Finding the principal disjunctive normal form (PDNF) of a Boolean expression
$begingroup$
Find the principal disjunctive normal form (PDNF) of a Boolean expression
$$((pwedge q) rightarrow r)vee((pwedge q)rightarrow neg r).$$
I tried by expanding it but I am stuck with the expression
$(neg p vee neg q vee r) vee (neg p vee neg q vee neg r)$. I don't know how to convert them into min terms. Please help me.
boolean-algebra
$endgroup$
add a comment |
$begingroup$
Find the principal disjunctive normal form (PDNF) of a Boolean expression
$$((pwedge q) rightarrow r)vee((pwedge q)rightarrow neg r).$$
I tried by expanding it but I am stuck with the expression
$(neg p vee neg q vee r) vee (neg p vee neg q vee neg r)$. I don't know how to convert them into min terms. Please help me.
boolean-algebra
$endgroup$
2
$begingroup$
Your last expression can be written as $text{Something}lor (rlor neg r)$.
$endgroup$
– Git Gud
Jan 3 '16 at 19:20
$begingroup$
First you must see that either the equation is sum of products or not.As it has only disjunctions, so it is not possible to find DNF for this equation.
$endgroup$
– Muhammad Asif
Dec 20 '16 at 21:05
add a comment |
$begingroup$
Find the principal disjunctive normal form (PDNF) of a Boolean expression
$$((pwedge q) rightarrow r)vee((pwedge q)rightarrow neg r).$$
I tried by expanding it but I am stuck with the expression
$(neg p vee neg q vee r) vee (neg p vee neg q vee neg r)$. I don't know how to convert them into min terms. Please help me.
boolean-algebra
$endgroup$
Find the principal disjunctive normal form (PDNF) of a Boolean expression
$$((pwedge q) rightarrow r)vee((pwedge q)rightarrow neg r).$$
I tried by expanding it but I am stuck with the expression
$(neg p vee neg q vee r) vee (neg p vee neg q vee neg r)$. I don't know how to convert them into min terms. Please help me.
boolean-algebra
boolean-algebra
edited Jan 4 '16 at 12:09
Random Jack
2,1161519
2,1161519
asked Jan 3 '16 at 18:46
BalajiBalaji
70117
70117
2
$begingroup$
Your last expression can be written as $text{Something}lor (rlor neg r)$.
$endgroup$
– Git Gud
Jan 3 '16 at 19:20
$begingroup$
First you must see that either the equation is sum of products or not.As it has only disjunctions, so it is not possible to find DNF for this equation.
$endgroup$
– Muhammad Asif
Dec 20 '16 at 21:05
add a comment |
2
$begingroup$
Your last expression can be written as $text{Something}lor (rlor neg r)$.
$endgroup$
– Git Gud
Jan 3 '16 at 19:20
$begingroup$
First you must see that either the equation is sum of products or not.As it has only disjunctions, so it is not possible to find DNF for this equation.
$endgroup$
– Muhammad Asif
Dec 20 '16 at 21:05
2
2
$begingroup$
Your last expression can be written as $text{Something}lor (rlor neg r)$.
$endgroup$
– Git Gud
Jan 3 '16 at 19:20
$begingroup$
Your last expression can be written as $text{Something}lor (rlor neg r)$.
$endgroup$
– Git Gud
Jan 3 '16 at 19:20
$begingroup$
First you must see that either the equation is sum of products or not.As it has only disjunctions, so it is not possible to find DNF for this equation.
$endgroup$
– Muhammad Asif
Dec 20 '16 at 21:05
$begingroup$
First you must see that either the equation is sum of products or not.As it has only disjunctions, so it is not possible to find DNF for this equation.
$endgroup$
– Muhammad Asif
Dec 20 '16 at 21:05
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Expression mentioned is a Tautology.
$$((p.q) rightarrow r)+((p.q)rightarrow r')=((p'+q'+r)+(p'+q'+r'))=p'+q'+1 = 1$$
So PDNF corresponding to it is
$$(p'.q'.r')+(p'.q'.r)+(p'.q.r')+(p'.q.r)+(p.q'.r')+(p.q'.r)+(p.q.r')+(p.q.r)$$
$endgroup$
add a comment |
$begingroup$
The required normal form is ( if I am not wrong ):-
(p^q^r)v(~p^q^r)v(~p^~q^r)v(p^q^~r)
Once you get the form : (¬p∨¬q∨r)∨(¬p∨¬q∨¬r)
Treat this as (¬p)∨(¬q)∨(r)∨(¬p)∨(¬q)∨(¬r)
And convert the individual literals into minterms.
To convert any variable P to a minterm ,just add : ^(Qv~Q)^(Rv~R) to P
That is :P^(Qv~Q)^(Rv~R)
And then use the distributive laws.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1598685%2ffinding-the-principal-disjunctive-normal-form-pdnf-of-a-boolean-expression%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Expression mentioned is a Tautology.
$$((p.q) rightarrow r)+((p.q)rightarrow r')=((p'+q'+r)+(p'+q'+r'))=p'+q'+1 = 1$$
So PDNF corresponding to it is
$$(p'.q'.r')+(p'.q'.r)+(p'.q.r')+(p'.q.r)+(p.q'.r')+(p.q'.r)+(p.q.r')+(p.q.r)$$
$endgroup$
add a comment |
$begingroup$
Expression mentioned is a Tautology.
$$((p.q) rightarrow r)+((p.q)rightarrow r')=((p'+q'+r)+(p'+q'+r'))=p'+q'+1 = 1$$
So PDNF corresponding to it is
$$(p'.q'.r')+(p'.q'.r)+(p'.q.r')+(p'.q.r)+(p.q'.r')+(p.q'.r)+(p.q.r')+(p.q.r)$$
$endgroup$
add a comment |
$begingroup$
Expression mentioned is a Tautology.
$$((p.q) rightarrow r)+((p.q)rightarrow r')=((p'+q'+r)+(p'+q'+r'))=p'+q'+1 = 1$$
So PDNF corresponding to it is
$$(p'.q'.r')+(p'.q'.r)+(p'.q.r')+(p'.q.r)+(p.q'.r')+(p.q'.r)+(p.q.r')+(p.q.r)$$
$endgroup$
Expression mentioned is a Tautology.
$$((p.q) rightarrow r)+((p.q)rightarrow r')=((p'+q'+r)+(p'+q'+r'))=p'+q'+1 = 1$$
So PDNF corresponding to it is
$$(p'.q'.r')+(p'.q'.r)+(p'.q.r')+(p'.q.r)+(p.q'.r')+(p.q'.r)+(p.q.r')+(p.q.r)$$
answered Jan 9 '17 at 5:24
PriyPriy
111
111
add a comment |
add a comment |
$begingroup$
The required normal form is ( if I am not wrong ):-
(p^q^r)v(~p^q^r)v(~p^~q^r)v(p^q^~r)
Once you get the form : (¬p∨¬q∨r)∨(¬p∨¬q∨¬r)
Treat this as (¬p)∨(¬q)∨(r)∨(¬p)∨(¬q)∨(¬r)
And convert the individual literals into minterms.
To convert any variable P to a minterm ,just add : ^(Qv~Q)^(Rv~R) to P
That is :P^(Qv~Q)^(Rv~R)
And then use the distributive laws.
$endgroup$
add a comment |
$begingroup$
The required normal form is ( if I am not wrong ):-
(p^q^r)v(~p^q^r)v(~p^~q^r)v(p^q^~r)
Once you get the form : (¬p∨¬q∨r)∨(¬p∨¬q∨¬r)
Treat this as (¬p)∨(¬q)∨(r)∨(¬p)∨(¬q)∨(¬r)
And convert the individual literals into minterms.
To convert any variable P to a minterm ,just add : ^(Qv~Q)^(Rv~R) to P
That is :P^(Qv~Q)^(Rv~R)
And then use the distributive laws.
$endgroup$
add a comment |
$begingroup$
The required normal form is ( if I am not wrong ):-
(p^q^r)v(~p^q^r)v(~p^~q^r)v(p^q^~r)
Once you get the form : (¬p∨¬q∨r)∨(¬p∨¬q∨¬r)
Treat this as (¬p)∨(¬q)∨(r)∨(¬p)∨(¬q)∨(¬r)
And convert the individual literals into minterms.
To convert any variable P to a minterm ,just add : ^(Qv~Q)^(Rv~R) to P
That is :P^(Qv~Q)^(Rv~R)
And then use the distributive laws.
$endgroup$
The required normal form is ( if I am not wrong ):-
(p^q^r)v(~p^q^r)v(~p^~q^r)v(p^q^~r)
Once you get the form : (¬p∨¬q∨r)∨(¬p∨¬q∨¬r)
Treat this as (¬p)∨(¬q)∨(r)∨(¬p)∨(¬q)∨(¬r)
And convert the individual literals into minterms.
To convert any variable P to a minterm ,just add : ^(Qv~Q)^(Rv~R) to P
That is :P^(Qv~Q)^(Rv~R)
And then use the distributive laws.
edited Dec 30 '18 at 12:14
answered Dec 30 '18 at 12:09
Amrutesh MishraAmrutesh Mishra
11
11
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1598685%2ffinding-the-principal-disjunctive-normal-form-pdnf-of-a-boolean-expression%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Your last expression can be written as $text{Something}lor (rlor neg r)$.
$endgroup$
– Git Gud
Jan 3 '16 at 19:20
$begingroup$
First you must see that either the equation is sum of products or not.As it has only disjunctions, so it is not possible to find DNF for this equation.
$endgroup$
– Muhammad Asif
Dec 20 '16 at 21:05