Find the exact length of the parametric curve: $x={e^t}+{e^{-t}}, y=5-2t,0le t le 3$.












1












$begingroup$


Find the exact length of the parametric curve: $$x={e^t}+{e^{-t}}, y=5-2t,0le t le 3$$
Solution:
$$frac{dx}{dt}=e^t -e^{-t}, frac{dy}{dt}=-2$$
$$int_{0}^{3} sqrt{(e^t-e^{-t})^2+(-2)^2}dt$$
$$= int_{0}^{3} sqrt{e^{2t}+e^{-2t}+2}dt$$
Let$$e^{2t}=u, e^{-2t}=frac{1}{u}$$
and then$$du=2u dt$$
Therefore, $$int sqrt{u+frac{1}{u}+2}left(frac{1}{2u}right)du$$
$$=int sqrt{frac{(u+1)^2}{u}}left(frac{1}{2u}right)du$$
$$=int frac{u+1}{2usqrt u}du$$
$$=int frac{1}{2sqrt u}+frac{1}{2usqrt u}du$$
$$=left[sqrt {e^{2t}} - frac{1}{sqrt {e^{2t}}}right]_{0}^{3}$$
$$=e^3-frac{1}{e^3}-1+1$$
$$=e^3+e^{-3}$$
Is my answer correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint $(e^t+e^{-t})^2$ equals what?
    $endgroup$
    – AmateurMathPirate
    Dec 30 '18 at 13:25
















1












$begingroup$


Find the exact length of the parametric curve: $$x={e^t}+{e^{-t}}, y=5-2t,0le t le 3$$
Solution:
$$frac{dx}{dt}=e^t -e^{-t}, frac{dy}{dt}=-2$$
$$int_{0}^{3} sqrt{(e^t-e^{-t})^2+(-2)^2}dt$$
$$= int_{0}^{3} sqrt{e^{2t}+e^{-2t}+2}dt$$
Let$$e^{2t}=u, e^{-2t}=frac{1}{u}$$
and then$$du=2u dt$$
Therefore, $$int sqrt{u+frac{1}{u}+2}left(frac{1}{2u}right)du$$
$$=int sqrt{frac{(u+1)^2}{u}}left(frac{1}{2u}right)du$$
$$=int frac{u+1}{2usqrt u}du$$
$$=int frac{1}{2sqrt u}+frac{1}{2usqrt u}du$$
$$=left[sqrt {e^{2t}} - frac{1}{sqrt {e^{2t}}}right]_{0}^{3}$$
$$=e^3-frac{1}{e^3}-1+1$$
$$=e^3+e^{-3}$$
Is my answer correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint $(e^t+e^{-t})^2$ equals what?
    $endgroup$
    – AmateurMathPirate
    Dec 30 '18 at 13:25














1












1








1





$begingroup$


Find the exact length of the parametric curve: $$x={e^t}+{e^{-t}}, y=5-2t,0le t le 3$$
Solution:
$$frac{dx}{dt}=e^t -e^{-t}, frac{dy}{dt}=-2$$
$$int_{0}^{3} sqrt{(e^t-e^{-t})^2+(-2)^2}dt$$
$$= int_{0}^{3} sqrt{e^{2t}+e^{-2t}+2}dt$$
Let$$e^{2t}=u, e^{-2t}=frac{1}{u}$$
and then$$du=2u dt$$
Therefore, $$int sqrt{u+frac{1}{u}+2}left(frac{1}{2u}right)du$$
$$=int sqrt{frac{(u+1)^2}{u}}left(frac{1}{2u}right)du$$
$$=int frac{u+1}{2usqrt u}du$$
$$=int frac{1}{2sqrt u}+frac{1}{2usqrt u}du$$
$$=left[sqrt {e^{2t}} - frac{1}{sqrt {e^{2t}}}right]_{0}^{3}$$
$$=e^3-frac{1}{e^3}-1+1$$
$$=e^3+e^{-3}$$
Is my answer correct?










share|cite|improve this question











$endgroup$




Find the exact length of the parametric curve: $$x={e^t}+{e^{-t}}, y=5-2t,0le t le 3$$
Solution:
$$frac{dx}{dt}=e^t -e^{-t}, frac{dy}{dt}=-2$$
$$int_{0}^{3} sqrt{(e^t-e^{-t})^2+(-2)^2}dt$$
$$= int_{0}^{3} sqrt{e^{2t}+e^{-2t}+2}dt$$
Let$$e^{2t}=u, e^{-2t}=frac{1}{u}$$
and then$$du=2u dt$$
Therefore, $$int sqrt{u+frac{1}{u}+2}left(frac{1}{2u}right)du$$
$$=int sqrt{frac{(u+1)^2}{u}}left(frac{1}{2u}right)du$$
$$=int frac{u+1}{2usqrt u}du$$
$$=int frac{1}{2sqrt u}+frac{1}{2usqrt u}du$$
$$=left[sqrt {e^{2t}} - frac{1}{sqrt {e^{2t}}}right]_{0}^{3}$$
$$=e^3-frac{1}{e^3}-1+1$$
$$=e^3+e^{-3}$$
Is my answer correct?







parametric






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 30 '18 at 13:31









Larry

2,53531131




2,53531131










asked Dec 30 '18 at 13:19









MaggieMaggie

888




888












  • $begingroup$
    Hint $(e^t+e^{-t})^2$ equals what?
    $endgroup$
    – AmateurMathPirate
    Dec 30 '18 at 13:25


















  • $begingroup$
    Hint $(e^t+e^{-t})^2$ equals what?
    $endgroup$
    – AmateurMathPirate
    Dec 30 '18 at 13:25
















$begingroup$
Hint $(e^t+e^{-t})^2$ equals what?
$endgroup$
– AmateurMathPirate
Dec 30 '18 at 13:25




$begingroup$
Hint $(e^t+e^{-t})^2$ equals what?
$endgroup$
– AmateurMathPirate
Dec 30 '18 at 13:25










2 Answers
2






active

oldest

votes


















1












$begingroup$

Hint:



It's better to utilize $$e^{2t}+e^{-2t}+2=(e^t+e^{-t})^2$$



and $displaystyledfrac{d(e^{ax})}{dx}=ae^{ex}impliesint e^{ax} dx=dfrac{e^{ax}}a+K$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    OK, I see it. So, $$int_{0}^{3} ({e^t} +{e^{-t}})dt$$ $$=[e^t+e^{-t}]_{0}^{3} $$ $$=e^3 - e^{-3}$$
    $endgroup$
    – Maggie
    Dec 30 '18 at 13:42





















4












$begingroup$

It is faster to use some hyperbolic trigonometry: as $x(t)=2cosh t$, we have $;x'(t)=2sinh t$, so
begin{align}
ell&=int_0^3sqrt{4(sinh^2t+1)},mathrm d t=2int_0^3cosh t,mathrm d t=2sinh tBiggmvert_0^3=2sinh 3=mathrm e^3-mathrm e^{-3}.
end{align}






share|cite|improve this answer









$endgroup$













  • $begingroup$
    This awesome! I forgot the formula $cosh^2 t - sinh^2 t =1$.
    $endgroup$
    – Maggie
    Dec 30 '18 at 13:56











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056824%2ffind-the-exact-length-of-the-parametric-curve-x-ete-t-y-5-2t-0-le-t%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Hint:



It's better to utilize $$e^{2t}+e^{-2t}+2=(e^t+e^{-t})^2$$



and $displaystyledfrac{d(e^{ax})}{dx}=ae^{ex}impliesint e^{ax} dx=dfrac{e^{ax}}a+K$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    OK, I see it. So, $$int_{0}^{3} ({e^t} +{e^{-t}})dt$$ $$=[e^t+e^{-t}]_{0}^{3} $$ $$=e^3 - e^{-3}$$
    $endgroup$
    – Maggie
    Dec 30 '18 at 13:42


















1












$begingroup$

Hint:



It's better to utilize $$e^{2t}+e^{-2t}+2=(e^t+e^{-t})^2$$



and $displaystyledfrac{d(e^{ax})}{dx}=ae^{ex}impliesint e^{ax} dx=dfrac{e^{ax}}a+K$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    OK, I see it. So, $$int_{0}^{3} ({e^t} +{e^{-t}})dt$$ $$=[e^t+e^{-t}]_{0}^{3} $$ $$=e^3 - e^{-3}$$
    $endgroup$
    – Maggie
    Dec 30 '18 at 13:42
















1












1








1





$begingroup$

Hint:



It's better to utilize $$e^{2t}+e^{-2t}+2=(e^t+e^{-t})^2$$



and $displaystyledfrac{d(e^{ax})}{dx}=ae^{ex}impliesint e^{ax} dx=dfrac{e^{ax}}a+K$






share|cite|improve this answer









$endgroup$



Hint:



It's better to utilize $$e^{2t}+e^{-2t}+2=(e^t+e^{-t})^2$$



and $displaystyledfrac{d(e^{ax})}{dx}=ae^{ex}impliesint e^{ax} dx=dfrac{e^{ax}}a+K$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 30 '18 at 13:21









lab bhattacharjeelab bhattacharjee

227k15158277




227k15158277












  • $begingroup$
    OK, I see it. So, $$int_{0}^{3} ({e^t} +{e^{-t}})dt$$ $$=[e^t+e^{-t}]_{0}^{3} $$ $$=e^3 - e^{-3}$$
    $endgroup$
    – Maggie
    Dec 30 '18 at 13:42




















  • $begingroup$
    OK, I see it. So, $$int_{0}^{3} ({e^t} +{e^{-t}})dt$$ $$=[e^t+e^{-t}]_{0}^{3} $$ $$=e^3 - e^{-3}$$
    $endgroup$
    – Maggie
    Dec 30 '18 at 13:42


















$begingroup$
OK, I see it. So, $$int_{0}^{3} ({e^t} +{e^{-t}})dt$$ $$=[e^t+e^{-t}]_{0}^{3} $$ $$=e^3 - e^{-3}$$
$endgroup$
– Maggie
Dec 30 '18 at 13:42






$begingroup$
OK, I see it. So, $$int_{0}^{3} ({e^t} +{e^{-t}})dt$$ $$=[e^t+e^{-t}]_{0}^{3} $$ $$=e^3 - e^{-3}$$
$endgroup$
– Maggie
Dec 30 '18 at 13:42













4












$begingroup$

It is faster to use some hyperbolic trigonometry: as $x(t)=2cosh t$, we have $;x'(t)=2sinh t$, so
begin{align}
ell&=int_0^3sqrt{4(sinh^2t+1)},mathrm d t=2int_0^3cosh t,mathrm d t=2sinh tBiggmvert_0^3=2sinh 3=mathrm e^3-mathrm e^{-3}.
end{align}






share|cite|improve this answer









$endgroup$













  • $begingroup$
    This awesome! I forgot the formula $cosh^2 t - sinh^2 t =1$.
    $endgroup$
    – Maggie
    Dec 30 '18 at 13:56
















4












$begingroup$

It is faster to use some hyperbolic trigonometry: as $x(t)=2cosh t$, we have $;x'(t)=2sinh t$, so
begin{align}
ell&=int_0^3sqrt{4(sinh^2t+1)},mathrm d t=2int_0^3cosh t,mathrm d t=2sinh tBiggmvert_0^3=2sinh 3=mathrm e^3-mathrm e^{-3}.
end{align}






share|cite|improve this answer









$endgroup$













  • $begingroup$
    This awesome! I forgot the formula $cosh^2 t - sinh^2 t =1$.
    $endgroup$
    – Maggie
    Dec 30 '18 at 13:56














4












4








4





$begingroup$

It is faster to use some hyperbolic trigonometry: as $x(t)=2cosh t$, we have $;x'(t)=2sinh t$, so
begin{align}
ell&=int_0^3sqrt{4(sinh^2t+1)},mathrm d t=2int_0^3cosh t,mathrm d t=2sinh tBiggmvert_0^3=2sinh 3=mathrm e^3-mathrm e^{-3}.
end{align}






share|cite|improve this answer









$endgroup$



It is faster to use some hyperbolic trigonometry: as $x(t)=2cosh t$, we have $;x'(t)=2sinh t$, so
begin{align}
ell&=int_0^3sqrt{4(sinh^2t+1)},mathrm d t=2int_0^3cosh t,mathrm d t=2sinh tBiggmvert_0^3=2sinh 3=mathrm e^3-mathrm e^{-3}.
end{align}







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 30 '18 at 13:35









BernardBernard

123k741117




123k741117












  • $begingroup$
    This awesome! I forgot the formula $cosh^2 t - sinh^2 t =1$.
    $endgroup$
    – Maggie
    Dec 30 '18 at 13:56


















  • $begingroup$
    This awesome! I forgot the formula $cosh^2 t - sinh^2 t =1$.
    $endgroup$
    – Maggie
    Dec 30 '18 at 13:56
















$begingroup$
This awesome! I forgot the formula $cosh^2 t - sinh^2 t =1$.
$endgroup$
– Maggie
Dec 30 '18 at 13:56




$begingroup$
This awesome! I forgot the formula $cosh^2 t - sinh^2 t =1$.
$endgroup$
– Maggie
Dec 30 '18 at 13:56


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056824%2ffind-the-exact-length-of-the-parametric-curve-x-ete-t-y-5-2t-0-le-t%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How do I know what Microsoft account the skydrive app is syncing to?

When does type information flow backwards in C++?

Grease: Live!