Regularity of the heat equation











up vote
0
down vote

favorite
1












I'd like to prove this lemma since this lemma asserts the regularity of the heat equation by using the cut-off function and mollification.



Let $Omegasubsetmathbb{R}^n$. Define $Omega_T=Omegatimes(0,T]$. Let $phi$ be the fundamental solution for the heat equation,
$$phi=left{ begin{array}{ll}frac{1}{(4pi t)^{n/2}}e^{-frac{|x|^2}{4t}}quad & textrm{for}~t>0 \
~~~~~~~0quad & textrm{for}~t<0end{array} right.$$



Assume that $f$ is bounded in $mathbb{R}^{n+1}$, $fequiv0$, and $f(x,t)equiv0$ for $|t|geq T_1>T$. Further define $u(x,t)=phi*f=int_{mathbb{R}^{n+1}}phi(x-y,t-s)f(y,s)~dyds$ . Then



1) $uin C^infty(Omega_T)$,



2)$u_t(x,t)-Delta u(x,t)=0$ in $Omega_T$,
and



3)$D^alpha_{x,t}u(x,T)$ exist for $xinOmega$.



In order to show $uin C^infty(Omega_T)$, it is enough to consider only near points of $(x_0,t_0)$ in $Omega_T$. It's an important idea that we just find some $tilde{phi}$ satisfying $phi*f=tilde{phi}*f$ near $(x_0,t_0)$. Now we take a smooth cut-off function $zeta_epsilon$ for $epsilon>0$,
begin{equation}
zeta_epsilon(x,t)=left{ begin{array}{ll}
1 & textrm{if $(x,t)in B(0,epsilon/2)$}times(-epsilon/2,epsilon/2) \ 0 & textrm{if $(x,t)inmathbb{R}^{n+1}backslash[ B(0,epsilon)times(-epsilon,-epsilon)]$}.
end{array} right.
end{equation}



Using above then we could define $tilde{phi}$,
begin{equation}
tilde{phi}(x,t)=phi(x,t)(1-zeta_epsilon(x,t)).
end{equation}



Since $phiin C^infty(mathbb{R}^{n+1})$ except near $(0,0)inmathbb{R}^{n+1}$, $tilde{phi}in C^infty(mathbb{R}^{n+1})$.



For any fixed $(x_0,t_0)inOmega_T$ and all $(y,s)inmathbb{R}^{n+1}$,



showing that $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$ implies $(i)$.



If $(x-y,t-s)in(-epsilon,epsilon)times B(0,epsilon)$ then $t_0-2epsilon<s<t_0+2epsilon$ and this implies that $yin B(0,2epsilon)$, using $f(y,s)=0$ in $Omega_T$ yields $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$.



If not then $zeta_epsilon=0$ yields $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$. $f$ is uniformly bounded in $Omega_T$ hence $u(x,t)in C^infty(Omega_T)$.



Now a direct evaluation asserts $(ii)$ since $phi_t-Deltaphi=0$ and by using $(i)$. Omit the subscript $epsilon$ of $zeta_epsilon$,
begin{equation}
begin{aligned}
u_t-Delta u& =frac{partial}{partial t}int_{mathbb{R}^{n+1}}tilde{phi}(x-y,t-s)f(y,s)~dyds \
& quad-Delta_xint_{mathbb{R}^{n+1}}tilde{phi}(x-y,t-s)f(y,s)~dyds \
& =int_0^Tint_{Omega_Tbackslash B(0,epsilon)}(phi_t(1-zeta)-phizeta_t-Deltaphi(1-zeta)-phiDeltazeta)f(y,s)~dyds \
& quad+int_0^Tint_{B(0,epsilon)}0cdot f(y,s)~dydsquad(because~zeta=1) \
& =int_0^Tint_{Omega_Tbackslash B(0,epsilon)}(phi_t-Deltaphi)f(y,s)~dyds=0
end{aligned}
end{equation}

This result only validates in $Omega_T$.



Now I want to prove (3) of this lemma, it's quite difficult to me. I think that $D_xu$ and $D^2_xu$ might exist at $t=T$but how can I control the ball at $t=T$? Moreover, it might be a one-sided derivative $D_tu(x,T)$ if $trightarrow T^-$, I cannot figure out how to dominate the distance by $O(epsilon)$.










share|cite|improve this question


























    up vote
    0
    down vote

    favorite
    1












    I'd like to prove this lemma since this lemma asserts the regularity of the heat equation by using the cut-off function and mollification.



    Let $Omegasubsetmathbb{R}^n$. Define $Omega_T=Omegatimes(0,T]$. Let $phi$ be the fundamental solution for the heat equation,
    $$phi=left{ begin{array}{ll}frac{1}{(4pi t)^{n/2}}e^{-frac{|x|^2}{4t}}quad & textrm{for}~t>0 \
    ~~~~~~~0quad & textrm{for}~t<0end{array} right.$$



    Assume that $f$ is bounded in $mathbb{R}^{n+1}$, $fequiv0$, and $f(x,t)equiv0$ for $|t|geq T_1>T$. Further define $u(x,t)=phi*f=int_{mathbb{R}^{n+1}}phi(x-y,t-s)f(y,s)~dyds$ . Then



    1) $uin C^infty(Omega_T)$,



    2)$u_t(x,t)-Delta u(x,t)=0$ in $Omega_T$,
    and



    3)$D^alpha_{x,t}u(x,T)$ exist for $xinOmega$.



    In order to show $uin C^infty(Omega_T)$, it is enough to consider only near points of $(x_0,t_0)$ in $Omega_T$. It's an important idea that we just find some $tilde{phi}$ satisfying $phi*f=tilde{phi}*f$ near $(x_0,t_0)$. Now we take a smooth cut-off function $zeta_epsilon$ for $epsilon>0$,
    begin{equation}
    zeta_epsilon(x,t)=left{ begin{array}{ll}
    1 & textrm{if $(x,t)in B(0,epsilon/2)$}times(-epsilon/2,epsilon/2) \ 0 & textrm{if $(x,t)inmathbb{R}^{n+1}backslash[ B(0,epsilon)times(-epsilon,-epsilon)]$}.
    end{array} right.
    end{equation}



    Using above then we could define $tilde{phi}$,
    begin{equation}
    tilde{phi}(x,t)=phi(x,t)(1-zeta_epsilon(x,t)).
    end{equation}



    Since $phiin C^infty(mathbb{R}^{n+1})$ except near $(0,0)inmathbb{R}^{n+1}$, $tilde{phi}in C^infty(mathbb{R}^{n+1})$.



    For any fixed $(x_0,t_0)inOmega_T$ and all $(y,s)inmathbb{R}^{n+1}$,



    showing that $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$ implies $(i)$.



    If $(x-y,t-s)in(-epsilon,epsilon)times B(0,epsilon)$ then $t_0-2epsilon<s<t_0+2epsilon$ and this implies that $yin B(0,2epsilon)$, using $f(y,s)=0$ in $Omega_T$ yields $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$.



    If not then $zeta_epsilon=0$ yields $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$. $f$ is uniformly bounded in $Omega_T$ hence $u(x,t)in C^infty(Omega_T)$.



    Now a direct evaluation asserts $(ii)$ since $phi_t-Deltaphi=0$ and by using $(i)$. Omit the subscript $epsilon$ of $zeta_epsilon$,
    begin{equation}
    begin{aligned}
    u_t-Delta u& =frac{partial}{partial t}int_{mathbb{R}^{n+1}}tilde{phi}(x-y,t-s)f(y,s)~dyds \
    & quad-Delta_xint_{mathbb{R}^{n+1}}tilde{phi}(x-y,t-s)f(y,s)~dyds \
    & =int_0^Tint_{Omega_Tbackslash B(0,epsilon)}(phi_t(1-zeta)-phizeta_t-Deltaphi(1-zeta)-phiDeltazeta)f(y,s)~dyds \
    & quad+int_0^Tint_{B(0,epsilon)}0cdot f(y,s)~dydsquad(because~zeta=1) \
    & =int_0^Tint_{Omega_Tbackslash B(0,epsilon)}(phi_t-Deltaphi)f(y,s)~dyds=0
    end{aligned}
    end{equation}

    This result only validates in $Omega_T$.



    Now I want to prove (3) of this lemma, it's quite difficult to me. I think that $D_xu$ and $D^2_xu$ might exist at $t=T$but how can I control the ball at $t=T$? Moreover, it might be a one-sided derivative $D_tu(x,T)$ if $trightarrow T^-$, I cannot figure out how to dominate the distance by $O(epsilon)$.










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite
      1









      up vote
      0
      down vote

      favorite
      1






      1





      I'd like to prove this lemma since this lemma asserts the regularity of the heat equation by using the cut-off function and mollification.



      Let $Omegasubsetmathbb{R}^n$. Define $Omega_T=Omegatimes(0,T]$. Let $phi$ be the fundamental solution for the heat equation,
      $$phi=left{ begin{array}{ll}frac{1}{(4pi t)^{n/2}}e^{-frac{|x|^2}{4t}}quad & textrm{for}~t>0 \
      ~~~~~~~0quad & textrm{for}~t<0end{array} right.$$



      Assume that $f$ is bounded in $mathbb{R}^{n+1}$, $fequiv0$, and $f(x,t)equiv0$ for $|t|geq T_1>T$. Further define $u(x,t)=phi*f=int_{mathbb{R}^{n+1}}phi(x-y,t-s)f(y,s)~dyds$ . Then



      1) $uin C^infty(Omega_T)$,



      2)$u_t(x,t)-Delta u(x,t)=0$ in $Omega_T$,
      and



      3)$D^alpha_{x,t}u(x,T)$ exist for $xinOmega$.



      In order to show $uin C^infty(Omega_T)$, it is enough to consider only near points of $(x_0,t_0)$ in $Omega_T$. It's an important idea that we just find some $tilde{phi}$ satisfying $phi*f=tilde{phi}*f$ near $(x_0,t_0)$. Now we take a smooth cut-off function $zeta_epsilon$ for $epsilon>0$,
      begin{equation}
      zeta_epsilon(x,t)=left{ begin{array}{ll}
      1 & textrm{if $(x,t)in B(0,epsilon/2)$}times(-epsilon/2,epsilon/2) \ 0 & textrm{if $(x,t)inmathbb{R}^{n+1}backslash[ B(0,epsilon)times(-epsilon,-epsilon)]$}.
      end{array} right.
      end{equation}



      Using above then we could define $tilde{phi}$,
      begin{equation}
      tilde{phi}(x,t)=phi(x,t)(1-zeta_epsilon(x,t)).
      end{equation}



      Since $phiin C^infty(mathbb{R}^{n+1})$ except near $(0,0)inmathbb{R}^{n+1}$, $tilde{phi}in C^infty(mathbb{R}^{n+1})$.



      For any fixed $(x_0,t_0)inOmega_T$ and all $(y,s)inmathbb{R}^{n+1}$,



      showing that $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$ implies $(i)$.



      If $(x-y,t-s)in(-epsilon,epsilon)times B(0,epsilon)$ then $t_0-2epsilon<s<t_0+2epsilon$ and this implies that $yin B(0,2epsilon)$, using $f(y,s)=0$ in $Omega_T$ yields $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$.



      If not then $zeta_epsilon=0$ yields $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$. $f$ is uniformly bounded in $Omega_T$ hence $u(x,t)in C^infty(Omega_T)$.



      Now a direct evaluation asserts $(ii)$ since $phi_t-Deltaphi=0$ and by using $(i)$. Omit the subscript $epsilon$ of $zeta_epsilon$,
      begin{equation}
      begin{aligned}
      u_t-Delta u& =frac{partial}{partial t}int_{mathbb{R}^{n+1}}tilde{phi}(x-y,t-s)f(y,s)~dyds \
      & quad-Delta_xint_{mathbb{R}^{n+1}}tilde{phi}(x-y,t-s)f(y,s)~dyds \
      & =int_0^Tint_{Omega_Tbackslash B(0,epsilon)}(phi_t(1-zeta)-phizeta_t-Deltaphi(1-zeta)-phiDeltazeta)f(y,s)~dyds \
      & quad+int_0^Tint_{B(0,epsilon)}0cdot f(y,s)~dydsquad(because~zeta=1) \
      & =int_0^Tint_{Omega_Tbackslash B(0,epsilon)}(phi_t-Deltaphi)f(y,s)~dyds=0
      end{aligned}
      end{equation}

      This result only validates in $Omega_T$.



      Now I want to prove (3) of this lemma, it's quite difficult to me. I think that $D_xu$ and $D^2_xu$ might exist at $t=T$but how can I control the ball at $t=T$? Moreover, it might be a one-sided derivative $D_tu(x,T)$ if $trightarrow T^-$, I cannot figure out how to dominate the distance by $O(epsilon)$.










      share|cite|improve this question













      I'd like to prove this lemma since this lemma asserts the regularity of the heat equation by using the cut-off function and mollification.



      Let $Omegasubsetmathbb{R}^n$. Define $Omega_T=Omegatimes(0,T]$. Let $phi$ be the fundamental solution for the heat equation,
      $$phi=left{ begin{array}{ll}frac{1}{(4pi t)^{n/2}}e^{-frac{|x|^2}{4t}}quad & textrm{for}~t>0 \
      ~~~~~~~0quad & textrm{for}~t<0end{array} right.$$



      Assume that $f$ is bounded in $mathbb{R}^{n+1}$, $fequiv0$, and $f(x,t)equiv0$ for $|t|geq T_1>T$. Further define $u(x,t)=phi*f=int_{mathbb{R}^{n+1}}phi(x-y,t-s)f(y,s)~dyds$ . Then



      1) $uin C^infty(Omega_T)$,



      2)$u_t(x,t)-Delta u(x,t)=0$ in $Omega_T$,
      and



      3)$D^alpha_{x,t}u(x,T)$ exist for $xinOmega$.



      In order to show $uin C^infty(Omega_T)$, it is enough to consider only near points of $(x_0,t_0)$ in $Omega_T$. It's an important idea that we just find some $tilde{phi}$ satisfying $phi*f=tilde{phi}*f$ near $(x_0,t_0)$. Now we take a smooth cut-off function $zeta_epsilon$ for $epsilon>0$,
      begin{equation}
      zeta_epsilon(x,t)=left{ begin{array}{ll}
      1 & textrm{if $(x,t)in B(0,epsilon/2)$}times(-epsilon/2,epsilon/2) \ 0 & textrm{if $(x,t)inmathbb{R}^{n+1}backslash[ B(0,epsilon)times(-epsilon,-epsilon)]$}.
      end{array} right.
      end{equation}



      Using above then we could define $tilde{phi}$,
      begin{equation}
      tilde{phi}(x,t)=phi(x,t)(1-zeta_epsilon(x,t)).
      end{equation}



      Since $phiin C^infty(mathbb{R}^{n+1})$ except near $(0,0)inmathbb{R}^{n+1}$, $tilde{phi}in C^infty(mathbb{R}^{n+1})$.



      For any fixed $(x_0,t_0)inOmega_T$ and all $(y,s)inmathbb{R}^{n+1}$,



      showing that $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$ implies $(i)$.



      If $(x-y,t-s)in(-epsilon,epsilon)times B(0,epsilon)$ then $t_0-2epsilon<s<t_0+2epsilon$ and this implies that $yin B(0,2epsilon)$, using $f(y,s)=0$ in $Omega_T$ yields $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$.



      If not then $zeta_epsilon=0$ yields $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$. $f$ is uniformly bounded in $Omega_T$ hence $u(x,t)in C^infty(Omega_T)$.



      Now a direct evaluation asserts $(ii)$ since $phi_t-Deltaphi=0$ and by using $(i)$. Omit the subscript $epsilon$ of $zeta_epsilon$,
      begin{equation}
      begin{aligned}
      u_t-Delta u& =frac{partial}{partial t}int_{mathbb{R}^{n+1}}tilde{phi}(x-y,t-s)f(y,s)~dyds \
      & quad-Delta_xint_{mathbb{R}^{n+1}}tilde{phi}(x-y,t-s)f(y,s)~dyds \
      & =int_0^Tint_{Omega_Tbackslash B(0,epsilon)}(phi_t(1-zeta)-phizeta_t-Deltaphi(1-zeta)-phiDeltazeta)f(y,s)~dyds \
      & quad+int_0^Tint_{B(0,epsilon)}0cdot f(y,s)~dydsquad(because~zeta=1) \
      & =int_0^Tint_{Omega_Tbackslash B(0,epsilon)}(phi_t-Deltaphi)f(y,s)~dyds=0
      end{aligned}
      end{equation}

      This result only validates in $Omega_T$.



      Now I want to prove (3) of this lemma, it's quite difficult to me. I think that $D_xu$ and $D^2_xu$ might exist at $t=T$but how can I control the ball at $t=T$? Moreover, it might be a one-sided derivative $D_tu(x,T)$ if $trightarrow T^-$, I cannot figure out how to dominate the distance by $O(epsilon)$.







      pde regularity-theory-of-pdes






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 13 at 9:56









      Sh7

      1169




      1169



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996543%2fregularity-of-the-heat-equation%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996543%2fregularity-of-the-heat-equation%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How do I know what Microsoft account the skydrive app is syncing to?

          When does type information flow backwards in C++?

          Grease: Live!