Not able to integrate
$displaystyleint_{0}^{pi/2}
frac{sinleft(xright)}
{left[1 + ,sqrt{,sinleft(2xright),},right]^{2}} ,mathrm{d}x$
i used the property to change reach
$displaystyle 2I =
int_0^{pi/2}frac{sinleft(xright) + cosleft(xright)}
{left[1 + ,sqrt{,sinleft(2xright),},right]^2} ,mathrm{d}x$
now writing $displaystylesinleft(2xright) =
1 - left[sinleft(xright) - cosleft(xright)right]^{, 2}$, and substituting
$displaystylesinleft(xright) - cosleft(xright) = t$,
how to do further ?.
definite-integrals
add a comment |
$displaystyleint_{0}^{pi/2}
frac{sinleft(xright)}
{left[1 + ,sqrt{,sinleft(2xright),},right]^{2}} ,mathrm{d}x$
i used the property to change reach
$displaystyle 2I =
int_0^{pi/2}frac{sinleft(xright) + cosleft(xright)}
{left[1 + ,sqrt{,sinleft(2xright),},right]^2} ,mathrm{d}x$
now writing $displaystylesinleft(2xright) =
1 - left[sinleft(xright) - cosleft(xright)right]^{, 2}$, and substituting
$displaystylesinleft(xright) - cosleft(xright) = t$,
how to do further ?.
definite-integrals
why should we believe it has non closed form result!
– maveric
Nov 27 '18 at 18:38
There is a probability of 1 that it has no closed form result.
– Chickenmancer
Nov 27 '18 at 18:39
woow.probability of 1!!
– maveric
Nov 27 '18 at 18:47
add a comment |
$displaystyleint_{0}^{pi/2}
frac{sinleft(xright)}
{left[1 + ,sqrt{,sinleft(2xright),},right]^{2}} ,mathrm{d}x$
i used the property to change reach
$displaystyle 2I =
int_0^{pi/2}frac{sinleft(xright) + cosleft(xright)}
{left[1 + ,sqrt{,sinleft(2xright),},right]^2} ,mathrm{d}x$
now writing $displaystylesinleft(2xright) =
1 - left[sinleft(xright) - cosleft(xright)right]^{, 2}$, and substituting
$displaystylesinleft(xright) - cosleft(xright) = t$,
how to do further ?.
definite-integrals
$displaystyleint_{0}^{pi/2}
frac{sinleft(xright)}
{left[1 + ,sqrt{,sinleft(2xright),},right]^{2}} ,mathrm{d}x$
i used the property to change reach
$displaystyle 2I =
int_0^{pi/2}frac{sinleft(xright) + cosleft(xright)}
{left[1 + ,sqrt{,sinleft(2xright),},right]^2} ,mathrm{d}x$
now writing $displaystylesinleft(2xright) =
1 - left[sinleft(xright) - cosleft(xright)right]^{, 2}$, and substituting
$displaystylesinleft(xright) - cosleft(xright) = t$,
how to do further ?.
definite-integrals
definite-integrals
edited Nov 27 '18 at 20:33
Felix Marin
67.1k7107141
67.1k7107141
asked Nov 27 '18 at 18:09
maveric
67611
67611
why should we believe it has non closed form result!
– maveric
Nov 27 '18 at 18:38
There is a probability of 1 that it has no closed form result.
– Chickenmancer
Nov 27 '18 at 18:39
woow.probability of 1!!
– maveric
Nov 27 '18 at 18:47
add a comment |
why should we believe it has non closed form result!
– maveric
Nov 27 '18 at 18:38
There is a probability of 1 that it has no closed form result.
– Chickenmancer
Nov 27 '18 at 18:39
woow.probability of 1!!
– maveric
Nov 27 '18 at 18:47
why should we believe it has non closed form result!
– maveric
Nov 27 '18 at 18:38
why should we believe it has non closed form result!
– maveric
Nov 27 '18 at 18:38
There is a probability of 1 that it has no closed form result.
– Chickenmancer
Nov 27 '18 at 18:39
There is a probability of 1 that it has no closed form result.
– Chickenmancer
Nov 27 '18 at 18:39
woow.probability of 1!!
– maveric
Nov 27 '18 at 18:47
woow.probability of 1!!
– maveric
Nov 27 '18 at 18:47
add a comment |
1 Answer
1
active
oldest
votes
As in the OP, the substitution $y=pi/2-x$ gives
$$
begin{aligned}
J&:=
int_0^{pi/2} frac {sin x}{(1+ sqrt{sin 2x})^2} ;dx
\
&=int_0^{pi/2} frac {cos x}{(1+ sqrt{sin 2x})^2} ;dx
text{ ... and thus}
\
&=
frac 12
int_0^{pi/2} frac {sin x+cos x}{(1+ sqrt{sin 2x})^2} ;dxdots
\
&qquadqquadtext{Now formally set $t=sin x-cos x$,}
\
&qquadqquadtext{so $dt=cos x+sin x$,
$t^2=1-2sin xcos x=1-sin 2x$...}
\
&=
frac 12
int_{-1}^{1}
frac {dt}{(1+ sqrt{1-t^2})^2}
=
int_0^1
frac {dt}{(1+ sqrt{1-t^2})^2}
\
&qquadqquadtext{Now use $t=sin u$}
\
&=
int_0^{pi/2}
frac {cos u; du}{(1+ cos u)^2}
\
&qquadqquadtext{Now use $v=tan(u/2)$}
\
&=
int_0^1
frac {frac{1-v^2}{1+v^2}cdotfrac 2{1+v^2}; dv}
{left(frac 2{1+v^2}right)^2}
=
frac 12
int_0^1(1-v^2); dv
\
&=frac 12left[v-frac 13 v^3right]_0^1
=
frac 12cdot frac 23 =frac 13 .
end{aligned}
$$
Computer check, pari/gp:
? intnum( x=0, Pi/2, sin(x) / ( 1+sqrt(sin(2*x)) )^2 )
%1 = 0.33333333333333333333333333333333333333
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016115%2fnot-able-to-integrate%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
As in the OP, the substitution $y=pi/2-x$ gives
$$
begin{aligned}
J&:=
int_0^{pi/2} frac {sin x}{(1+ sqrt{sin 2x})^2} ;dx
\
&=int_0^{pi/2} frac {cos x}{(1+ sqrt{sin 2x})^2} ;dx
text{ ... and thus}
\
&=
frac 12
int_0^{pi/2} frac {sin x+cos x}{(1+ sqrt{sin 2x})^2} ;dxdots
\
&qquadqquadtext{Now formally set $t=sin x-cos x$,}
\
&qquadqquadtext{so $dt=cos x+sin x$,
$t^2=1-2sin xcos x=1-sin 2x$...}
\
&=
frac 12
int_{-1}^{1}
frac {dt}{(1+ sqrt{1-t^2})^2}
=
int_0^1
frac {dt}{(1+ sqrt{1-t^2})^2}
\
&qquadqquadtext{Now use $t=sin u$}
\
&=
int_0^{pi/2}
frac {cos u; du}{(1+ cos u)^2}
\
&qquadqquadtext{Now use $v=tan(u/2)$}
\
&=
int_0^1
frac {frac{1-v^2}{1+v^2}cdotfrac 2{1+v^2}; dv}
{left(frac 2{1+v^2}right)^2}
=
frac 12
int_0^1(1-v^2); dv
\
&=frac 12left[v-frac 13 v^3right]_0^1
=
frac 12cdot frac 23 =frac 13 .
end{aligned}
$$
Computer check, pari/gp:
? intnum( x=0, Pi/2, sin(x) / ( 1+sqrt(sin(2*x)) )^2 )
%1 = 0.33333333333333333333333333333333333333
add a comment |
As in the OP, the substitution $y=pi/2-x$ gives
$$
begin{aligned}
J&:=
int_0^{pi/2} frac {sin x}{(1+ sqrt{sin 2x})^2} ;dx
\
&=int_0^{pi/2} frac {cos x}{(1+ sqrt{sin 2x})^2} ;dx
text{ ... and thus}
\
&=
frac 12
int_0^{pi/2} frac {sin x+cos x}{(1+ sqrt{sin 2x})^2} ;dxdots
\
&qquadqquadtext{Now formally set $t=sin x-cos x$,}
\
&qquadqquadtext{so $dt=cos x+sin x$,
$t^2=1-2sin xcos x=1-sin 2x$...}
\
&=
frac 12
int_{-1}^{1}
frac {dt}{(1+ sqrt{1-t^2})^2}
=
int_0^1
frac {dt}{(1+ sqrt{1-t^2})^2}
\
&qquadqquadtext{Now use $t=sin u$}
\
&=
int_0^{pi/2}
frac {cos u; du}{(1+ cos u)^2}
\
&qquadqquadtext{Now use $v=tan(u/2)$}
\
&=
int_0^1
frac {frac{1-v^2}{1+v^2}cdotfrac 2{1+v^2}; dv}
{left(frac 2{1+v^2}right)^2}
=
frac 12
int_0^1(1-v^2); dv
\
&=frac 12left[v-frac 13 v^3right]_0^1
=
frac 12cdot frac 23 =frac 13 .
end{aligned}
$$
Computer check, pari/gp:
? intnum( x=0, Pi/2, sin(x) / ( 1+sqrt(sin(2*x)) )^2 )
%1 = 0.33333333333333333333333333333333333333
add a comment |
As in the OP, the substitution $y=pi/2-x$ gives
$$
begin{aligned}
J&:=
int_0^{pi/2} frac {sin x}{(1+ sqrt{sin 2x})^2} ;dx
\
&=int_0^{pi/2} frac {cos x}{(1+ sqrt{sin 2x})^2} ;dx
text{ ... and thus}
\
&=
frac 12
int_0^{pi/2} frac {sin x+cos x}{(1+ sqrt{sin 2x})^2} ;dxdots
\
&qquadqquadtext{Now formally set $t=sin x-cos x$,}
\
&qquadqquadtext{so $dt=cos x+sin x$,
$t^2=1-2sin xcos x=1-sin 2x$...}
\
&=
frac 12
int_{-1}^{1}
frac {dt}{(1+ sqrt{1-t^2})^2}
=
int_0^1
frac {dt}{(1+ sqrt{1-t^2})^2}
\
&qquadqquadtext{Now use $t=sin u$}
\
&=
int_0^{pi/2}
frac {cos u; du}{(1+ cos u)^2}
\
&qquadqquadtext{Now use $v=tan(u/2)$}
\
&=
int_0^1
frac {frac{1-v^2}{1+v^2}cdotfrac 2{1+v^2}; dv}
{left(frac 2{1+v^2}right)^2}
=
frac 12
int_0^1(1-v^2); dv
\
&=frac 12left[v-frac 13 v^3right]_0^1
=
frac 12cdot frac 23 =frac 13 .
end{aligned}
$$
Computer check, pari/gp:
? intnum( x=0, Pi/2, sin(x) / ( 1+sqrt(sin(2*x)) )^2 )
%1 = 0.33333333333333333333333333333333333333
As in the OP, the substitution $y=pi/2-x$ gives
$$
begin{aligned}
J&:=
int_0^{pi/2} frac {sin x}{(1+ sqrt{sin 2x})^2} ;dx
\
&=int_0^{pi/2} frac {cos x}{(1+ sqrt{sin 2x})^2} ;dx
text{ ... and thus}
\
&=
frac 12
int_0^{pi/2} frac {sin x+cos x}{(1+ sqrt{sin 2x})^2} ;dxdots
\
&qquadqquadtext{Now formally set $t=sin x-cos x$,}
\
&qquadqquadtext{so $dt=cos x+sin x$,
$t^2=1-2sin xcos x=1-sin 2x$...}
\
&=
frac 12
int_{-1}^{1}
frac {dt}{(1+ sqrt{1-t^2})^2}
=
int_0^1
frac {dt}{(1+ sqrt{1-t^2})^2}
\
&qquadqquadtext{Now use $t=sin u$}
\
&=
int_0^{pi/2}
frac {cos u; du}{(1+ cos u)^2}
\
&qquadqquadtext{Now use $v=tan(u/2)$}
\
&=
int_0^1
frac {frac{1-v^2}{1+v^2}cdotfrac 2{1+v^2}; dv}
{left(frac 2{1+v^2}right)^2}
=
frac 12
int_0^1(1-v^2); dv
\
&=frac 12left[v-frac 13 v^3right]_0^1
=
frac 12cdot frac 23 =frac 13 .
end{aligned}
$$
Computer check, pari/gp:
? intnum( x=0, Pi/2, sin(x) / ( 1+sqrt(sin(2*x)) )^2 )
%1 = 0.33333333333333333333333333333333333333
answered Nov 27 '18 at 18:46
dan_fulea
6,2301312
6,2301312
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016115%2fnot-able-to-integrate%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
why should we believe it has non closed form result!
– maveric
Nov 27 '18 at 18:38
There is a probability of 1 that it has no closed form result.
– Chickenmancer
Nov 27 '18 at 18:39
woow.probability of 1!!
– maveric
Nov 27 '18 at 18:47