How to find $lim_{ntoinfty}(pa_n + qb_n)^n$ with $p + q = 1$?











up vote
5
down vote

favorite
2













Suppose $a_n$ and $b_n$ are sequences of positive numbers, such that
$$
lim_{ntoinfty}a_n^n = a,quad lim_{ntoinfty}b_n^n = b,qquad a,bin (0, infty).
$$


Find limit
$$
lim_{ntoinfty}(pa_n + qb_n)^n,
$$

where $p, q$ are nonnegative numbers such that $p + q = 1$.











share|cite|improve this question
























  • When $a>b$, consider $$(pa_n + qb_n)^n=a^nleft(p+qcdot frac{b_n}{a_n}right)^n.$$
    – user587192
    yesterday










  • Very similar: math.stackexchange.com/q/2995279/587192
    – user587192
    yesterday















up vote
5
down vote

favorite
2













Suppose $a_n$ and $b_n$ are sequences of positive numbers, such that
$$
lim_{ntoinfty}a_n^n = a,quad lim_{ntoinfty}b_n^n = b,qquad a,bin (0, infty).
$$


Find limit
$$
lim_{ntoinfty}(pa_n + qb_n)^n,
$$

where $p, q$ are nonnegative numbers such that $p + q = 1$.











share|cite|improve this question
























  • When $a>b$, consider $$(pa_n + qb_n)^n=a^nleft(p+qcdot frac{b_n}{a_n}right)^n.$$
    – user587192
    yesterday










  • Very similar: math.stackexchange.com/q/2995279/587192
    – user587192
    yesterday













up vote
5
down vote

favorite
2









up vote
5
down vote

favorite
2






2






Suppose $a_n$ and $b_n$ are sequences of positive numbers, such that
$$
lim_{ntoinfty}a_n^n = a,quad lim_{ntoinfty}b_n^n = b,qquad a,bin (0, infty).
$$


Find limit
$$
lim_{ntoinfty}(pa_n + qb_n)^n,
$$

where $p, q$ are nonnegative numbers such that $p + q = 1$.











share|cite|improve this question
















Suppose $a_n$ and $b_n$ are sequences of positive numbers, such that
$$
lim_{ntoinfty}a_n^n = a,quad lim_{ntoinfty}b_n^n = b,qquad a,bin (0, infty).
$$


Find limit
$$
lim_{ntoinfty}(pa_n + qb_n)^n,
$$

where $p, q$ are nonnegative numbers such that $p + q = 1$.








calculus sequences-and-series limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









user587192

1,01310




1,01310










asked yesterday









J. Abraham

464313




464313












  • When $a>b$, consider $$(pa_n + qb_n)^n=a^nleft(p+qcdot frac{b_n}{a_n}right)^n.$$
    – user587192
    yesterday










  • Very similar: math.stackexchange.com/q/2995279/587192
    – user587192
    yesterday


















  • When $a>b$, consider $$(pa_n + qb_n)^n=a^nleft(p+qcdot frac{b_n}{a_n}right)^n.$$
    – user587192
    yesterday










  • Very similar: math.stackexchange.com/q/2995279/587192
    – user587192
    yesterday
















When $a>b$, consider $$(pa_n + qb_n)^n=a^nleft(p+qcdot frac{b_n}{a_n}right)^n.$$
– user587192
yesterday




When $a>b$, consider $$(pa_n + qb_n)^n=a^nleft(p+qcdot frac{b_n}{a_n}right)^n.$$
– user587192
yesterday












Very similar: math.stackexchange.com/q/2995279/587192
– user587192
yesterday




Very similar: math.stackexchange.com/q/2995279/587192
– user587192
yesterday










2 Answers
2






active

oldest

votes

















up vote
2
down vote













Write $a_n^n = e^{alpha_n}$ and $b_n^n = e^{beta_n}$. Then $alpha_n to log a$ , $beta_n to log b$ and



$$ a_n = 1 + frac{alpha_n}{n} + mathcal{O}left(frac{1}{n^2}right), qquad b_n = 1 + frac{beta_n}{n} + mathcal{O}left(frac{1}{n^2}right). $$



Therefore



$$ (p a_n + q b_n)^n = left( 1 + frac{p alpha_n + q beta_n}{n} + mathcal{O}left(frac{1}{n^2}right) right)^n xrightarrow[ntoinfty]{} e^{p log a + q log b} = a^p b^q. $$






share|cite|improve this answer





















  • How did you derive a formula for $a_n$ and $b_n$? Is there a way to do this, without asymptotics?
    – user4201961
    21 hours ago












  • @user4201961: this is nothing but Taylor series for $e^x$. Just note that $a_n=e^{alpha_n/n} $.
    – Paramanand Singh
    17 hours ago


















up vote
1
down vote













We use the following lemmas:




Lemma 1: Let ${a_n} $ be a sequence such that $a_nto a>0$. Then $n(a_n^{1/n}-1)tolog a$ (prove it).



Lemma 2 : Let ${a_n} $ be a sequence such that $n(a_n-1)to 0$. Then $a_n^nto 1$.




Consider the sequence ${x_n} $ defined by $$x_n=frac{pa_n+qb_n} {a_n^pb_n^q} $$ and then we have $$n(x_n-1)=frac{n((a_n^{np}
b_n^{nq}) ^{1/n}-1)-pn((a_n^n)^{1/n}-1)-qn((b_n^n)^{1/n}-1)}{a_n^pb_n^q}$$
By lemma $1$ numerator of the above expression tends to $$log(a^pb^q) - plog a-qlog b=0$$ and since $a_nto 1,b_nto 1$ (prove this) the denominator tends to $1$ so that $n(x_n-1)to 0$. Thus by lemma 2 the sequence $x_n^nto 1$ and thus the desired limit is equal to $a^pb^q$.





Alternatively we can use lemma 1 and the following




Lemma 3: Let ${a_n} $ be a sequence such that $a_nto a$ then $$left(1+frac{a_n}{n}right)^nto e^a$$




We can write $$pa_n+qb_n=1+frac{x_n}{n}$$ where $$x_n=pn((a_n^{n})^{1/n}-1)+qn((b_n^{n})^{1/n}-1)$$ and by lemma 1 $$x_nto plog a+qlog b=log(a^pb^q) $$ and therefore by lemma 3 we have $$(pa_n+qb_n)^n=left(1+frac{x_n}{n}right)^nto exp(log(a^pb^q)) =a^pb^q$$






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996088%2fhow-to-find-lim-n-to-inftypa-n-qb-nn-with-p-q-1%23new-answer', 'question_page');
    }
    );

    Post as a guest
































    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote













    Write $a_n^n = e^{alpha_n}$ and $b_n^n = e^{beta_n}$. Then $alpha_n to log a$ , $beta_n to log b$ and



    $$ a_n = 1 + frac{alpha_n}{n} + mathcal{O}left(frac{1}{n^2}right), qquad b_n = 1 + frac{beta_n}{n} + mathcal{O}left(frac{1}{n^2}right). $$



    Therefore



    $$ (p a_n + q b_n)^n = left( 1 + frac{p alpha_n + q beta_n}{n} + mathcal{O}left(frac{1}{n^2}right) right)^n xrightarrow[ntoinfty]{} e^{p log a + q log b} = a^p b^q. $$






    share|cite|improve this answer





















    • How did you derive a formula for $a_n$ and $b_n$? Is there a way to do this, without asymptotics?
      – user4201961
      21 hours ago












    • @user4201961: this is nothing but Taylor series for $e^x$. Just note that $a_n=e^{alpha_n/n} $.
      – Paramanand Singh
      17 hours ago















    up vote
    2
    down vote













    Write $a_n^n = e^{alpha_n}$ and $b_n^n = e^{beta_n}$. Then $alpha_n to log a$ , $beta_n to log b$ and



    $$ a_n = 1 + frac{alpha_n}{n} + mathcal{O}left(frac{1}{n^2}right), qquad b_n = 1 + frac{beta_n}{n} + mathcal{O}left(frac{1}{n^2}right). $$



    Therefore



    $$ (p a_n + q b_n)^n = left( 1 + frac{p alpha_n + q beta_n}{n} + mathcal{O}left(frac{1}{n^2}right) right)^n xrightarrow[ntoinfty]{} e^{p log a + q log b} = a^p b^q. $$






    share|cite|improve this answer





















    • How did you derive a formula for $a_n$ and $b_n$? Is there a way to do this, without asymptotics?
      – user4201961
      21 hours ago












    • @user4201961: this is nothing but Taylor series for $e^x$. Just note that $a_n=e^{alpha_n/n} $.
      – Paramanand Singh
      17 hours ago













    up vote
    2
    down vote










    up vote
    2
    down vote









    Write $a_n^n = e^{alpha_n}$ and $b_n^n = e^{beta_n}$. Then $alpha_n to log a$ , $beta_n to log b$ and



    $$ a_n = 1 + frac{alpha_n}{n} + mathcal{O}left(frac{1}{n^2}right), qquad b_n = 1 + frac{beta_n}{n} + mathcal{O}left(frac{1}{n^2}right). $$



    Therefore



    $$ (p a_n + q b_n)^n = left( 1 + frac{p alpha_n + q beta_n}{n} + mathcal{O}left(frac{1}{n^2}right) right)^n xrightarrow[ntoinfty]{} e^{p log a + q log b} = a^p b^q. $$






    share|cite|improve this answer












    Write $a_n^n = e^{alpha_n}$ and $b_n^n = e^{beta_n}$. Then $alpha_n to log a$ , $beta_n to log b$ and



    $$ a_n = 1 + frac{alpha_n}{n} + mathcal{O}left(frac{1}{n^2}right), qquad b_n = 1 + frac{beta_n}{n} + mathcal{O}left(frac{1}{n^2}right). $$



    Therefore



    $$ (p a_n + q b_n)^n = left( 1 + frac{p alpha_n + q beta_n}{n} + mathcal{O}left(frac{1}{n^2}right) right)^n xrightarrow[ntoinfty]{} e^{p log a + q log b} = a^p b^q. $$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered yesterday









    Sangchul Lee

    89.2k12161261




    89.2k12161261












    • How did you derive a formula for $a_n$ and $b_n$? Is there a way to do this, without asymptotics?
      – user4201961
      21 hours ago












    • @user4201961: this is nothing but Taylor series for $e^x$. Just note that $a_n=e^{alpha_n/n} $.
      – Paramanand Singh
      17 hours ago


















    • How did you derive a formula for $a_n$ and $b_n$? Is there a way to do this, without asymptotics?
      – user4201961
      21 hours ago












    • @user4201961: this is nothing but Taylor series for $e^x$. Just note that $a_n=e^{alpha_n/n} $.
      – Paramanand Singh
      17 hours ago
















    How did you derive a formula for $a_n$ and $b_n$? Is there a way to do this, without asymptotics?
    – user4201961
    21 hours ago






    How did you derive a formula for $a_n$ and $b_n$? Is there a way to do this, without asymptotics?
    – user4201961
    21 hours ago














    @user4201961: this is nothing but Taylor series for $e^x$. Just note that $a_n=e^{alpha_n/n} $.
    – Paramanand Singh
    17 hours ago




    @user4201961: this is nothing but Taylor series for $e^x$. Just note that $a_n=e^{alpha_n/n} $.
    – Paramanand Singh
    17 hours ago










    up vote
    1
    down vote













    We use the following lemmas:




    Lemma 1: Let ${a_n} $ be a sequence such that $a_nto a>0$. Then $n(a_n^{1/n}-1)tolog a$ (prove it).



    Lemma 2 : Let ${a_n} $ be a sequence such that $n(a_n-1)to 0$. Then $a_n^nto 1$.




    Consider the sequence ${x_n} $ defined by $$x_n=frac{pa_n+qb_n} {a_n^pb_n^q} $$ and then we have $$n(x_n-1)=frac{n((a_n^{np}
    b_n^{nq}) ^{1/n}-1)-pn((a_n^n)^{1/n}-1)-qn((b_n^n)^{1/n}-1)}{a_n^pb_n^q}$$
    By lemma $1$ numerator of the above expression tends to $$log(a^pb^q) - plog a-qlog b=0$$ and since $a_nto 1,b_nto 1$ (prove this) the denominator tends to $1$ so that $n(x_n-1)to 0$. Thus by lemma 2 the sequence $x_n^nto 1$ and thus the desired limit is equal to $a^pb^q$.





    Alternatively we can use lemma 1 and the following




    Lemma 3: Let ${a_n} $ be a sequence such that $a_nto a$ then $$left(1+frac{a_n}{n}right)^nto e^a$$




    We can write $$pa_n+qb_n=1+frac{x_n}{n}$$ where $$x_n=pn((a_n^{n})^{1/n}-1)+qn((b_n^{n})^{1/n}-1)$$ and by lemma 1 $$x_nto plog a+qlog b=log(a^pb^q) $$ and therefore by lemma 3 we have $$(pa_n+qb_n)^n=left(1+frac{x_n}{n}right)^nto exp(log(a^pb^q)) =a^pb^q$$






    share|cite|improve this answer



























      up vote
      1
      down vote













      We use the following lemmas:




      Lemma 1: Let ${a_n} $ be a sequence such that $a_nto a>0$. Then $n(a_n^{1/n}-1)tolog a$ (prove it).



      Lemma 2 : Let ${a_n} $ be a sequence such that $n(a_n-1)to 0$. Then $a_n^nto 1$.




      Consider the sequence ${x_n} $ defined by $$x_n=frac{pa_n+qb_n} {a_n^pb_n^q} $$ and then we have $$n(x_n-1)=frac{n((a_n^{np}
      b_n^{nq}) ^{1/n}-1)-pn((a_n^n)^{1/n}-1)-qn((b_n^n)^{1/n}-1)}{a_n^pb_n^q}$$
      By lemma $1$ numerator of the above expression tends to $$log(a^pb^q) - plog a-qlog b=0$$ and since $a_nto 1,b_nto 1$ (prove this) the denominator tends to $1$ so that $n(x_n-1)to 0$. Thus by lemma 2 the sequence $x_n^nto 1$ and thus the desired limit is equal to $a^pb^q$.





      Alternatively we can use lemma 1 and the following




      Lemma 3: Let ${a_n} $ be a sequence such that $a_nto a$ then $$left(1+frac{a_n}{n}right)^nto e^a$$




      We can write $$pa_n+qb_n=1+frac{x_n}{n}$$ where $$x_n=pn((a_n^{n})^{1/n}-1)+qn((b_n^{n})^{1/n}-1)$$ and by lemma 1 $$x_nto plog a+qlog b=log(a^pb^q) $$ and therefore by lemma 3 we have $$(pa_n+qb_n)^n=left(1+frac{x_n}{n}right)^nto exp(log(a^pb^q)) =a^pb^q$$






      share|cite|improve this answer

























        up vote
        1
        down vote










        up vote
        1
        down vote









        We use the following lemmas:




        Lemma 1: Let ${a_n} $ be a sequence such that $a_nto a>0$. Then $n(a_n^{1/n}-1)tolog a$ (prove it).



        Lemma 2 : Let ${a_n} $ be a sequence such that $n(a_n-1)to 0$. Then $a_n^nto 1$.




        Consider the sequence ${x_n} $ defined by $$x_n=frac{pa_n+qb_n} {a_n^pb_n^q} $$ and then we have $$n(x_n-1)=frac{n((a_n^{np}
        b_n^{nq}) ^{1/n}-1)-pn((a_n^n)^{1/n}-1)-qn((b_n^n)^{1/n}-1)}{a_n^pb_n^q}$$
        By lemma $1$ numerator of the above expression tends to $$log(a^pb^q) - plog a-qlog b=0$$ and since $a_nto 1,b_nto 1$ (prove this) the denominator tends to $1$ so that $n(x_n-1)to 0$. Thus by lemma 2 the sequence $x_n^nto 1$ and thus the desired limit is equal to $a^pb^q$.





        Alternatively we can use lemma 1 and the following




        Lemma 3: Let ${a_n} $ be a sequence such that $a_nto a$ then $$left(1+frac{a_n}{n}right)^nto e^a$$




        We can write $$pa_n+qb_n=1+frac{x_n}{n}$$ where $$x_n=pn((a_n^{n})^{1/n}-1)+qn((b_n^{n})^{1/n}-1)$$ and by lemma 1 $$x_nto plog a+qlog b=log(a^pb^q) $$ and therefore by lemma 3 we have $$(pa_n+qb_n)^n=left(1+frac{x_n}{n}right)^nto exp(log(a^pb^q)) =a^pb^q$$






        share|cite|improve this answer














        We use the following lemmas:




        Lemma 1: Let ${a_n} $ be a sequence such that $a_nto a>0$. Then $n(a_n^{1/n}-1)tolog a$ (prove it).



        Lemma 2 : Let ${a_n} $ be a sequence such that $n(a_n-1)to 0$. Then $a_n^nto 1$.




        Consider the sequence ${x_n} $ defined by $$x_n=frac{pa_n+qb_n} {a_n^pb_n^q} $$ and then we have $$n(x_n-1)=frac{n((a_n^{np}
        b_n^{nq}) ^{1/n}-1)-pn((a_n^n)^{1/n}-1)-qn((b_n^n)^{1/n}-1)}{a_n^pb_n^q}$$
        By lemma $1$ numerator of the above expression tends to $$log(a^pb^q) - plog a-qlog b=0$$ and since $a_nto 1,b_nto 1$ (prove this) the denominator tends to $1$ so that $n(x_n-1)to 0$. Thus by lemma 2 the sequence $x_n^nto 1$ and thus the desired limit is equal to $a^pb^q$.





        Alternatively we can use lemma 1 and the following




        Lemma 3: Let ${a_n} $ be a sequence such that $a_nto a$ then $$left(1+frac{a_n}{n}right)^nto e^a$$




        We can write $$pa_n+qb_n=1+frac{x_n}{n}$$ where $$x_n=pn((a_n^{n})^{1/n}-1)+qn((b_n^{n})^{1/n}-1)$$ and by lemma 1 $$x_nto plog a+qlog b=log(a^pb^q) $$ and therefore by lemma 3 we have $$(pa_n+qb_n)^n=left(1+frac{x_n}{n}right)^nto exp(log(a^pb^q)) =a^pb^q$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 16 hours ago

























        answered yesterday









        Paramanand Singh

        47.8k555152




        47.8k555152






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996088%2fhow-to-find-lim-n-to-inftypa-n-qb-nn-with-p-q-1%23new-answer', 'question_page');
            }
            );

            Post as a guest




















































































            Popular posts from this blog

            Probability when a professor distributes a quiz and homework assignment to a class of n students.

            Aardman Animations

            Are they similar matrix