Fibonacci sequence/recurrence relation (limits)
Let $lbrace F_nrbrace_{n in mathbb{N_0}}$ be the Fibonacci sequence.
$F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$ and start values $F_0:=0$ and $F_1:=1$.
How to determine:
$limlimits_{ntoinfty}frac{F_n}{F_{n+1}}$?
I used:
If $a=limlimits_{ntoinfty}frac{F_n}{F_{n+1}}$ then
$a=limlimits_{ntoinfty}frac{F_n}{F_{n+1}}=limlimits_{ntoinfty}frac{F_n}{F_n+F_{n-1}}$
Here I don't know how to continue.
limits recurrence-relations fibonacci-numbers
add a comment |
Let $lbrace F_nrbrace_{n in mathbb{N_0}}$ be the Fibonacci sequence.
$F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$ and start values $F_0:=0$ and $F_1:=1$.
How to determine:
$limlimits_{ntoinfty}frac{F_n}{F_{n+1}}$?
I used:
If $a=limlimits_{ntoinfty}frac{F_n}{F_{n+1}}$ then
$a=limlimits_{ntoinfty}frac{F_n}{F_{n+1}}=limlimits_{ntoinfty}frac{F_n}{F_n+F_{n-1}}$
Here I don't know how to continue.
limits recurrence-relations fibonacci-numbers
add a comment |
Let $lbrace F_nrbrace_{n in mathbb{N_0}}$ be the Fibonacci sequence.
$F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$ and start values $F_0:=0$ and $F_1:=1$.
How to determine:
$limlimits_{ntoinfty}frac{F_n}{F_{n+1}}$?
I used:
If $a=limlimits_{ntoinfty}frac{F_n}{F_{n+1}}$ then
$a=limlimits_{ntoinfty}frac{F_n}{F_{n+1}}=limlimits_{ntoinfty}frac{F_n}{F_n+F_{n-1}}$
Here I don't know how to continue.
limits recurrence-relations fibonacci-numbers
Let $lbrace F_nrbrace_{n in mathbb{N_0}}$ be the Fibonacci sequence.
$F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$ and start values $F_0:=0$ and $F_1:=1$.
How to determine:
$limlimits_{ntoinfty}frac{F_n}{F_{n+1}}$?
I used:
If $a=limlimits_{ntoinfty}frac{F_n}{F_{n+1}}$ then
$a=limlimits_{ntoinfty}frac{F_n}{F_{n+1}}=limlimits_{ntoinfty}frac{F_n}{F_n+F_{n-1}}$
Here I don't know how to continue.
limits recurrence-relations fibonacci-numbers
limits recurrence-relations fibonacci-numbers
edited Nov 25 at 18:05
asked Nov 25 at 15:07
Nekarts
234
234
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
Assign a variable to the first limit, such as $x$.
$$lim_{ntoinfty}frac{F_n}{F_{n+1}} = x$$
By definition, $F_{n+1} = F_n+F_{n-1}$, so rewrite the limit.
$$lim_{ntoinfty}frac{F_n}{F_{n}+F_{n-1}} = x$$
$$lim_{ntoinfty}frac{F_{n}+F_{n-1}}{F_n} = frac{1}{x}$$
$$1+lim_{ntoinfty} frac{F_{n-1}}{F_n} = frac{1}{x}$$
If $lim_limits{ntoinfty}frac{F_n}{F_{n+1}} = x$, then $lim_limits{n to infty} frac{F_{n-1}}{F_n} = x$ as well.
$$1 + x =frac{1}{x}$$
$$x+x^2 = 1 implies x^2+x-1 = 0 implies x = frac{-1pmsqrt{5}}{2}$$
Now, it's clear that only $x = frac{-1+sqrt{5}}{2}$ applies here, so $x = frac{1}{φ}$, or the reciprocal of the golden ratio. The interesting thing is that this does not apply specifically to the Fibonacci sequence, but for Fibonacci-like sequences in general.
add a comment |
HINT
Solve the recurrence analytically, the characteristic polynomial would be
$$
x^2-x-1=0
$$
and its roots $r,R$ would produce
$$
F_n = Ar^n + BR^n...
$$
add a comment |
Using Binet's formula:
$$lim_{ntoinfty} frac{F_n}{F_{n+1}}=lim_{ntoinfty} frac{frac1{sqrt{5}}left(varphi^n-phi^nright)}{frac1{sqrt{5}}left(varphi^{n+1}-phi^{n+1}right)}=lim_{ntoinfty} frac{varphi^nleft(1-frac{phi^n}{varphi^n}right)}{varphi^{n+1}left(1-frac{phi^{n+1}}{varphi^{n+1}}right)}=frac1{varphi},$$
because:
$$lim_{ntoinfty} left(frac{phi}{varphi}right)^n=0,$$
because:
$$left|frac{phi}{varphi}right|=left|frac{frac{1-sqrt{5}}{2}}{frac{1+sqrt{5}}{2}}right|=left|frac{3-sqrt{5}}{-2}right|approx 0.38<1.$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012953%2ffibonacci-sequence-recurrence-relation-limits%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
Assign a variable to the first limit, such as $x$.
$$lim_{ntoinfty}frac{F_n}{F_{n+1}} = x$$
By definition, $F_{n+1} = F_n+F_{n-1}$, so rewrite the limit.
$$lim_{ntoinfty}frac{F_n}{F_{n}+F_{n-1}} = x$$
$$lim_{ntoinfty}frac{F_{n}+F_{n-1}}{F_n} = frac{1}{x}$$
$$1+lim_{ntoinfty} frac{F_{n-1}}{F_n} = frac{1}{x}$$
If $lim_limits{ntoinfty}frac{F_n}{F_{n+1}} = x$, then $lim_limits{n to infty} frac{F_{n-1}}{F_n} = x$ as well.
$$1 + x =frac{1}{x}$$
$$x+x^2 = 1 implies x^2+x-1 = 0 implies x = frac{-1pmsqrt{5}}{2}$$
Now, it's clear that only $x = frac{-1+sqrt{5}}{2}$ applies here, so $x = frac{1}{φ}$, or the reciprocal of the golden ratio. The interesting thing is that this does not apply specifically to the Fibonacci sequence, but for Fibonacci-like sequences in general.
add a comment |
Assign a variable to the first limit, such as $x$.
$$lim_{ntoinfty}frac{F_n}{F_{n+1}} = x$$
By definition, $F_{n+1} = F_n+F_{n-1}$, so rewrite the limit.
$$lim_{ntoinfty}frac{F_n}{F_{n}+F_{n-1}} = x$$
$$lim_{ntoinfty}frac{F_{n}+F_{n-1}}{F_n} = frac{1}{x}$$
$$1+lim_{ntoinfty} frac{F_{n-1}}{F_n} = frac{1}{x}$$
If $lim_limits{ntoinfty}frac{F_n}{F_{n+1}} = x$, then $lim_limits{n to infty} frac{F_{n-1}}{F_n} = x$ as well.
$$1 + x =frac{1}{x}$$
$$x+x^2 = 1 implies x^2+x-1 = 0 implies x = frac{-1pmsqrt{5}}{2}$$
Now, it's clear that only $x = frac{-1+sqrt{5}}{2}$ applies here, so $x = frac{1}{φ}$, or the reciprocal of the golden ratio. The interesting thing is that this does not apply specifically to the Fibonacci sequence, but for Fibonacci-like sequences in general.
add a comment |
Assign a variable to the first limit, such as $x$.
$$lim_{ntoinfty}frac{F_n}{F_{n+1}} = x$$
By definition, $F_{n+1} = F_n+F_{n-1}$, so rewrite the limit.
$$lim_{ntoinfty}frac{F_n}{F_{n}+F_{n-1}} = x$$
$$lim_{ntoinfty}frac{F_{n}+F_{n-1}}{F_n} = frac{1}{x}$$
$$1+lim_{ntoinfty} frac{F_{n-1}}{F_n} = frac{1}{x}$$
If $lim_limits{ntoinfty}frac{F_n}{F_{n+1}} = x$, then $lim_limits{n to infty} frac{F_{n-1}}{F_n} = x$ as well.
$$1 + x =frac{1}{x}$$
$$x+x^2 = 1 implies x^2+x-1 = 0 implies x = frac{-1pmsqrt{5}}{2}$$
Now, it's clear that only $x = frac{-1+sqrt{5}}{2}$ applies here, so $x = frac{1}{φ}$, or the reciprocal of the golden ratio. The interesting thing is that this does not apply specifically to the Fibonacci sequence, but for Fibonacci-like sequences in general.
Assign a variable to the first limit, such as $x$.
$$lim_{ntoinfty}frac{F_n}{F_{n+1}} = x$$
By definition, $F_{n+1} = F_n+F_{n-1}$, so rewrite the limit.
$$lim_{ntoinfty}frac{F_n}{F_{n}+F_{n-1}} = x$$
$$lim_{ntoinfty}frac{F_{n}+F_{n-1}}{F_n} = frac{1}{x}$$
$$1+lim_{ntoinfty} frac{F_{n-1}}{F_n} = frac{1}{x}$$
If $lim_limits{ntoinfty}frac{F_n}{F_{n+1}} = x$, then $lim_limits{n to infty} frac{F_{n-1}}{F_n} = x$ as well.
$$1 + x =frac{1}{x}$$
$$x+x^2 = 1 implies x^2+x-1 = 0 implies x = frac{-1pmsqrt{5}}{2}$$
Now, it's clear that only $x = frac{-1+sqrt{5}}{2}$ applies here, so $x = frac{1}{φ}$, or the reciprocal of the golden ratio. The interesting thing is that this does not apply specifically to the Fibonacci sequence, but for Fibonacci-like sequences in general.
edited Nov 25 at 15:26
answered Nov 25 at 15:17
KM101
4,108417
4,108417
add a comment |
add a comment |
HINT
Solve the recurrence analytically, the characteristic polynomial would be
$$
x^2-x-1=0
$$
and its roots $r,R$ would produce
$$
F_n = Ar^n + BR^n...
$$
add a comment |
HINT
Solve the recurrence analytically, the characteristic polynomial would be
$$
x^2-x-1=0
$$
and its roots $r,R$ would produce
$$
F_n = Ar^n + BR^n...
$$
add a comment |
HINT
Solve the recurrence analytically, the characteristic polynomial would be
$$
x^2-x-1=0
$$
and its roots $r,R$ would produce
$$
F_n = Ar^n + BR^n...
$$
HINT
Solve the recurrence analytically, the characteristic polynomial would be
$$
x^2-x-1=0
$$
and its roots $r,R$ would produce
$$
F_n = Ar^n + BR^n...
$$
answered Nov 25 at 15:12
gt6989b
32.8k22452
32.8k22452
add a comment |
add a comment |
Using Binet's formula:
$$lim_{ntoinfty} frac{F_n}{F_{n+1}}=lim_{ntoinfty} frac{frac1{sqrt{5}}left(varphi^n-phi^nright)}{frac1{sqrt{5}}left(varphi^{n+1}-phi^{n+1}right)}=lim_{ntoinfty} frac{varphi^nleft(1-frac{phi^n}{varphi^n}right)}{varphi^{n+1}left(1-frac{phi^{n+1}}{varphi^{n+1}}right)}=frac1{varphi},$$
because:
$$lim_{ntoinfty} left(frac{phi}{varphi}right)^n=0,$$
because:
$$left|frac{phi}{varphi}right|=left|frac{frac{1-sqrt{5}}{2}}{frac{1+sqrt{5}}{2}}right|=left|frac{3-sqrt{5}}{-2}right|approx 0.38<1.$$
add a comment |
Using Binet's formula:
$$lim_{ntoinfty} frac{F_n}{F_{n+1}}=lim_{ntoinfty} frac{frac1{sqrt{5}}left(varphi^n-phi^nright)}{frac1{sqrt{5}}left(varphi^{n+1}-phi^{n+1}right)}=lim_{ntoinfty} frac{varphi^nleft(1-frac{phi^n}{varphi^n}right)}{varphi^{n+1}left(1-frac{phi^{n+1}}{varphi^{n+1}}right)}=frac1{varphi},$$
because:
$$lim_{ntoinfty} left(frac{phi}{varphi}right)^n=0,$$
because:
$$left|frac{phi}{varphi}right|=left|frac{frac{1-sqrt{5}}{2}}{frac{1+sqrt{5}}{2}}right|=left|frac{3-sqrt{5}}{-2}right|approx 0.38<1.$$
add a comment |
Using Binet's formula:
$$lim_{ntoinfty} frac{F_n}{F_{n+1}}=lim_{ntoinfty} frac{frac1{sqrt{5}}left(varphi^n-phi^nright)}{frac1{sqrt{5}}left(varphi^{n+1}-phi^{n+1}right)}=lim_{ntoinfty} frac{varphi^nleft(1-frac{phi^n}{varphi^n}right)}{varphi^{n+1}left(1-frac{phi^{n+1}}{varphi^{n+1}}right)}=frac1{varphi},$$
because:
$$lim_{ntoinfty} left(frac{phi}{varphi}right)^n=0,$$
because:
$$left|frac{phi}{varphi}right|=left|frac{frac{1-sqrt{5}}{2}}{frac{1+sqrt{5}}{2}}right|=left|frac{3-sqrt{5}}{-2}right|approx 0.38<1.$$
Using Binet's formula:
$$lim_{ntoinfty} frac{F_n}{F_{n+1}}=lim_{ntoinfty} frac{frac1{sqrt{5}}left(varphi^n-phi^nright)}{frac1{sqrt{5}}left(varphi^{n+1}-phi^{n+1}right)}=lim_{ntoinfty} frac{varphi^nleft(1-frac{phi^n}{varphi^n}right)}{varphi^{n+1}left(1-frac{phi^{n+1}}{varphi^{n+1}}right)}=frac1{varphi},$$
because:
$$lim_{ntoinfty} left(frac{phi}{varphi}right)^n=0,$$
because:
$$left|frac{phi}{varphi}right|=left|frac{frac{1-sqrt{5}}{2}}{frac{1+sqrt{5}}{2}}right|=left|frac{3-sqrt{5}}{-2}right|approx 0.38<1.$$
answered Nov 25 at 15:47
farruhota
18.9k2736
18.9k2736
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012953%2ffibonacci-sequence-recurrence-relation-limits%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown