Proving an inequality of modulus of complex numbers
$begingroup$
Let $x,y,z$ be distinct complex numbers such that $$y=tx+(1-t)z$$ ; where $t in (0,1)$
Prove that $$frac{|z|-|y|}{|z-y|} geq frac{|z|-|x|}{|z-x|} geq frac{|y|-|x|}{|y-x|} $$
I tried this question by finding $t$ in terms of $x,y,z$. But I'm getting an inequality which doesn't lead to the answer.
$$|t|= frac{|y-z|}{|x-z|} $$
So we have $$0 leq|y-z|leq|x-z|$$
Now it is clear that $$0 leq|y|-|z|leq|x-z|$$
After this ? I;m stuck. Any ideas ?
inequality complex-numbers
$endgroup$
add a comment |
$begingroup$
Let $x,y,z$ be distinct complex numbers such that $$y=tx+(1-t)z$$ ; where $t in (0,1)$
Prove that $$frac{|z|-|y|}{|z-y|} geq frac{|z|-|x|}{|z-x|} geq frac{|y|-|x|}{|y-x|} $$
I tried this question by finding $t$ in terms of $x,y,z$. But I'm getting an inequality which doesn't lead to the answer.
$$|t|= frac{|y-z|}{|x-z|} $$
So we have $$0 leq|y-z|leq|x-z|$$
Now it is clear that $$0 leq|y|-|z|leq|x-z|$$
After this ? I;m stuck. Any ideas ?
inequality complex-numbers
$endgroup$
add a comment |
$begingroup$
Let $x,y,z$ be distinct complex numbers such that $$y=tx+(1-t)z$$ ; where $t in (0,1)$
Prove that $$frac{|z|-|y|}{|z-y|} geq frac{|z|-|x|}{|z-x|} geq frac{|y|-|x|}{|y-x|} $$
I tried this question by finding $t$ in terms of $x,y,z$. But I'm getting an inequality which doesn't lead to the answer.
$$|t|= frac{|y-z|}{|x-z|} $$
So we have $$0 leq|y-z|leq|x-z|$$
Now it is clear that $$0 leq|y|-|z|leq|x-z|$$
After this ? I;m stuck. Any ideas ?
inequality complex-numbers
$endgroup$
Let $x,y,z$ be distinct complex numbers such that $$y=tx+(1-t)z$$ ; where $t in (0,1)$
Prove that $$frac{|z|-|y|}{|z-y|} geq frac{|z|-|x|}{|z-x|} geq frac{|y|-|x|}{|y-x|} $$
I tried this question by finding $t$ in terms of $x,y,z$. But I'm getting an inequality which doesn't lead to the answer.
$$|t|= frac{|y-z|}{|x-z|} $$
So we have $$0 leq|y-z|leq|x-z|$$
Now it is clear that $$0 leq|y|-|z|leq|x-z|$$
After this ? I;m stuck. Any ideas ?
inequality complex-numbers
inequality complex-numbers
asked Dec 28 '18 at 17:23
Angelo MarkAngelo Mark
4,04421741
4,04421741
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Note that $|z-y|=|-tx+tz|=t|z-x|$. Meanwhile, by the triangle inequality,
$$|z|-|y|geq|z|-t|x|-(1-t)|z|=t(|z|-|x|)$$
and so we now have
$$frac{|z|-|y|}{|z-y|}geqfrac{t(|z|-|x|)}{t|z-x|}=frac{|z|-|x|}{|z-x|}.$$
The remaining inequality should be similar.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055110%2fproving-an-inequality-of-modulus-of-complex-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that $|z-y|=|-tx+tz|=t|z-x|$. Meanwhile, by the triangle inequality,
$$|z|-|y|geq|z|-t|x|-(1-t)|z|=t(|z|-|x|)$$
and so we now have
$$frac{|z|-|y|}{|z-y|}geqfrac{t(|z|-|x|)}{t|z-x|}=frac{|z|-|x|}{|z-x|}.$$
The remaining inequality should be similar.
$endgroup$
add a comment |
$begingroup$
Note that $|z-y|=|-tx+tz|=t|z-x|$. Meanwhile, by the triangle inequality,
$$|z|-|y|geq|z|-t|x|-(1-t)|z|=t(|z|-|x|)$$
and so we now have
$$frac{|z|-|y|}{|z-y|}geqfrac{t(|z|-|x|)}{t|z-x|}=frac{|z|-|x|}{|z-x|}.$$
The remaining inequality should be similar.
$endgroup$
add a comment |
$begingroup$
Note that $|z-y|=|-tx+tz|=t|z-x|$. Meanwhile, by the triangle inequality,
$$|z|-|y|geq|z|-t|x|-(1-t)|z|=t(|z|-|x|)$$
and so we now have
$$frac{|z|-|y|}{|z-y|}geqfrac{t(|z|-|x|)}{t|z-x|}=frac{|z|-|x|}{|z-x|}.$$
The remaining inequality should be similar.
$endgroup$
Note that $|z-y|=|-tx+tz|=t|z-x|$. Meanwhile, by the triangle inequality,
$$|z|-|y|geq|z|-t|x|-(1-t)|z|=t(|z|-|x|)$$
and so we now have
$$frac{|z|-|y|}{|z-y|}geqfrac{t(|z|-|x|)}{t|z-x|}=frac{|z|-|x|}{|z-x|}.$$
The remaining inequality should be similar.
answered Dec 28 '18 at 18:29
Ben WBen W
2,276615
2,276615
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055110%2fproving-an-inequality-of-modulus-of-complex-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown