Matrix differentiation involving exponential function
The function of interest is $textbf{X}'exp[textbf{X} boldsymbol{beta}]$. $textbf{X}$ is a $n times K$ matrix. The columns of $textbf{X}$ contain $K$ variables each with $n$ observations. That is, $textbf{x}_{k} = [x_{ik}, ldots, x_{nk}]'$ is a column in $textbf{X}$. $boldsymbol{beta}$ is a $K times 1$ parameter vector such that $boldsymbol{beta} = [beta_{1}, ldots, beta_{K}]'$. I need to differentiate this function with respect to $boldsymbol{beta}$. Since the function $textbf{X}'exp[textbf{X} boldsymbol{beta}]$ is $K times 1$ and parameter vector $boldsymbol{beta}$ is $K times 1$, the resulting derivative in matrix form will be $K times K$. I propose that the derivative uses the denominator layout. I happen to end up using the Hadamard product but struggle to get the final result.
matrices derivatives
add a comment |
The function of interest is $textbf{X}'exp[textbf{X} boldsymbol{beta}]$. $textbf{X}$ is a $n times K$ matrix. The columns of $textbf{X}$ contain $K$ variables each with $n$ observations. That is, $textbf{x}_{k} = [x_{ik}, ldots, x_{nk}]'$ is a column in $textbf{X}$. $boldsymbol{beta}$ is a $K times 1$ parameter vector such that $boldsymbol{beta} = [beta_{1}, ldots, beta_{K}]'$. I need to differentiate this function with respect to $boldsymbol{beta}$. Since the function $textbf{X}'exp[textbf{X} boldsymbol{beta}]$ is $K times 1$ and parameter vector $boldsymbol{beta}$ is $K times 1$, the resulting derivative in matrix form will be $K times K$. I propose that the derivative uses the denominator layout. I happen to end up using the Hadamard product but struggle to get the final result.
matrices derivatives
add a comment |
The function of interest is $textbf{X}'exp[textbf{X} boldsymbol{beta}]$. $textbf{X}$ is a $n times K$ matrix. The columns of $textbf{X}$ contain $K$ variables each with $n$ observations. That is, $textbf{x}_{k} = [x_{ik}, ldots, x_{nk}]'$ is a column in $textbf{X}$. $boldsymbol{beta}$ is a $K times 1$ parameter vector such that $boldsymbol{beta} = [beta_{1}, ldots, beta_{K}]'$. I need to differentiate this function with respect to $boldsymbol{beta}$. Since the function $textbf{X}'exp[textbf{X} boldsymbol{beta}]$ is $K times 1$ and parameter vector $boldsymbol{beta}$ is $K times 1$, the resulting derivative in matrix form will be $K times K$. I propose that the derivative uses the denominator layout. I happen to end up using the Hadamard product but struggle to get the final result.
matrices derivatives
The function of interest is $textbf{X}'exp[textbf{X} boldsymbol{beta}]$. $textbf{X}$ is a $n times K$ matrix. The columns of $textbf{X}$ contain $K$ variables each with $n$ observations. That is, $textbf{x}_{k} = [x_{ik}, ldots, x_{nk}]'$ is a column in $textbf{X}$. $boldsymbol{beta}$ is a $K times 1$ parameter vector such that $boldsymbol{beta} = [beta_{1}, ldots, beta_{K}]'$. I need to differentiate this function with respect to $boldsymbol{beta}$. Since the function $textbf{X}'exp[textbf{X} boldsymbol{beta}]$ is $K times 1$ and parameter vector $boldsymbol{beta}$ is $K times 1$, the resulting derivative in matrix form will be $K times K$. I propose that the derivative uses the denominator layout. I happen to end up using the Hadamard product but struggle to get the final result.
matrices derivatives
matrices derivatives
asked Nov 25 at 15:26
Snoopy
235
235
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Define some new variables
$$eqalign{
y &= Xbeta &implies dy = X,dbeta cr
e &= exp(y) &implies de = eodot dy cr
E &= {rm Diag}(e) &implies de = E,dy cr
}$$
Write the function of interest in terms of these variables.
Then find its differential and gradient.
$$eqalign{
f &= X^Te cr
df &= X^Tde = X^TE,dy = X^TEX,dbeta cr
frac{partial f}{partialbeta} &= X^TEX cr
}$$
The trick is to use a Diag operation to eliminate the Hadamard product.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012976%2fmatrix-differentiation-involving-exponential-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Define some new variables
$$eqalign{
y &= Xbeta &implies dy = X,dbeta cr
e &= exp(y) &implies de = eodot dy cr
E &= {rm Diag}(e) &implies de = E,dy cr
}$$
Write the function of interest in terms of these variables.
Then find its differential and gradient.
$$eqalign{
f &= X^Te cr
df &= X^Tde = X^TE,dy = X^TEX,dbeta cr
frac{partial f}{partialbeta} &= X^TEX cr
}$$
The trick is to use a Diag operation to eliminate the Hadamard product.
add a comment |
Define some new variables
$$eqalign{
y &= Xbeta &implies dy = X,dbeta cr
e &= exp(y) &implies de = eodot dy cr
E &= {rm Diag}(e) &implies de = E,dy cr
}$$
Write the function of interest in terms of these variables.
Then find its differential and gradient.
$$eqalign{
f &= X^Te cr
df &= X^Tde = X^TE,dy = X^TEX,dbeta cr
frac{partial f}{partialbeta} &= X^TEX cr
}$$
The trick is to use a Diag operation to eliminate the Hadamard product.
add a comment |
Define some new variables
$$eqalign{
y &= Xbeta &implies dy = X,dbeta cr
e &= exp(y) &implies de = eodot dy cr
E &= {rm Diag}(e) &implies de = E,dy cr
}$$
Write the function of interest in terms of these variables.
Then find its differential and gradient.
$$eqalign{
f &= X^Te cr
df &= X^Tde = X^TE,dy = X^TEX,dbeta cr
frac{partial f}{partialbeta} &= X^TEX cr
}$$
The trick is to use a Diag operation to eliminate the Hadamard product.
Define some new variables
$$eqalign{
y &= Xbeta &implies dy = X,dbeta cr
e &= exp(y) &implies de = eodot dy cr
E &= {rm Diag}(e) &implies de = E,dy cr
}$$
Write the function of interest in terms of these variables.
Then find its differential and gradient.
$$eqalign{
f &= X^Te cr
df &= X^Tde = X^TE,dy = X^TEX,dbeta cr
frac{partial f}{partialbeta} &= X^TEX cr
}$$
The trick is to use a Diag operation to eliminate the Hadamard product.
answered Nov 26 at 3:23
greg
7,5001721
7,5001721
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012976%2fmatrix-differentiation-involving-exponential-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown