1.00007569e+00, 4.44597417e-05, 2.93724453e-04,
                                                1.00007513e+00, 1.00007496e+00, 1.00007532e+00, 1.22357142e-03,
                                                3.27903892e-06, 1.00007592e+00, 1.00007468e+00, 1.00007558e+00,
                                                2.09869172e-05, 1.97610235e-05, 1.00007529e+00, 1.00007530e+00,
                                                1.00007503e+00, 2.68725642e-05, 3.00372853e-03, 1.00007386e+00,
                                                1.00007443e+00, 1.00007388e+00, 5.86993822e-05, 8.69989983e-06,
                                                1.00007590e+00, 1.00007488e+00, 1.00007515e+00, 8.81850779e-04,
                                                2.03875532e-05, 1.00007480e+00, 1.00007425e+00, 1.00007517e+00,
                                                -2.44678912e-05, 4.36556267e-08, 1.00007436e+00, 1.00007558e+00,
                                                1.00007571e+00, 5.42990711e-04, 1.45517859e-04, 1.00007522e+00,
                                                1.00007469e+00, 1.00007575e+00, 2.52271817e-05, 7.46339417e-05,
                                                1.00007427e+00]]

                                                close_to_one_or_zero=[1 if x > 0.5 else 0 for x in your_list[0]]
                                                close_to_one_or_zero
                                                [0, 0, 0, 0, 0,....... 1, 1, 1, 0, 0, 1]





                                                share|improve this answer
























                                                  2












                                                  2








                                                  2






                                                  your_list=[[-2.10044520e-04, 1.72314372e-04, 1.77235336e-04, 1.06613465e-04,
                                                  6.76617611e-07, 2.71623057e-03, 3.32789944e-05, 1.44899758e-05,
                                                  5.79249863e-05, 4.06502549e-04, 1.35823707e-05, 4.13955189e-04,
                                                  5.29862793e-05, 1.98286005e-04, 2.22829175e-04, 8.88758230e-04,
                                                  5.62228710e-05, 1.36249752e-05, 2.00474996e-05, 2.10090068e-05,
                                                  1.00007518e+00, 1.00007569e+00, 4.44597417e-05, 2.93724453e-04,
                                                  1.00007513e+00, 1.00007496e+00, 1.00007532e+00, 1.22357142e-03,
                                                  3.27903892e-06, 1.00007592e+00, 1.00007468e+00, 1.00007558e+00,
                                                  2.09869172e-05, 1.97610235e-05, 1.00007529e+00, 1.00007530e+00,
                                                  1.00007503e+00, 2.68725642e-05, 3.00372853e-03, 1.00007386e+00,
                                                  1.00007443e+00, 1.00007388e+00, 5.86993822e-05, 8.69989983e-06,
                                                  1.00007590e+00, 1.00007488e+00, 1.00007515e+00, 8.81850779e-04,
                                                  2.03875532e-05, 1.00007480e+00, 1.00007425e+00, 1.00007517e+00,
                                                  -2.44678912e-05, 4.36556267e-08, 1.00007436e+00, 1.00007558e+00,
                                                  1.00007571e+00, 5.42990711e-04, 1.45517859e-04, 1.00007522e+00,
                                                  1.00007469e+00, 1.00007575e+00, 2.52271817e-05, 7.46339417e-05,
                                                  1.00007427e+00]]

                                                  close_to_one_or_zero=[1 if x > 0.5 else 0 for x in your_list[0]]
                                                  close_to_one_or_zero
                                                  [0, 0, 0, 0, 0,....... 1, 1, 1, 0, 0, 1]





                                                  share|improve this answer












                                                  your_list=[[-2.10044520e-04, 1.72314372e-04, 1.77235336e-04, 1.06613465e-04,
                                                  6.76617611e-07, 2.71623057e-03, 3.32789944e-05, 1.44899758e-05,
                                                  5.79249863e-05, 4.06502549e-04, 1.35823707e-05, 4.13955189e-04,
                                                  5.29862793e-05, 1.98286005e-04, 2.22829175e-04, 8.88758230e-04,
                                                  5.62228710e-05, 1.36249752e-05, 2.00474996e-05, 2.10090068e-05,
                                                  1.00007518e+00, 1.00007569e+00, 4.44597417e-05, 2.93724453e-04,
                                                  1.00007513e+00, 1.00007496e+00, 1.00007532e+00, 1.22357142e-03,
                                                  3.27903892e-06, 1.00007592e+00, 1.00007468e+00, 1.00007558e+00,
                                                  2.09869172e-05, 1.97610235e-05, 1.00007529e+00, 1.00007530e+00,
                                                  1.00007503e+00, 2.68725642e-05, 3.00372853e-03, 1.00007386e+00,
                                                  1.00007443e+00, 1.00007388e+00, 5.86993822e-05, 8.69989983e-06,
                                                  1.00007590e+00, 1.00007488e+00, 1.00007515e+00, 8.81850779e-04,
                                                  2.03875532e-05, 1.00007480e+00, 1.00007425e+00, 1.00007517e+00,
                                                  -2.44678912e-05, 4.36556267e-08, 1.00007436e+00, 1.00007558e+00,
                                                  1.00007571e+00, 5.42990711e-04, 1.45517859e-04, 1.00007522e+00,
                                                  1.00007469e+00, 1.00007575e+00, 2.52271817e-05, 7.46339417e-05,
                                                  1.00007427e+00]]

                                                  close_to_one_or_zero=[1 if x > 0.5 else 0 for x in your_list[0]]
                                                  close_to_one_or_zero
                                                  [0, 0, 0, 0, 0,....... 1, 1, 1, 0, 0, 1]






                                                  share|improve this answer












                                                  share|improve this answer



                                                  share|improve this answer










                                                  answered Nov 25 at 13:30









                                                  cph_sto

                                                  890218




                                                  890218























                                                      2














                                                      You can use round:



                                                      [round(i) for i in [0.1,0.2,0.3,0.8,0.9]]





                                                      share|improve this answer




























                                                        2














                                                        You can use round:



                                                        [round(i) for i in [0.1,0.2,0.3,0.8,0.9]]





                                                        share|improve this answer


























                                                          2












                                                          2








                                                          2






                                                          You can use round:



                                                          [round(i) for i in [0.1,0.2,0.3,0.8,0.9]]





                                                          share|improve this answer














                                                          You can use round:



                                                          [round(i) for i in [0.1,0.2,0.3,0.8,0.9]]






                                                          share|improve this answer














                                                          share|improve this answer



                                                          share|improve this answer








                                                          edited Nov 26 at 8:00









                                                          davnicwil

                                                          8,22845063




                                                          8,22845063










                                                          answered Nov 25 at 13:20









                                                          Rudolf Morkovskyi

                                                          724117




                                                          724117






























                                                              draft saved

                                                              draft discarded




















































                                                              Thanks for contributing an answer to Stack Overflow!


                                                              • Please be sure to answer the question. Provide details and share your research!

                                                              But avoid



                                                              • Asking for help, clarification, or responding to other answers.

                                                              • Making statements based on opinion; back them up with references or personal experience.


                                                              To learn more, see our tips on writing great answers.





                                                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                                              Please pay close attention to the following guidance:


                                                              • Please be sure to answer the question. Provide details and share your research!

                                                              But avoid



                                                              • Asking for help, clarification, or responding to other answers.

                                                              • Making statements based on opinion; back them up with references or personal experience.


                                                              To learn more, see our tips on writing great answers.




                                                              draft saved


                                                              draft discarded














                                                              StackExchange.ready(
                                                              function () {
                                                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53467807%2fpython-function-that-identifies-if-the-numbers-in-a-list-or-array-are-closer-to%23new-answer', 'question_page');
                                                              }
                                                              );

                                                              Post as a guest















                                                              Required, but never shown





















































                                                              Required, but never shown














                                                              Required, but never shown












                                                              Required, but never shown







                                                              Required, but never shown

































                                                              Required, but never shown














                                                              Required, but never shown












                                                              Required, but never shown







                                                              Required, but never shown







                                                              Popular posts from this blog

                                                              Aardman Animations

                                                              Are they similar matrix

                                                              “minimization” problem in Euclidean space related to orthonormal basis