How to integrate over the standard $n$-simplex directly in $mathbb{R}^{n+1}$?











up vote
3
down vote

favorite
2












Definition of standard $n$-simplex



enter image description here



The standard $n$-simplex contains all points $vec{x} in mathbb{R}^{n + 1}$ such that $0 le x_i le 1$ and $vec{x} cdot vec{1} = 1$.



My definition of the area of $n$-simplex



$$A_{n} = frac{sqrt{n+1}}{n!}.$$



The standard $2$-simplex is an equilateral triangle with side length $sqrt{2}$ and vertices at $(1, 0, 0)$, $(0, 1, 0)$, and $(0, 0, 1)$. The area is $A_{2} = dfrac{sqrt{3}}2$.



The standard $1$-simplex is a line with vertices at $(1, 0)$ and $(0, 1)$. The length is $A_{1} = sqrt{2}$



I found the area of the standard $n$-simplex by first moving the simplex from $mathbb{R}^{n+1}$ to $mathbb{R}^{n}$.



Area of standard simplex



Question



How to directly integrate over the standard $n$-simplex with the coordinates of $mathbb{R}^{n+1}$?



I can't use the change of coordinate formula because the Jacobian of the transformation from $mathbb{R}^{n}$ to $mathbb{R}^{n+1}$ is rectangular.



Thanks.










share|cite|improve this question




























    up vote
    3
    down vote

    favorite
    2












    Definition of standard $n$-simplex



    enter image description here



    The standard $n$-simplex contains all points $vec{x} in mathbb{R}^{n + 1}$ such that $0 le x_i le 1$ and $vec{x} cdot vec{1} = 1$.



    My definition of the area of $n$-simplex



    $$A_{n} = frac{sqrt{n+1}}{n!}.$$



    The standard $2$-simplex is an equilateral triangle with side length $sqrt{2}$ and vertices at $(1, 0, 0)$, $(0, 1, 0)$, and $(0, 0, 1)$. The area is $A_{2} = dfrac{sqrt{3}}2$.



    The standard $1$-simplex is a line with vertices at $(1, 0)$ and $(0, 1)$. The length is $A_{1} = sqrt{2}$



    I found the area of the standard $n$-simplex by first moving the simplex from $mathbb{R}^{n+1}$ to $mathbb{R}^{n}$.



    Area of standard simplex



    Question



    How to directly integrate over the standard $n$-simplex with the coordinates of $mathbb{R}^{n+1}$?



    I can't use the change of coordinate formula because the Jacobian of the transformation from $mathbb{R}^{n}$ to $mathbb{R}^{n+1}$ is rectangular.



    Thanks.










    share|cite|improve this question


























      up vote
      3
      down vote

      favorite
      2









      up vote
      3
      down vote

      favorite
      2






      2





      Definition of standard $n$-simplex



      enter image description here



      The standard $n$-simplex contains all points $vec{x} in mathbb{R}^{n + 1}$ such that $0 le x_i le 1$ and $vec{x} cdot vec{1} = 1$.



      My definition of the area of $n$-simplex



      $$A_{n} = frac{sqrt{n+1}}{n!}.$$



      The standard $2$-simplex is an equilateral triangle with side length $sqrt{2}$ and vertices at $(1, 0, 0)$, $(0, 1, 0)$, and $(0, 0, 1)$. The area is $A_{2} = dfrac{sqrt{3}}2$.



      The standard $1$-simplex is a line with vertices at $(1, 0)$ and $(0, 1)$. The length is $A_{1} = sqrt{2}$



      I found the area of the standard $n$-simplex by first moving the simplex from $mathbb{R}^{n+1}$ to $mathbb{R}^{n}$.



      Area of standard simplex



      Question



      How to directly integrate over the standard $n$-simplex with the coordinates of $mathbb{R}^{n+1}$?



      I can't use the change of coordinate formula because the Jacobian of the transformation from $mathbb{R}^{n}$ to $mathbb{R}^{n+1}$ is rectangular.



      Thanks.










      share|cite|improve this question















      Definition of standard $n$-simplex



      enter image description here



      The standard $n$-simplex contains all points $vec{x} in mathbb{R}^{n + 1}$ such that $0 le x_i le 1$ and $vec{x} cdot vec{1} = 1$.



      My definition of the area of $n$-simplex



      $$A_{n} = frac{sqrt{n+1}}{n!}.$$



      The standard $2$-simplex is an equilateral triangle with side length $sqrt{2}$ and vertices at $(1, 0, 0)$, $(0, 1, 0)$, and $(0, 0, 1)$. The area is $A_{2} = dfrac{sqrt{3}}2$.



      The standard $1$-simplex is a line with vertices at $(1, 0)$ and $(0, 1)$. The length is $A_{1} = sqrt{2}$



      I found the area of the standard $n$-simplex by first moving the simplex from $mathbb{R}^{n+1}$ to $mathbb{R}^{n}$.



      Area of standard simplex



      Question



      How to directly integrate over the standard $n$-simplex with the coordinates of $mathbb{R}^{n+1}$?



      I can't use the change of coordinate formula because the Jacobian of the transformation from $mathbb{R}^{n}$ to $mathbb{R}^{n+1}$ is rectangular.



      Thanks.







      calculus linear-algebra integration geometry multivariable-calculus






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 days ago









      Batominovski

      30.8k23187




      30.8k23187










      asked Nov 13 at 4:36









      R zu

      32910




      32910






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          3
          down vote



          accepted










          Let $Delta^nsubseteq mathbb{R}^{n+1}$ be the standard $n$-simplex: $$Delta^n:=big{(x_0,x_1,x_2,ldots,x_n)inmathbb{R}_{geq 0}^{n+1},big|,x_0+x_1+x_2+ldots+x_n=1big}.$$ An arbitrary function $f:Delta^nto mathbb{R}$ can be considered as a function in $n$ free variables. That is, there exists a unique function $F:Sigma^nto mathbb{R}$ such that
          $$f(x_0,x_1,x_2,ldots,x_n)=F(x_1,x_2,ldots,x_n)$$ for all $(x_0,x_1,x_2,ldots,x_n)inDelta^n$, where $$Sigma^n:=big{(x_1,x_2,ldots,x_n)subseteqmathbb{R}_{geq 0}^n,big|,x_1+x_2+ldots+x_nleq1big}subseteq mathbb{R}^n,.$$ In other words, $F$ is given by $$F(x_1,x_2,ldots,x_n):=fleft(1-x_1-x_2-ldots-x_n,x_1,x_2,ldots,x_nright),,$$ for all $(x_0,x_1,x_2,ldots,x_n)inDelta^n$. That is, if $nu_n$ is the volume measure on $Delta^n$ and $lambda_n$ is the Lebesgue measure on $mathbb{R}^n$, then
          $$int_{Delta^n},f,text{d}nu_n=sqrt{n+1},int_{Sigma^n},F,text{d}lambda_n,.$$
          This is because $$text{d}nu_n(x_0,x_1,x_2,ldots,x_n)=sqrt{n+1},text{d}lambda_n(x_1,x_2,ldots,x_n)$$
          for all $(x_0,x_1,x_2,ldots,x_n)inDelta^n$ (this can be proven using the Jacobian determinant). In particular, if $fequiv 1$ so that $Fequiv 1$, then we get
          $$text{vol}_nleft(Delta^nright)=sqrt{n+1},text{vol}_nleft(Sigma^nright)=frac{sqrt{n+1}}{n!},,$$
          where $text{vol}_n$ is the $n$-dimensional volume.



          To clarify some points, first note that there exists an isometry from the affine hyperplane $$H^n:=big{(x_0,x_1,x_2,ldots,x_n)inmathbb{R}^{n+1},big|,x_0+x_1+x_2+ldots+x_n=1big}$$
          to $mathbb{R}^n$. We can take the isometry to be the unique affine map $varphi:H^ntomathbb{R}^{n}$ which sends $e_0,e_1,e_2,ldots,e_ninmathbb{R}^{n+1}$ to $$0,E_1+alpha_n, E,E_2+alpha_n, E,ldots,E_n+alpha_n, Einmathbb{R}^n,,$$ respectively, where $e_0,e_1,e_2,ldots,e_n$ are standard basis vectors of $mathbb{R}^{n+1}$, $E_1,E_2,ldots,E_n$ are standard basis vectors of $mathbb{R}^n$, $E:=E_1+E_2+ldots+E_n$, and
          $$alpha_n:=frac{sqrt{n+1}-1}{n},.$$
          Write $E_0:=-alpha_n,E$. Let $T:mathbb{R}^ntomathbb{R}^n$ be the unique linear transformation that sends $$E_1,E_2,ldots,E_ntext{ to }E_1-E_0,E_2-E_0,ldots,E_n-E_0,,$$ respectively. Prove that $$det(T)=1+n,alpha_n=sqrt{n+1},.$$
          The volume measure $nu_n$ on $Delta^n$ is inherited from the volume measure on $H^n$, which is the pullback $varphi^*lambda_n$ of $lambda_n$. However, since $T$ maps the extreme points $0,E_1,E_2,ldots,E_n$ of $Sigma^n$ to the extreme points $0,E_1-E_0,E_2-E_0,ldots,E_n-E_0$ of $varphi(H^n)$, it is simpler to take the integral on $Sigma^n$, using the Change-of-Variables Theorem. That is,
          $$begin{align}text{d}nu_n(x_0,x_1,ldots,x_n)&=text{d}(varphi^*lambda_n)left(x_0,x_1,ldots,x_nright)\&=text{d}lambda_nbig(varphileft(x_0,x_1,ldots,x_nright)big)\
          &=text{d}lambda_nleft(x_1+alpha_n,sum_{i=1}^n,x_i,x_2+alpha_n,sum_{i=1}^n,x_i,ldots,x_n+alpha_n,sum_{i=1}^n,x_iright)
          \&=text{d}lambda_nbig(T(x_1,x_2,ldots,x_n)big)\&=text{d}(T^*lambda_n)(x_1,x_2,ldots,x_n)\&=det(T),text{d}lambda_n(x_1,x_2,ldots,x_n)\&=sqrt{n+1},text{d}lambda_n(x_1,x_2,ldots,x_n)end{align}$$

          for all $(x_0,x_1,ldots,x_n)inDelta^n$.






          share|cite|improve this answer



















          • 1




            What do you mean by "volume measure on $Delta^n$", and how does this strange square root $sqrt{n+1}$ come about? Name dropping does not suffice.
            – Christian Blatter
            Nov 13 at 17:03






          • 1




            @ChristianBlatter Here, I expanded my answer per your comment. I intentionally left the calculations to the OP. But I admit that the calculations are not straightforward at all. And I think your answer is good, so it should be undeleted, if you don't mind.
            – Batominovski
            Nov 13 at 19:56













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996301%2fhow-to-integrate-over-the-standard-n-simplex-directly-in-mathbbrn1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          3
          down vote



          accepted










          Let $Delta^nsubseteq mathbb{R}^{n+1}$ be the standard $n$-simplex: $$Delta^n:=big{(x_0,x_1,x_2,ldots,x_n)inmathbb{R}_{geq 0}^{n+1},big|,x_0+x_1+x_2+ldots+x_n=1big}.$$ An arbitrary function $f:Delta^nto mathbb{R}$ can be considered as a function in $n$ free variables. That is, there exists a unique function $F:Sigma^nto mathbb{R}$ such that
          $$f(x_0,x_1,x_2,ldots,x_n)=F(x_1,x_2,ldots,x_n)$$ for all $(x_0,x_1,x_2,ldots,x_n)inDelta^n$, where $$Sigma^n:=big{(x_1,x_2,ldots,x_n)subseteqmathbb{R}_{geq 0}^n,big|,x_1+x_2+ldots+x_nleq1big}subseteq mathbb{R}^n,.$$ In other words, $F$ is given by $$F(x_1,x_2,ldots,x_n):=fleft(1-x_1-x_2-ldots-x_n,x_1,x_2,ldots,x_nright),,$$ for all $(x_0,x_1,x_2,ldots,x_n)inDelta^n$. That is, if $nu_n$ is the volume measure on $Delta^n$ and $lambda_n$ is the Lebesgue measure on $mathbb{R}^n$, then
          $$int_{Delta^n},f,text{d}nu_n=sqrt{n+1},int_{Sigma^n},F,text{d}lambda_n,.$$
          This is because $$text{d}nu_n(x_0,x_1,x_2,ldots,x_n)=sqrt{n+1},text{d}lambda_n(x_1,x_2,ldots,x_n)$$
          for all $(x_0,x_1,x_2,ldots,x_n)inDelta^n$ (this can be proven using the Jacobian determinant). In particular, if $fequiv 1$ so that $Fequiv 1$, then we get
          $$text{vol}_nleft(Delta^nright)=sqrt{n+1},text{vol}_nleft(Sigma^nright)=frac{sqrt{n+1}}{n!},,$$
          where $text{vol}_n$ is the $n$-dimensional volume.



          To clarify some points, first note that there exists an isometry from the affine hyperplane $$H^n:=big{(x_0,x_1,x_2,ldots,x_n)inmathbb{R}^{n+1},big|,x_0+x_1+x_2+ldots+x_n=1big}$$
          to $mathbb{R}^n$. We can take the isometry to be the unique affine map $varphi:H^ntomathbb{R}^{n}$ which sends $e_0,e_1,e_2,ldots,e_ninmathbb{R}^{n+1}$ to $$0,E_1+alpha_n, E,E_2+alpha_n, E,ldots,E_n+alpha_n, Einmathbb{R}^n,,$$ respectively, where $e_0,e_1,e_2,ldots,e_n$ are standard basis vectors of $mathbb{R}^{n+1}$, $E_1,E_2,ldots,E_n$ are standard basis vectors of $mathbb{R}^n$, $E:=E_1+E_2+ldots+E_n$, and
          $$alpha_n:=frac{sqrt{n+1}-1}{n},.$$
          Write $E_0:=-alpha_n,E$. Let $T:mathbb{R}^ntomathbb{R}^n$ be the unique linear transformation that sends $$E_1,E_2,ldots,E_ntext{ to }E_1-E_0,E_2-E_0,ldots,E_n-E_0,,$$ respectively. Prove that $$det(T)=1+n,alpha_n=sqrt{n+1},.$$
          The volume measure $nu_n$ on $Delta^n$ is inherited from the volume measure on $H^n$, which is the pullback $varphi^*lambda_n$ of $lambda_n$. However, since $T$ maps the extreme points $0,E_1,E_2,ldots,E_n$ of $Sigma^n$ to the extreme points $0,E_1-E_0,E_2-E_0,ldots,E_n-E_0$ of $varphi(H^n)$, it is simpler to take the integral on $Sigma^n$, using the Change-of-Variables Theorem. That is,
          $$begin{align}text{d}nu_n(x_0,x_1,ldots,x_n)&=text{d}(varphi^*lambda_n)left(x_0,x_1,ldots,x_nright)\&=text{d}lambda_nbig(varphileft(x_0,x_1,ldots,x_nright)big)\
          &=text{d}lambda_nleft(x_1+alpha_n,sum_{i=1}^n,x_i,x_2+alpha_n,sum_{i=1}^n,x_i,ldots,x_n+alpha_n,sum_{i=1}^n,x_iright)
          \&=text{d}lambda_nbig(T(x_1,x_2,ldots,x_n)big)\&=text{d}(T^*lambda_n)(x_1,x_2,ldots,x_n)\&=det(T),text{d}lambda_n(x_1,x_2,ldots,x_n)\&=sqrt{n+1},text{d}lambda_n(x_1,x_2,ldots,x_n)end{align}$$

          for all $(x_0,x_1,ldots,x_n)inDelta^n$.






          share|cite|improve this answer



















          • 1




            What do you mean by "volume measure on $Delta^n$", and how does this strange square root $sqrt{n+1}$ come about? Name dropping does not suffice.
            – Christian Blatter
            Nov 13 at 17:03






          • 1




            @ChristianBlatter Here, I expanded my answer per your comment. I intentionally left the calculations to the OP. But I admit that the calculations are not straightforward at all. And I think your answer is good, so it should be undeleted, if you don't mind.
            – Batominovski
            Nov 13 at 19:56

















          up vote
          3
          down vote



          accepted










          Let $Delta^nsubseteq mathbb{R}^{n+1}$ be the standard $n$-simplex: $$Delta^n:=big{(x_0,x_1,x_2,ldots,x_n)inmathbb{R}_{geq 0}^{n+1},big|,x_0+x_1+x_2+ldots+x_n=1big}.$$ An arbitrary function $f:Delta^nto mathbb{R}$ can be considered as a function in $n$ free variables. That is, there exists a unique function $F:Sigma^nto mathbb{R}$ such that
          $$f(x_0,x_1,x_2,ldots,x_n)=F(x_1,x_2,ldots,x_n)$$ for all $(x_0,x_1,x_2,ldots,x_n)inDelta^n$, where $$Sigma^n:=big{(x_1,x_2,ldots,x_n)subseteqmathbb{R}_{geq 0}^n,big|,x_1+x_2+ldots+x_nleq1big}subseteq mathbb{R}^n,.$$ In other words, $F$ is given by $$F(x_1,x_2,ldots,x_n):=fleft(1-x_1-x_2-ldots-x_n,x_1,x_2,ldots,x_nright),,$$ for all $(x_0,x_1,x_2,ldots,x_n)inDelta^n$. That is, if $nu_n$ is the volume measure on $Delta^n$ and $lambda_n$ is the Lebesgue measure on $mathbb{R}^n$, then
          $$int_{Delta^n},f,text{d}nu_n=sqrt{n+1},int_{Sigma^n},F,text{d}lambda_n,.$$
          This is because $$text{d}nu_n(x_0,x_1,x_2,ldots,x_n)=sqrt{n+1},text{d}lambda_n(x_1,x_2,ldots,x_n)$$
          for all $(x_0,x_1,x_2,ldots,x_n)inDelta^n$ (this can be proven using the Jacobian determinant). In particular, if $fequiv 1$ so that $Fequiv 1$, then we get
          $$text{vol}_nleft(Delta^nright)=sqrt{n+1},text{vol}_nleft(Sigma^nright)=frac{sqrt{n+1}}{n!},,$$
          where $text{vol}_n$ is the $n$-dimensional volume.



          To clarify some points, first note that there exists an isometry from the affine hyperplane $$H^n:=big{(x_0,x_1,x_2,ldots,x_n)inmathbb{R}^{n+1},big|,x_0+x_1+x_2+ldots+x_n=1big}$$
          to $mathbb{R}^n$. We can take the isometry to be the unique affine map $varphi:H^ntomathbb{R}^{n}$ which sends $e_0,e_1,e_2,ldots,e_ninmathbb{R}^{n+1}$ to $$0,E_1+alpha_n, E,E_2+alpha_n, E,ldots,E_n+alpha_n, Einmathbb{R}^n,,$$ respectively, where $e_0,e_1,e_2,ldots,e_n$ are standard basis vectors of $mathbb{R}^{n+1}$, $E_1,E_2,ldots,E_n$ are standard basis vectors of $mathbb{R}^n$, $E:=E_1+E_2+ldots+E_n$, and
          $$alpha_n:=frac{sqrt{n+1}-1}{n},.$$
          Write $E_0:=-alpha_n,E$. Let $T:mathbb{R}^ntomathbb{R}^n$ be the unique linear transformation that sends $$E_1,E_2,ldots,E_ntext{ to }E_1-E_0,E_2-E_0,ldots,E_n-E_0,,$$ respectively. Prove that $$det(T)=1+n,alpha_n=sqrt{n+1},.$$
          The volume measure $nu_n$ on $Delta^n$ is inherited from the volume measure on $H^n$, which is the pullback $varphi^*lambda_n$ of $lambda_n$. However, since $T$ maps the extreme points $0,E_1,E_2,ldots,E_n$ of $Sigma^n$ to the extreme points $0,E_1-E_0,E_2-E_0,ldots,E_n-E_0$ of $varphi(H^n)$, it is simpler to take the integral on $Sigma^n$, using the Change-of-Variables Theorem. That is,
          $$begin{align}text{d}nu_n(x_0,x_1,ldots,x_n)&=text{d}(varphi^*lambda_n)left(x_0,x_1,ldots,x_nright)\&=text{d}lambda_nbig(varphileft(x_0,x_1,ldots,x_nright)big)\
          &=text{d}lambda_nleft(x_1+alpha_n,sum_{i=1}^n,x_i,x_2+alpha_n,sum_{i=1}^n,x_i,ldots,x_n+alpha_n,sum_{i=1}^n,x_iright)
          \&=text{d}lambda_nbig(T(x_1,x_2,ldots,x_n)big)\&=text{d}(T^*lambda_n)(x_1,x_2,ldots,x_n)\&=det(T),text{d}lambda_n(x_1,x_2,ldots,x_n)\&=sqrt{n+1},text{d}lambda_n(x_1,x_2,ldots,x_n)end{align}$$

          for all $(x_0,x_1,ldots,x_n)inDelta^n$.






          share|cite|improve this answer



















          • 1




            What do you mean by "volume measure on $Delta^n$", and how does this strange square root $sqrt{n+1}$ come about? Name dropping does not suffice.
            – Christian Blatter
            Nov 13 at 17:03






          • 1




            @ChristianBlatter Here, I expanded my answer per your comment. I intentionally left the calculations to the OP. But I admit that the calculations are not straightforward at all. And I think your answer is good, so it should be undeleted, if you don't mind.
            – Batominovski
            Nov 13 at 19:56















          up vote
          3
          down vote



          accepted







          up vote
          3
          down vote



          accepted






          Let $Delta^nsubseteq mathbb{R}^{n+1}$ be the standard $n$-simplex: $$Delta^n:=big{(x_0,x_1,x_2,ldots,x_n)inmathbb{R}_{geq 0}^{n+1},big|,x_0+x_1+x_2+ldots+x_n=1big}.$$ An arbitrary function $f:Delta^nto mathbb{R}$ can be considered as a function in $n$ free variables. That is, there exists a unique function $F:Sigma^nto mathbb{R}$ such that
          $$f(x_0,x_1,x_2,ldots,x_n)=F(x_1,x_2,ldots,x_n)$$ for all $(x_0,x_1,x_2,ldots,x_n)inDelta^n$, where $$Sigma^n:=big{(x_1,x_2,ldots,x_n)subseteqmathbb{R}_{geq 0}^n,big|,x_1+x_2+ldots+x_nleq1big}subseteq mathbb{R}^n,.$$ In other words, $F$ is given by $$F(x_1,x_2,ldots,x_n):=fleft(1-x_1-x_2-ldots-x_n,x_1,x_2,ldots,x_nright),,$$ for all $(x_0,x_1,x_2,ldots,x_n)inDelta^n$. That is, if $nu_n$ is the volume measure on $Delta^n$ and $lambda_n$ is the Lebesgue measure on $mathbb{R}^n$, then
          $$int_{Delta^n},f,text{d}nu_n=sqrt{n+1},int_{Sigma^n},F,text{d}lambda_n,.$$
          This is because $$text{d}nu_n(x_0,x_1,x_2,ldots,x_n)=sqrt{n+1},text{d}lambda_n(x_1,x_2,ldots,x_n)$$
          for all $(x_0,x_1,x_2,ldots,x_n)inDelta^n$ (this can be proven using the Jacobian determinant). In particular, if $fequiv 1$ so that $Fequiv 1$, then we get
          $$text{vol}_nleft(Delta^nright)=sqrt{n+1},text{vol}_nleft(Sigma^nright)=frac{sqrt{n+1}}{n!},,$$
          where $text{vol}_n$ is the $n$-dimensional volume.



          To clarify some points, first note that there exists an isometry from the affine hyperplane $$H^n:=big{(x_0,x_1,x_2,ldots,x_n)inmathbb{R}^{n+1},big|,x_0+x_1+x_2+ldots+x_n=1big}$$
          to $mathbb{R}^n$. We can take the isometry to be the unique affine map $varphi:H^ntomathbb{R}^{n}$ which sends $e_0,e_1,e_2,ldots,e_ninmathbb{R}^{n+1}$ to $$0,E_1+alpha_n, E,E_2+alpha_n, E,ldots,E_n+alpha_n, Einmathbb{R}^n,,$$ respectively, where $e_0,e_1,e_2,ldots,e_n$ are standard basis vectors of $mathbb{R}^{n+1}$, $E_1,E_2,ldots,E_n$ are standard basis vectors of $mathbb{R}^n$, $E:=E_1+E_2+ldots+E_n$, and
          $$alpha_n:=frac{sqrt{n+1}-1}{n},.$$
          Write $E_0:=-alpha_n,E$. Let $T:mathbb{R}^ntomathbb{R}^n$ be the unique linear transformation that sends $$E_1,E_2,ldots,E_ntext{ to }E_1-E_0,E_2-E_0,ldots,E_n-E_0,,$$ respectively. Prove that $$det(T)=1+n,alpha_n=sqrt{n+1},.$$
          The volume measure $nu_n$ on $Delta^n$ is inherited from the volume measure on $H^n$, which is the pullback $varphi^*lambda_n$ of $lambda_n$. However, since $T$ maps the extreme points $0,E_1,E_2,ldots,E_n$ of $Sigma^n$ to the extreme points $0,E_1-E_0,E_2-E_0,ldots,E_n-E_0$ of $varphi(H^n)$, it is simpler to take the integral on $Sigma^n$, using the Change-of-Variables Theorem. That is,
          $$begin{align}text{d}nu_n(x_0,x_1,ldots,x_n)&=text{d}(varphi^*lambda_n)left(x_0,x_1,ldots,x_nright)\&=text{d}lambda_nbig(varphileft(x_0,x_1,ldots,x_nright)big)\
          &=text{d}lambda_nleft(x_1+alpha_n,sum_{i=1}^n,x_i,x_2+alpha_n,sum_{i=1}^n,x_i,ldots,x_n+alpha_n,sum_{i=1}^n,x_iright)
          \&=text{d}lambda_nbig(T(x_1,x_2,ldots,x_n)big)\&=text{d}(T^*lambda_n)(x_1,x_2,ldots,x_n)\&=det(T),text{d}lambda_n(x_1,x_2,ldots,x_n)\&=sqrt{n+1},text{d}lambda_n(x_1,x_2,ldots,x_n)end{align}$$

          for all $(x_0,x_1,ldots,x_n)inDelta^n$.






          share|cite|improve this answer














          Let $Delta^nsubseteq mathbb{R}^{n+1}$ be the standard $n$-simplex: $$Delta^n:=big{(x_0,x_1,x_2,ldots,x_n)inmathbb{R}_{geq 0}^{n+1},big|,x_0+x_1+x_2+ldots+x_n=1big}.$$ An arbitrary function $f:Delta^nto mathbb{R}$ can be considered as a function in $n$ free variables. That is, there exists a unique function $F:Sigma^nto mathbb{R}$ such that
          $$f(x_0,x_1,x_2,ldots,x_n)=F(x_1,x_2,ldots,x_n)$$ for all $(x_0,x_1,x_2,ldots,x_n)inDelta^n$, where $$Sigma^n:=big{(x_1,x_2,ldots,x_n)subseteqmathbb{R}_{geq 0}^n,big|,x_1+x_2+ldots+x_nleq1big}subseteq mathbb{R}^n,.$$ In other words, $F$ is given by $$F(x_1,x_2,ldots,x_n):=fleft(1-x_1-x_2-ldots-x_n,x_1,x_2,ldots,x_nright),,$$ for all $(x_0,x_1,x_2,ldots,x_n)inDelta^n$. That is, if $nu_n$ is the volume measure on $Delta^n$ and $lambda_n$ is the Lebesgue measure on $mathbb{R}^n$, then
          $$int_{Delta^n},f,text{d}nu_n=sqrt{n+1},int_{Sigma^n},F,text{d}lambda_n,.$$
          This is because $$text{d}nu_n(x_0,x_1,x_2,ldots,x_n)=sqrt{n+1},text{d}lambda_n(x_1,x_2,ldots,x_n)$$
          for all $(x_0,x_1,x_2,ldots,x_n)inDelta^n$ (this can be proven using the Jacobian determinant). In particular, if $fequiv 1$ so that $Fequiv 1$, then we get
          $$text{vol}_nleft(Delta^nright)=sqrt{n+1},text{vol}_nleft(Sigma^nright)=frac{sqrt{n+1}}{n!},,$$
          where $text{vol}_n$ is the $n$-dimensional volume.



          To clarify some points, first note that there exists an isometry from the affine hyperplane $$H^n:=big{(x_0,x_1,x_2,ldots,x_n)inmathbb{R}^{n+1},big|,x_0+x_1+x_2+ldots+x_n=1big}$$
          to $mathbb{R}^n$. We can take the isometry to be the unique affine map $varphi:H^ntomathbb{R}^{n}$ which sends $e_0,e_1,e_2,ldots,e_ninmathbb{R}^{n+1}$ to $$0,E_1+alpha_n, E,E_2+alpha_n, E,ldots,E_n+alpha_n, Einmathbb{R}^n,,$$ respectively, where $e_0,e_1,e_2,ldots,e_n$ are standard basis vectors of $mathbb{R}^{n+1}$, $E_1,E_2,ldots,E_n$ are standard basis vectors of $mathbb{R}^n$, $E:=E_1+E_2+ldots+E_n$, and
          $$alpha_n:=frac{sqrt{n+1}-1}{n},.$$
          Write $E_0:=-alpha_n,E$. Let $T:mathbb{R}^ntomathbb{R}^n$ be the unique linear transformation that sends $$E_1,E_2,ldots,E_ntext{ to }E_1-E_0,E_2-E_0,ldots,E_n-E_0,,$$ respectively. Prove that $$det(T)=1+n,alpha_n=sqrt{n+1},.$$
          The volume measure $nu_n$ on $Delta^n$ is inherited from the volume measure on $H^n$, which is the pullback $varphi^*lambda_n$ of $lambda_n$. However, since $T$ maps the extreme points $0,E_1,E_2,ldots,E_n$ of $Sigma^n$ to the extreme points $0,E_1-E_0,E_2-E_0,ldots,E_n-E_0$ of $varphi(H^n)$, it is simpler to take the integral on $Sigma^n$, using the Change-of-Variables Theorem. That is,
          $$begin{align}text{d}nu_n(x_0,x_1,ldots,x_n)&=text{d}(varphi^*lambda_n)left(x_0,x_1,ldots,x_nright)\&=text{d}lambda_nbig(varphileft(x_0,x_1,ldots,x_nright)big)\
          &=text{d}lambda_nleft(x_1+alpha_n,sum_{i=1}^n,x_i,x_2+alpha_n,sum_{i=1}^n,x_i,ldots,x_n+alpha_n,sum_{i=1}^n,x_iright)
          \&=text{d}lambda_nbig(T(x_1,x_2,ldots,x_n)big)\&=text{d}(T^*lambda_n)(x_1,x_2,ldots,x_n)\&=det(T),text{d}lambda_n(x_1,x_2,ldots,x_n)\&=sqrt{n+1},text{d}lambda_n(x_1,x_2,ldots,x_n)end{align}$$

          for all $(x_0,x_1,ldots,x_n)inDelta^n$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 2 days ago

























          answered Nov 13 at 9:32









          Batominovski

          30.8k23187




          30.8k23187








          • 1




            What do you mean by "volume measure on $Delta^n$", and how does this strange square root $sqrt{n+1}$ come about? Name dropping does not suffice.
            – Christian Blatter
            Nov 13 at 17:03






          • 1




            @ChristianBlatter Here, I expanded my answer per your comment. I intentionally left the calculations to the OP. But I admit that the calculations are not straightforward at all. And I think your answer is good, so it should be undeleted, if you don't mind.
            – Batominovski
            Nov 13 at 19:56
















          • 1




            What do you mean by "volume measure on $Delta^n$", and how does this strange square root $sqrt{n+1}$ come about? Name dropping does not suffice.
            – Christian Blatter
            Nov 13 at 17:03






          • 1




            @ChristianBlatter Here, I expanded my answer per your comment. I intentionally left the calculations to the OP. But I admit that the calculations are not straightforward at all. And I think your answer is good, so it should be undeleted, if you don't mind.
            – Batominovski
            Nov 13 at 19:56










          1




          1




          What do you mean by "volume measure on $Delta^n$", and how does this strange square root $sqrt{n+1}$ come about? Name dropping does not suffice.
          – Christian Blatter
          Nov 13 at 17:03




          What do you mean by "volume measure on $Delta^n$", and how does this strange square root $sqrt{n+1}$ come about? Name dropping does not suffice.
          – Christian Blatter
          Nov 13 at 17:03




          1




          1




          @ChristianBlatter Here, I expanded my answer per your comment. I intentionally left the calculations to the OP. But I admit that the calculations are not straightforward at all. And I think your answer is good, so it should be undeleted, if you don't mind.
          – Batominovski
          Nov 13 at 19:56






          @ChristianBlatter Here, I expanded my answer per your comment. I intentionally left the calculations to the OP. But I admit that the calculations are not straightforward at all. And I think your answer is good, so it should be undeleted, if you don't mind.
          – Batominovski
          Nov 13 at 19:56




















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996301%2fhow-to-integrate-over-the-standard-n-simplex-directly-in-mathbbrn1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How do I know what Microsoft account the skydrive app is syncing to?

          When does type information flow backwards in C++?

          Grease: Live!