Proof that $exp(x+y) = exp(x)*exp(y)$ using limit definition of $exp(x)$












4














I want to prove: $exp(x+y) = exp(x)cdot exp(y)$ using the definition: $exp(x) = lim_{ntoinfty} (1+frac{x}{n})^n$



I am having trouble completing the proof, but here is my idea so far: $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = lim_{ntoinfty} left(1+frac{x}{n}right)^n cdot lim_{ntoinfty} left(1+frac{y}{n}right)^n =
lim_{ntoinfty} left(left(1+frac{x}{n}right)^n cdot left(1+frac{y}{n}right)^n right) $$



Now I rearrange the last expression: $$lim_{ntoinfty} left(1+frac{x+y+frac{xy}{n}}{n}right)^n $$



From here my idea is to somehow show that this limit is equal to $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = exp(x+y)$$ using the Squeeze Theorem and perhaps Bernoulli's Inequality, but I am at a loss as to how exactly to do it. I'd appreciate your help.










share|cite|improve this question




















  • 9




    These should be the limit as $nrightarrowinfty$?
    – gd1035
    Nov 27 '18 at 18:59










  • Thank you, yes. Fixed.
    – TomRatTUM
    Nov 27 '18 at 19:16










  • See this answer math.stackexchange.com/a/3000717/72031
    – Paramanand Singh
    Nov 28 '18 at 1:50
















4














I want to prove: $exp(x+y) = exp(x)cdot exp(y)$ using the definition: $exp(x) = lim_{ntoinfty} (1+frac{x}{n})^n$



I am having trouble completing the proof, but here is my idea so far: $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = lim_{ntoinfty} left(1+frac{x}{n}right)^n cdot lim_{ntoinfty} left(1+frac{y}{n}right)^n =
lim_{ntoinfty} left(left(1+frac{x}{n}right)^n cdot left(1+frac{y}{n}right)^n right) $$



Now I rearrange the last expression: $$lim_{ntoinfty} left(1+frac{x+y+frac{xy}{n}}{n}right)^n $$



From here my idea is to somehow show that this limit is equal to $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = exp(x+y)$$ using the Squeeze Theorem and perhaps Bernoulli's Inequality, but I am at a loss as to how exactly to do it. I'd appreciate your help.










share|cite|improve this question




















  • 9




    These should be the limit as $nrightarrowinfty$?
    – gd1035
    Nov 27 '18 at 18:59










  • Thank you, yes. Fixed.
    – TomRatTUM
    Nov 27 '18 at 19:16










  • See this answer math.stackexchange.com/a/3000717/72031
    – Paramanand Singh
    Nov 28 '18 at 1:50














4












4








4







I want to prove: $exp(x+y) = exp(x)cdot exp(y)$ using the definition: $exp(x) = lim_{ntoinfty} (1+frac{x}{n})^n$



I am having trouble completing the proof, but here is my idea so far: $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = lim_{ntoinfty} left(1+frac{x}{n}right)^n cdot lim_{ntoinfty} left(1+frac{y}{n}right)^n =
lim_{ntoinfty} left(left(1+frac{x}{n}right)^n cdot left(1+frac{y}{n}right)^n right) $$



Now I rearrange the last expression: $$lim_{ntoinfty} left(1+frac{x+y+frac{xy}{n}}{n}right)^n $$



From here my idea is to somehow show that this limit is equal to $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = exp(x+y)$$ using the Squeeze Theorem and perhaps Bernoulli's Inequality, but I am at a loss as to how exactly to do it. I'd appreciate your help.










share|cite|improve this question















I want to prove: $exp(x+y) = exp(x)cdot exp(y)$ using the definition: $exp(x) = lim_{ntoinfty} (1+frac{x}{n})^n$



I am having trouble completing the proof, but here is my idea so far: $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = lim_{ntoinfty} left(1+frac{x}{n}right)^n cdot lim_{ntoinfty} left(1+frac{y}{n}right)^n =
lim_{ntoinfty} left(left(1+frac{x}{n}right)^n cdot left(1+frac{y}{n}right)^n right) $$



Now I rearrange the last expression: $$lim_{ntoinfty} left(1+frac{x+y+frac{xy}{n}}{n}right)^n $$



From here my idea is to somehow show that this limit is equal to $$lim_{ntoinfty} left(1+frac{x+y}{n}right)^n = exp(x+y)$$ using the Squeeze Theorem and perhaps Bernoulli's Inequality, but I am at a loss as to how exactly to do it. I'd appreciate your help.







real-analysis limits exponential-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 27 '18 at 19:15

























asked Nov 27 '18 at 18:57









TomRatTUM

234




234








  • 9




    These should be the limit as $nrightarrowinfty$?
    – gd1035
    Nov 27 '18 at 18:59










  • Thank you, yes. Fixed.
    – TomRatTUM
    Nov 27 '18 at 19:16










  • See this answer math.stackexchange.com/a/3000717/72031
    – Paramanand Singh
    Nov 28 '18 at 1:50














  • 9




    These should be the limit as $nrightarrowinfty$?
    – gd1035
    Nov 27 '18 at 18:59










  • Thank you, yes. Fixed.
    – TomRatTUM
    Nov 27 '18 at 19:16










  • See this answer math.stackexchange.com/a/3000717/72031
    – Paramanand Singh
    Nov 28 '18 at 1:50








9




9




These should be the limit as $nrightarrowinfty$?
– gd1035
Nov 27 '18 at 18:59




These should be the limit as $nrightarrowinfty$?
– gd1035
Nov 27 '18 at 18:59












Thank you, yes. Fixed.
– TomRatTUM
Nov 27 '18 at 19:16




Thank you, yes. Fixed.
– TomRatTUM
Nov 27 '18 at 19:16












See this answer math.stackexchange.com/a/3000717/72031
– Paramanand Singh
Nov 28 '18 at 1:50




See this answer math.stackexchange.com/a/3000717/72031
– Paramanand Singh
Nov 28 '18 at 1:50










2 Answers
2






active

oldest

votes


















1














$$
\dfrac{e^{x+y}}{e^x}=lim_{nto+infty}{Big(dfrac{1+frac {x+y} n}{1+frac x n}Big)^n}=
\lim_{nto+infty}Big(frac{x+y+n}{x+n}Big)^n=lim_{nto+infty}Big(1+frac y{x+n}Big)^n=
\lim_{nto+infty}frac{Big(1+frac y {x+n}Big)^{n+x}}{Big(1+frac y {x+n}Big)^x}=e^y
$$

Because $lim_{nto+infty}{Big(1+frac y {x+n}Big)^{n+x}}=e^y$ and $lim_{nto+infty}{Big(1+frac y {x+n}Big)^x}=1$






share|cite|improve this answer





















  • $x+n$ is not necessarily a positive integer.
    – Paramanand Singh
    Nov 28 '18 at 1:52



















2














It suffices to show that
$$
lim_{ntoinfty}frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=1 tag{1}
$$

But
$$
frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n
$$

and as, for suitably large $n$, say $nge n_0$, we have that
$$
frac{1}{2}<1+frac{x+y}{n}<2,
$$

then
$$
left(1+frac{xy}{2n^2}right)^n<frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n<left(1+frac{2xy}{n^2}right)^n
$$

Now, for all $zinmathbb R$, we have
$$
left(1+frac{z}{n^2}right)^n=left(left(1+frac{z}{n^2}right)^{n^2}right)^{1/n}to 1,
$$

since $left(1+frac{z}{n^2}right)^{n^2}to e^z$.



Thus
$$
lim_{ntoinfty}left(1+frac{xy}{2n^2}right)^n=lim_{ntoinfty}left(1+frac{2xy}{n^2}right)^n=1,
$$

and hence $(1)$ holds.






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016162%2fproof-that-expxy-expx-expy-using-limit-definition-of-expx%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1














    $$
    \dfrac{e^{x+y}}{e^x}=lim_{nto+infty}{Big(dfrac{1+frac {x+y} n}{1+frac x n}Big)^n}=
    \lim_{nto+infty}Big(frac{x+y+n}{x+n}Big)^n=lim_{nto+infty}Big(1+frac y{x+n}Big)^n=
    \lim_{nto+infty}frac{Big(1+frac y {x+n}Big)^{n+x}}{Big(1+frac y {x+n}Big)^x}=e^y
    $$

    Because $lim_{nto+infty}{Big(1+frac y {x+n}Big)^{n+x}}=e^y$ and $lim_{nto+infty}{Big(1+frac y {x+n}Big)^x}=1$






    share|cite|improve this answer





















    • $x+n$ is not necessarily a positive integer.
      – Paramanand Singh
      Nov 28 '18 at 1:52
















    1














    $$
    \dfrac{e^{x+y}}{e^x}=lim_{nto+infty}{Big(dfrac{1+frac {x+y} n}{1+frac x n}Big)^n}=
    \lim_{nto+infty}Big(frac{x+y+n}{x+n}Big)^n=lim_{nto+infty}Big(1+frac y{x+n}Big)^n=
    \lim_{nto+infty}frac{Big(1+frac y {x+n}Big)^{n+x}}{Big(1+frac y {x+n}Big)^x}=e^y
    $$

    Because $lim_{nto+infty}{Big(1+frac y {x+n}Big)^{n+x}}=e^y$ and $lim_{nto+infty}{Big(1+frac y {x+n}Big)^x}=1$






    share|cite|improve this answer





















    • $x+n$ is not necessarily a positive integer.
      – Paramanand Singh
      Nov 28 '18 at 1:52














    1












    1








    1






    $$
    \dfrac{e^{x+y}}{e^x}=lim_{nto+infty}{Big(dfrac{1+frac {x+y} n}{1+frac x n}Big)^n}=
    \lim_{nto+infty}Big(frac{x+y+n}{x+n}Big)^n=lim_{nto+infty}Big(1+frac y{x+n}Big)^n=
    \lim_{nto+infty}frac{Big(1+frac y {x+n}Big)^{n+x}}{Big(1+frac y {x+n}Big)^x}=e^y
    $$

    Because $lim_{nto+infty}{Big(1+frac y {x+n}Big)^{n+x}}=e^y$ and $lim_{nto+infty}{Big(1+frac y {x+n}Big)^x}=1$






    share|cite|improve this answer












    $$
    \dfrac{e^{x+y}}{e^x}=lim_{nto+infty}{Big(dfrac{1+frac {x+y} n}{1+frac x n}Big)^n}=
    \lim_{nto+infty}Big(frac{x+y+n}{x+n}Big)^n=lim_{nto+infty}Big(1+frac y{x+n}Big)^n=
    \lim_{nto+infty}frac{Big(1+frac y {x+n}Big)^{n+x}}{Big(1+frac y {x+n}Big)^x}=e^y
    $$

    Because $lim_{nto+infty}{Big(1+frac y {x+n}Big)^{n+x}}=e^y$ and $lim_{nto+infty}{Big(1+frac y {x+n}Big)^x}=1$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Nov 27 '18 at 19:06









    Samvel Safaryan

    511111




    511111












    • $x+n$ is not necessarily a positive integer.
      – Paramanand Singh
      Nov 28 '18 at 1:52


















    • $x+n$ is not necessarily a positive integer.
      – Paramanand Singh
      Nov 28 '18 at 1:52
















    $x+n$ is not necessarily a positive integer.
    – Paramanand Singh
    Nov 28 '18 at 1:52




    $x+n$ is not necessarily a positive integer.
    – Paramanand Singh
    Nov 28 '18 at 1:52











    2














    It suffices to show that
    $$
    lim_{ntoinfty}frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=1 tag{1}
    $$

    But
    $$
    frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
    left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n
    $$

    and as, for suitably large $n$, say $nge n_0$, we have that
    $$
    frac{1}{2}<1+frac{x+y}{n}<2,
    $$

    then
    $$
    left(1+frac{xy}{2n^2}right)^n<frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
    left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n<left(1+frac{2xy}{n^2}right)^n
    $$

    Now, for all $zinmathbb R$, we have
    $$
    left(1+frac{z}{n^2}right)^n=left(left(1+frac{z}{n^2}right)^{n^2}right)^{1/n}to 1,
    $$

    since $left(1+frac{z}{n^2}right)^{n^2}to e^z$.



    Thus
    $$
    lim_{ntoinfty}left(1+frac{xy}{2n^2}right)^n=lim_{ntoinfty}left(1+frac{2xy}{n^2}right)^n=1,
    $$

    and hence $(1)$ holds.






    share|cite|improve this answer


























      2














      It suffices to show that
      $$
      lim_{ntoinfty}frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=1 tag{1}
      $$

      But
      $$
      frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
      left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n
      $$

      and as, for suitably large $n$, say $nge n_0$, we have that
      $$
      frac{1}{2}<1+frac{x+y}{n}<2,
      $$

      then
      $$
      left(1+frac{xy}{2n^2}right)^n<frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
      left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n<left(1+frac{2xy}{n^2}right)^n
      $$

      Now, for all $zinmathbb R$, we have
      $$
      left(1+frac{z}{n^2}right)^n=left(left(1+frac{z}{n^2}right)^{n^2}right)^{1/n}to 1,
      $$

      since $left(1+frac{z}{n^2}right)^{n^2}to e^z$.



      Thus
      $$
      lim_{ntoinfty}left(1+frac{xy}{2n^2}right)^n=lim_{ntoinfty}left(1+frac{2xy}{n^2}right)^n=1,
      $$

      and hence $(1)$ holds.






      share|cite|improve this answer
























        2












        2








        2






        It suffices to show that
        $$
        lim_{ntoinfty}frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=1 tag{1}
        $$

        But
        $$
        frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
        left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n
        $$

        and as, for suitably large $n$, say $nge n_0$, we have that
        $$
        frac{1}{2}<1+frac{x+y}{n}<2,
        $$

        then
        $$
        left(1+frac{xy}{2n^2}right)^n<frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
        left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n<left(1+frac{2xy}{n^2}right)^n
        $$

        Now, for all $zinmathbb R$, we have
        $$
        left(1+frac{z}{n^2}right)^n=left(left(1+frac{z}{n^2}right)^{n^2}right)^{1/n}to 1,
        $$

        since $left(1+frac{z}{n^2}right)^{n^2}to e^z$.



        Thus
        $$
        lim_{ntoinfty}left(1+frac{xy}{2n^2}right)^n=lim_{ntoinfty}left(1+frac{2xy}{n^2}right)^n=1,
        $$

        and hence $(1)$ holds.






        share|cite|improve this answer












        It suffices to show that
        $$
        lim_{ntoinfty}frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=1 tag{1}
        $$

        But
        $$
        frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
        left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n
        $$

        and as, for suitably large $n$, say $nge n_0$, we have that
        $$
        frac{1}{2}<1+frac{x+y}{n}<2,
        $$

        then
        $$
        left(1+frac{xy}{2n^2}right)^n<frac{left(1+frac{x+y}{n}+frac{xy}{n^2}right)^n}{left(1+frac{x+y}{n}right)^n}=
        left(1+frac{xy}{n^2(1+frac{x+y}{n})}right)^n<left(1+frac{2xy}{n^2}right)^n
        $$

        Now, for all $zinmathbb R$, we have
        $$
        left(1+frac{z}{n^2}right)^n=left(left(1+frac{z}{n^2}right)^{n^2}right)^{1/n}to 1,
        $$

        since $left(1+frac{z}{n^2}right)^{n^2}to e^z$.



        Thus
        $$
        lim_{ntoinfty}left(1+frac{xy}{2n^2}right)^n=lim_{ntoinfty}left(1+frac{2xy}{n^2}right)^n=1,
        $$

        and hence $(1)$ holds.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 27 '18 at 19:10









        Yiorgos S. Smyrlis

        62.5k1383162




        62.5k1383162






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016162%2fproof-that-expxy-expx-expy-using-limit-definition-of-expx%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Aardman Animations

            Are they similar matrix

            “minimization” problem in Euclidean space related to orthonormal basis