Regularity of the heat equation
up vote
0
down vote
favorite
I'd like to prove this lemma since this lemma asserts the regularity of the heat equation by using the cut-off function and mollification.
Let $Omegasubsetmathbb{R}^n$. Define $Omega_T=Omegatimes(0,T]$. Let $phi$ be the fundamental solution for the heat equation,
$$phi=left{ begin{array}{ll}frac{1}{(4pi t)^{n/2}}e^{-frac{|x|^2}{4t}}quad & textrm{for}~t>0 \
~~~~~~~0quad & textrm{for}~t<0end{array} right.$$
Assume that $f$ is bounded in $mathbb{R}^{n+1}$, $fequiv0$, and $f(x,t)equiv0$ for $|t|geq T_1>T$. Further define $u(x,t)=phi*f=int_{mathbb{R}^{n+1}}phi(x-y,t-s)f(y,s)~dyds$ . Then
1) $uin C^infty(Omega_T)$,
2)$u_t(x,t)-Delta u(x,t)=0$ in $Omega_T$,
and
3)$D^alpha_{x,t}u(x,T)$ exist for $xinOmega$.
In order to show $uin C^infty(Omega_T)$, it is enough to consider only near points of $(x_0,t_0)$ in $Omega_T$. It's an important idea that we just find some $tilde{phi}$ satisfying $phi*f=tilde{phi}*f$ near $(x_0,t_0)$. Now we take a smooth cut-off function $zeta_epsilon$ for $epsilon>0$,
begin{equation}
zeta_epsilon(x,t)=left{ begin{array}{ll}
1 & textrm{if $(x,t)in B(0,epsilon/2)$}times(-epsilon/2,epsilon/2) \ 0 & textrm{if $(x,t)inmathbb{R}^{n+1}backslash[ B(0,epsilon)times(-epsilon,-epsilon)]$}.
end{array} right.
end{equation}
Using above then we could define $tilde{phi}$,
begin{equation}
tilde{phi}(x,t)=phi(x,t)(1-zeta_epsilon(x,t)).
end{equation}
Since $phiin C^infty(mathbb{R}^{n+1})$ except near $(0,0)inmathbb{R}^{n+1}$, $tilde{phi}in C^infty(mathbb{R}^{n+1})$.
For any fixed $(x_0,t_0)inOmega_T$ and all $(y,s)inmathbb{R}^{n+1}$,
showing that $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$ implies $(i)$.
If $(x-y,t-s)in(-epsilon,epsilon)times B(0,epsilon)$ then $t_0-2epsilon<s<t_0+2epsilon$ and this implies that $yin B(0,2epsilon)$, using $f(y,s)=0$ in $Omega_T$ yields $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$.
If not then $zeta_epsilon=0$ yields $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$. $f$ is uniformly bounded in $Omega_T$ hence $u(x,t)in C^infty(Omega_T)$.
Now a direct evaluation asserts $(ii)$ since $phi_t-Deltaphi=0$ and by using $(i)$. Omit the subscript $epsilon$ of $zeta_epsilon$,
begin{equation}
begin{aligned}
u_t-Delta u& =frac{partial}{partial t}int_{mathbb{R}^{n+1}}tilde{phi}(x-y,t-s)f(y,s)~dyds \
& quad-Delta_xint_{mathbb{R}^{n+1}}tilde{phi}(x-y,t-s)f(y,s)~dyds \
& =int_0^Tint_{Omega_Tbackslash B(0,epsilon)}(phi_t(1-zeta)-phizeta_t-Deltaphi(1-zeta)-phiDeltazeta)f(y,s)~dyds \
& quad+int_0^Tint_{B(0,epsilon)}0cdot f(y,s)~dydsquad(because~zeta=1) \
& =int_0^Tint_{Omega_Tbackslash B(0,epsilon)}(phi_t-Deltaphi)f(y,s)~dyds=0
end{aligned}
end{equation}
This result only validates in $Omega_T$.
Now I want to prove (3) of this lemma, it's quite difficult to me. I think that $D_xu$ and $D^2_xu$ might exist at $t=T$but how can I control the ball at $t=T$? Moreover, it might be a one-sided derivative $D_tu(x,T)$ if $trightarrow T^-$, I cannot figure out how to dominate the distance by $O(epsilon)$.
pde regularity-theory-of-pdes
add a comment |
up vote
0
down vote
favorite
I'd like to prove this lemma since this lemma asserts the regularity of the heat equation by using the cut-off function and mollification.
Let $Omegasubsetmathbb{R}^n$. Define $Omega_T=Omegatimes(0,T]$. Let $phi$ be the fundamental solution for the heat equation,
$$phi=left{ begin{array}{ll}frac{1}{(4pi t)^{n/2}}e^{-frac{|x|^2}{4t}}quad & textrm{for}~t>0 \
~~~~~~~0quad & textrm{for}~t<0end{array} right.$$
Assume that $f$ is bounded in $mathbb{R}^{n+1}$, $fequiv0$, and $f(x,t)equiv0$ for $|t|geq T_1>T$. Further define $u(x,t)=phi*f=int_{mathbb{R}^{n+1}}phi(x-y,t-s)f(y,s)~dyds$ . Then
1) $uin C^infty(Omega_T)$,
2)$u_t(x,t)-Delta u(x,t)=0$ in $Omega_T$,
and
3)$D^alpha_{x,t}u(x,T)$ exist for $xinOmega$.
In order to show $uin C^infty(Omega_T)$, it is enough to consider only near points of $(x_0,t_0)$ in $Omega_T$. It's an important idea that we just find some $tilde{phi}$ satisfying $phi*f=tilde{phi}*f$ near $(x_0,t_0)$. Now we take a smooth cut-off function $zeta_epsilon$ for $epsilon>0$,
begin{equation}
zeta_epsilon(x,t)=left{ begin{array}{ll}
1 & textrm{if $(x,t)in B(0,epsilon/2)$}times(-epsilon/2,epsilon/2) \ 0 & textrm{if $(x,t)inmathbb{R}^{n+1}backslash[ B(0,epsilon)times(-epsilon,-epsilon)]$}.
end{array} right.
end{equation}
Using above then we could define $tilde{phi}$,
begin{equation}
tilde{phi}(x,t)=phi(x,t)(1-zeta_epsilon(x,t)).
end{equation}
Since $phiin C^infty(mathbb{R}^{n+1})$ except near $(0,0)inmathbb{R}^{n+1}$, $tilde{phi}in C^infty(mathbb{R}^{n+1})$.
For any fixed $(x_0,t_0)inOmega_T$ and all $(y,s)inmathbb{R}^{n+1}$,
showing that $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$ implies $(i)$.
If $(x-y,t-s)in(-epsilon,epsilon)times B(0,epsilon)$ then $t_0-2epsilon<s<t_0+2epsilon$ and this implies that $yin B(0,2epsilon)$, using $f(y,s)=0$ in $Omega_T$ yields $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$.
If not then $zeta_epsilon=0$ yields $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$. $f$ is uniformly bounded in $Omega_T$ hence $u(x,t)in C^infty(Omega_T)$.
Now a direct evaluation asserts $(ii)$ since $phi_t-Deltaphi=0$ and by using $(i)$. Omit the subscript $epsilon$ of $zeta_epsilon$,
begin{equation}
begin{aligned}
u_t-Delta u& =frac{partial}{partial t}int_{mathbb{R}^{n+1}}tilde{phi}(x-y,t-s)f(y,s)~dyds \
& quad-Delta_xint_{mathbb{R}^{n+1}}tilde{phi}(x-y,t-s)f(y,s)~dyds \
& =int_0^Tint_{Omega_Tbackslash B(0,epsilon)}(phi_t(1-zeta)-phizeta_t-Deltaphi(1-zeta)-phiDeltazeta)f(y,s)~dyds \
& quad+int_0^Tint_{B(0,epsilon)}0cdot f(y,s)~dydsquad(because~zeta=1) \
& =int_0^Tint_{Omega_Tbackslash B(0,epsilon)}(phi_t-Deltaphi)f(y,s)~dyds=0
end{aligned}
end{equation}
This result only validates in $Omega_T$.
Now I want to prove (3) of this lemma, it's quite difficult to me. I think that $D_xu$ and $D^2_xu$ might exist at $t=T$but how can I control the ball at $t=T$? Moreover, it might be a one-sided derivative $D_tu(x,T)$ if $trightarrow T^-$, I cannot figure out how to dominate the distance by $O(epsilon)$.
pde regularity-theory-of-pdes
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'd like to prove this lemma since this lemma asserts the regularity of the heat equation by using the cut-off function and mollification.
Let $Omegasubsetmathbb{R}^n$. Define $Omega_T=Omegatimes(0,T]$. Let $phi$ be the fundamental solution for the heat equation,
$$phi=left{ begin{array}{ll}frac{1}{(4pi t)^{n/2}}e^{-frac{|x|^2}{4t}}quad & textrm{for}~t>0 \
~~~~~~~0quad & textrm{for}~t<0end{array} right.$$
Assume that $f$ is bounded in $mathbb{R}^{n+1}$, $fequiv0$, and $f(x,t)equiv0$ for $|t|geq T_1>T$. Further define $u(x,t)=phi*f=int_{mathbb{R}^{n+1}}phi(x-y,t-s)f(y,s)~dyds$ . Then
1) $uin C^infty(Omega_T)$,
2)$u_t(x,t)-Delta u(x,t)=0$ in $Omega_T$,
and
3)$D^alpha_{x,t}u(x,T)$ exist for $xinOmega$.
In order to show $uin C^infty(Omega_T)$, it is enough to consider only near points of $(x_0,t_0)$ in $Omega_T$. It's an important idea that we just find some $tilde{phi}$ satisfying $phi*f=tilde{phi}*f$ near $(x_0,t_0)$. Now we take a smooth cut-off function $zeta_epsilon$ for $epsilon>0$,
begin{equation}
zeta_epsilon(x,t)=left{ begin{array}{ll}
1 & textrm{if $(x,t)in B(0,epsilon/2)$}times(-epsilon/2,epsilon/2) \ 0 & textrm{if $(x,t)inmathbb{R}^{n+1}backslash[ B(0,epsilon)times(-epsilon,-epsilon)]$}.
end{array} right.
end{equation}
Using above then we could define $tilde{phi}$,
begin{equation}
tilde{phi}(x,t)=phi(x,t)(1-zeta_epsilon(x,t)).
end{equation}
Since $phiin C^infty(mathbb{R}^{n+1})$ except near $(0,0)inmathbb{R}^{n+1}$, $tilde{phi}in C^infty(mathbb{R}^{n+1})$.
For any fixed $(x_0,t_0)inOmega_T$ and all $(y,s)inmathbb{R}^{n+1}$,
showing that $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$ implies $(i)$.
If $(x-y,t-s)in(-epsilon,epsilon)times B(0,epsilon)$ then $t_0-2epsilon<s<t_0+2epsilon$ and this implies that $yin B(0,2epsilon)$, using $f(y,s)=0$ in $Omega_T$ yields $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$.
If not then $zeta_epsilon=0$ yields $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$. $f$ is uniformly bounded in $Omega_T$ hence $u(x,t)in C^infty(Omega_T)$.
Now a direct evaluation asserts $(ii)$ since $phi_t-Deltaphi=0$ and by using $(i)$. Omit the subscript $epsilon$ of $zeta_epsilon$,
begin{equation}
begin{aligned}
u_t-Delta u& =frac{partial}{partial t}int_{mathbb{R}^{n+1}}tilde{phi}(x-y,t-s)f(y,s)~dyds \
& quad-Delta_xint_{mathbb{R}^{n+1}}tilde{phi}(x-y,t-s)f(y,s)~dyds \
& =int_0^Tint_{Omega_Tbackslash B(0,epsilon)}(phi_t(1-zeta)-phizeta_t-Deltaphi(1-zeta)-phiDeltazeta)f(y,s)~dyds \
& quad+int_0^Tint_{B(0,epsilon)}0cdot f(y,s)~dydsquad(because~zeta=1) \
& =int_0^Tint_{Omega_Tbackslash B(0,epsilon)}(phi_t-Deltaphi)f(y,s)~dyds=0
end{aligned}
end{equation}
This result only validates in $Omega_T$.
Now I want to prove (3) of this lemma, it's quite difficult to me. I think that $D_xu$ and $D^2_xu$ might exist at $t=T$but how can I control the ball at $t=T$? Moreover, it might be a one-sided derivative $D_tu(x,T)$ if $trightarrow T^-$, I cannot figure out how to dominate the distance by $O(epsilon)$.
pde regularity-theory-of-pdes
I'd like to prove this lemma since this lemma asserts the regularity of the heat equation by using the cut-off function and mollification.
Let $Omegasubsetmathbb{R}^n$. Define $Omega_T=Omegatimes(0,T]$. Let $phi$ be the fundamental solution for the heat equation,
$$phi=left{ begin{array}{ll}frac{1}{(4pi t)^{n/2}}e^{-frac{|x|^2}{4t}}quad & textrm{for}~t>0 \
~~~~~~~0quad & textrm{for}~t<0end{array} right.$$
Assume that $f$ is bounded in $mathbb{R}^{n+1}$, $fequiv0$, and $f(x,t)equiv0$ for $|t|geq T_1>T$. Further define $u(x,t)=phi*f=int_{mathbb{R}^{n+1}}phi(x-y,t-s)f(y,s)~dyds$ . Then
1) $uin C^infty(Omega_T)$,
2)$u_t(x,t)-Delta u(x,t)=0$ in $Omega_T$,
and
3)$D^alpha_{x,t}u(x,T)$ exist for $xinOmega$.
In order to show $uin C^infty(Omega_T)$, it is enough to consider only near points of $(x_0,t_0)$ in $Omega_T$. It's an important idea that we just find some $tilde{phi}$ satisfying $phi*f=tilde{phi}*f$ near $(x_0,t_0)$. Now we take a smooth cut-off function $zeta_epsilon$ for $epsilon>0$,
begin{equation}
zeta_epsilon(x,t)=left{ begin{array}{ll}
1 & textrm{if $(x,t)in B(0,epsilon/2)$}times(-epsilon/2,epsilon/2) \ 0 & textrm{if $(x,t)inmathbb{R}^{n+1}backslash[ B(0,epsilon)times(-epsilon,-epsilon)]$}.
end{array} right.
end{equation}
Using above then we could define $tilde{phi}$,
begin{equation}
tilde{phi}(x,t)=phi(x,t)(1-zeta_epsilon(x,t)).
end{equation}
Since $phiin C^infty(mathbb{R}^{n+1})$ except near $(0,0)inmathbb{R}^{n+1}$, $tilde{phi}in C^infty(mathbb{R}^{n+1})$.
For any fixed $(x_0,t_0)inOmega_T$ and all $(y,s)inmathbb{R}^{n+1}$,
showing that $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$ implies $(i)$.
If $(x-y,t-s)in(-epsilon,epsilon)times B(0,epsilon)$ then $t_0-2epsilon<s<t_0+2epsilon$ and this implies that $yin B(0,2epsilon)$, using $f(y,s)=0$ in $Omega_T$ yields $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$.
If not then $zeta_epsilon=0$ yields $phi(x-y,t-s)f(y,s)=tilde{phi}(x-y,t-s)f(y,s)$. $f$ is uniformly bounded in $Omega_T$ hence $u(x,t)in C^infty(Omega_T)$.
Now a direct evaluation asserts $(ii)$ since $phi_t-Deltaphi=0$ and by using $(i)$. Omit the subscript $epsilon$ of $zeta_epsilon$,
begin{equation}
begin{aligned}
u_t-Delta u& =frac{partial}{partial t}int_{mathbb{R}^{n+1}}tilde{phi}(x-y,t-s)f(y,s)~dyds \
& quad-Delta_xint_{mathbb{R}^{n+1}}tilde{phi}(x-y,t-s)f(y,s)~dyds \
& =int_0^Tint_{Omega_Tbackslash B(0,epsilon)}(phi_t(1-zeta)-phizeta_t-Deltaphi(1-zeta)-phiDeltazeta)f(y,s)~dyds \
& quad+int_0^Tint_{B(0,epsilon)}0cdot f(y,s)~dydsquad(because~zeta=1) \
& =int_0^Tint_{Omega_Tbackslash B(0,epsilon)}(phi_t-Deltaphi)f(y,s)~dyds=0
end{aligned}
end{equation}
This result only validates in $Omega_T$.
Now I want to prove (3) of this lemma, it's quite difficult to me. I think that $D_xu$ and $D^2_xu$ might exist at $t=T$but how can I control the ball at $t=T$? Moreover, it might be a one-sided derivative $D_tu(x,T)$ if $trightarrow T^-$, I cannot figure out how to dominate the distance by $O(epsilon)$.
pde regularity-theory-of-pdes
pde regularity-theory-of-pdes
asked Nov 13 at 9:56
Sh7
1169
1169
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996543%2fregularity-of-the-heat-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown