How to find $E(|X+Y|^3)$?











up vote
0
down vote

favorite












Supposed that $X,Y$ are
independent random variables, and $Xsim N(mu,sigma^2),Ysim N(-mu,sigma^2)$.
I would like to culculate the value of $E(|X+Y|^3)$.

I have thought of some methods but I was caught into troubles when culculate the integration of $intint vert x+y vert ^3, dxdy$.

I also want to find it by some way like $E((X+Y)^3)=E(X^3)+E(Y^3)+3E(X^2Y)+3E(XY^2)$ but I am not sure that it may really work after some trasformation.










share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    Supposed that $X,Y$ are
    independent random variables, and $Xsim N(mu,sigma^2),Ysim N(-mu,sigma^2)$.
    I would like to culculate the value of $E(|X+Y|^3)$.

    I have thought of some methods but I was caught into troubles when culculate the integration of $intint vert x+y vert ^3, dxdy$.

    I also want to find it by some way like $E((X+Y)^3)=E(X^3)+E(Y^3)+3E(X^2Y)+3E(XY^2)$ but I am not sure that it may really work after some trasformation.










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Supposed that $X,Y$ are
      independent random variables, and $Xsim N(mu,sigma^2),Ysim N(-mu,sigma^2)$.
      I would like to culculate the value of $E(|X+Y|^3)$.

      I have thought of some methods but I was caught into troubles when culculate the integration of $intint vert x+y vert ^3, dxdy$.

      I also want to find it by some way like $E((X+Y)^3)=E(X^3)+E(Y^3)+3E(X^2Y)+3E(XY^2)$ but I am not sure that it may really work after some trasformation.










      share|cite|improve this question













      Supposed that $X,Y$ are
      independent random variables, and $Xsim N(mu,sigma^2),Ysim N(-mu,sigma^2)$.
      I would like to culculate the value of $E(|X+Y|^3)$.

      I have thought of some methods but I was caught into troubles when culculate the integration of $intint vert x+y vert ^3, dxdy$.

      I also want to find it by some way like $E((X+Y)^3)=E(X^3)+E(Y^3)+3E(X^2Y)+3E(XY^2)$ but I am not sure that it may really work after some trasformation.







      probability expected-value






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked yesterday









      Maxius Xu

      62




      62






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote













          If $Xsim N(mu,sigma^2)$ and $Ysim N(-mu,sigma^2)$ are independent, then $X+Ysim N(0,2sigma^2)$. So we can compute
          begin{align}
          mathbb{E}[lvert X+Yrvert^3]&=2mathbb{E}[((X+Y)^+)^3]\
          &=2(2sigma^2)^{3/2}mathbb{E}[(Z^3)^+]&&Zsim N(0,1)\
          &=frac{2(2sigma^2)^{3/2}}{sqrt{2pi}}int_0^infty z^3exp(-z^2/2),mathrm{d}z\
          &=frac{8}{sqrt{pi}}sigma^3\
          end{align}






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996413%2fhow-to-find-exy3%23new-answer', 'question_page');
            }
            );

            Post as a guest
































            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote













            If $Xsim N(mu,sigma^2)$ and $Ysim N(-mu,sigma^2)$ are independent, then $X+Ysim N(0,2sigma^2)$. So we can compute
            begin{align}
            mathbb{E}[lvert X+Yrvert^3]&=2mathbb{E}[((X+Y)^+)^3]\
            &=2(2sigma^2)^{3/2}mathbb{E}[(Z^3)^+]&&Zsim N(0,1)\
            &=frac{2(2sigma^2)^{3/2}}{sqrt{2pi}}int_0^infty z^3exp(-z^2/2),mathrm{d}z\
            &=frac{8}{sqrt{pi}}sigma^3\
            end{align}






            share|cite|improve this answer

























              up vote
              0
              down vote













              If $Xsim N(mu,sigma^2)$ and $Ysim N(-mu,sigma^2)$ are independent, then $X+Ysim N(0,2sigma^2)$. So we can compute
              begin{align}
              mathbb{E}[lvert X+Yrvert^3]&=2mathbb{E}[((X+Y)^+)^3]\
              &=2(2sigma^2)^{3/2}mathbb{E}[(Z^3)^+]&&Zsim N(0,1)\
              &=frac{2(2sigma^2)^{3/2}}{sqrt{2pi}}int_0^infty z^3exp(-z^2/2),mathrm{d}z\
              &=frac{8}{sqrt{pi}}sigma^3\
              end{align}






              share|cite|improve this answer























                up vote
                0
                down vote










                up vote
                0
                down vote









                If $Xsim N(mu,sigma^2)$ and $Ysim N(-mu,sigma^2)$ are independent, then $X+Ysim N(0,2sigma^2)$. So we can compute
                begin{align}
                mathbb{E}[lvert X+Yrvert^3]&=2mathbb{E}[((X+Y)^+)^3]\
                &=2(2sigma^2)^{3/2}mathbb{E}[(Z^3)^+]&&Zsim N(0,1)\
                &=frac{2(2sigma^2)^{3/2}}{sqrt{2pi}}int_0^infty z^3exp(-z^2/2),mathrm{d}z\
                &=frac{8}{sqrt{pi}}sigma^3\
                end{align}






                share|cite|improve this answer












                If $Xsim N(mu,sigma^2)$ and $Ysim N(-mu,sigma^2)$ are independent, then $X+Ysim N(0,2sigma^2)$. So we can compute
                begin{align}
                mathbb{E}[lvert X+Yrvert^3]&=2mathbb{E}[((X+Y)^+)^3]\
                &=2(2sigma^2)^{3/2}mathbb{E}[(Z^3)^+]&&Zsim N(0,1)\
                &=frac{2(2sigma^2)^{3/2}}{sqrt{2pi}}int_0^infty z^3exp(-z^2/2),mathrm{d}z\
                &=frac{8}{sqrt{pi}}sigma^3\
                end{align}







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered yesterday









                user10354138

                6,189523




                6,189523






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996413%2fhow-to-find-exy3%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest




















































































                    Popular posts from this blog

                    How do I know what Microsoft account the skydrive app is syncing to?

                    When does type information flow backwards in C++?

                    Grease: Live!