Find the exact length of the parametric curve: $x={e^t}+{e^{-t}}, y=5-2t,0le t le 3$.
$begingroup$
Find the exact length of the parametric curve: $$x={e^t}+{e^{-t}}, y=5-2t,0le t le 3$$
Solution:
$$frac{dx}{dt}=e^t -e^{-t}, frac{dy}{dt}=-2$$
$$int_{0}^{3} sqrt{(e^t-e^{-t})^2+(-2)^2}dt$$
$$= int_{0}^{3} sqrt{e^{2t}+e^{-2t}+2}dt$$
Let$$e^{2t}=u, e^{-2t}=frac{1}{u}$$
and then$$du=2u dt$$
Therefore, $$int sqrt{u+frac{1}{u}+2}left(frac{1}{2u}right)du$$
$$=int sqrt{frac{(u+1)^2}{u}}left(frac{1}{2u}right)du$$
$$=int frac{u+1}{2usqrt u}du$$
$$=int frac{1}{2sqrt u}+frac{1}{2usqrt u}du$$
$$=left[sqrt {e^{2t}} - frac{1}{sqrt {e^{2t}}}right]_{0}^{3}$$
$$=e^3-frac{1}{e^3}-1+1$$
$$=e^3+e^{-3}$$
Is my answer correct?
parametric
$endgroup$
add a comment |
$begingroup$
Find the exact length of the parametric curve: $$x={e^t}+{e^{-t}}, y=5-2t,0le t le 3$$
Solution:
$$frac{dx}{dt}=e^t -e^{-t}, frac{dy}{dt}=-2$$
$$int_{0}^{3} sqrt{(e^t-e^{-t})^2+(-2)^2}dt$$
$$= int_{0}^{3} sqrt{e^{2t}+e^{-2t}+2}dt$$
Let$$e^{2t}=u, e^{-2t}=frac{1}{u}$$
and then$$du=2u dt$$
Therefore, $$int sqrt{u+frac{1}{u}+2}left(frac{1}{2u}right)du$$
$$=int sqrt{frac{(u+1)^2}{u}}left(frac{1}{2u}right)du$$
$$=int frac{u+1}{2usqrt u}du$$
$$=int frac{1}{2sqrt u}+frac{1}{2usqrt u}du$$
$$=left[sqrt {e^{2t}} - frac{1}{sqrt {e^{2t}}}right]_{0}^{3}$$
$$=e^3-frac{1}{e^3}-1+1$$
$$=e^3+e^{-3}$$
Is my answer correct?
parametric
$endgroup$
$begingroup$
Hint $(e^t+e^{-t})^2$ equals what?
$endgroup$
– AmateurMathPirate
Dec 30 '18 at 13:25
add a comment |
$begingroup$
Find the exact length of the parametric curve: $$x={e^t}+{e^{-t}}, y=5-2t,0le t le 3$$
Solution:
$$frac{dx}{dt}=e^t -e^{-t}, frac{dy}{dt}=-2$$
$$int_{0}^{3} sqrt{(e^t-e^{-t})^2+(-2)^2}dt$$
$$= int_{0}^{3} sqrt{e^{2t}+e^{-2t}+2}dt$$
Let$$e^{2t}=u, e^{-2t}=frac{1}{u}$$
and then$$du=2u dt$$
Therefore, $$int sqrt{u+frac{1}{u}+2}left(frac{1}{2u}right)du$$
$$=int sqrt{frac{(u+1)^2}{u}}left(frac{1}{2u}right)du$$
$$=int frac{u+1}{2usqrt u}du$$
$$=int frac{1}{2sqrt u}+frac{1}{2usqrt u}du$$
$$=left[sqrt {e^{2t}} - frac{1}{sqrt {e^{2t}}}right]_{0}^{3}$$
$$=e^3-frac{1}{e^3}-1+1$$
$$=e^3+e^{-3}$$
Is my answer correct?
parametric
$endgroup$
Find the exact length of the parametric curve: $$x={e^t}+{e^{-t}}, y=5-2t,0le t le 3$$
Solution:
$$frac{dx}{dt}=e^t -e^{-t}, frac{dy}{dt}=-2$$
$$int_{0}^{3} sqrt{(e^t-e^{-t})^2+(-2)^2}dt$$
$$= int_{0}^{3} sqrt{e^{2t}+e^{-2t}+2}dt$$
Let$$e^{2t}=u, e^{-2t}=frac{1}{u}$$
and then$$du=2u dt$$
Therefore, $$int sqrt{u+frac{1}{u}+2}left(frac{1}{2u}right)du$$
$$=int sqrt{frac{(u+1)^2}{u}}left(frac{1}{2u}right)du$$
$$=int frac{u+1}{2usqrt u}du$$
$$=int frac{1}{2sqrt u}+frac{1}{2usqrt u}du$$
$$=left[sqrt {e^{2t}} - frac{1}{sqrt {e^{2t}}}right]_{0}^{3}$$
$$=e^3-frac{1}{e^3}-1+1$$
$$=e^3+e^{-3}$$
Is my answer correct?
parametric
parametric
edited Dec 30 '18 at 13:31
Larry
2,53531131
2,53531131
asked Dec 30 '18 at 13:19
MaggieMaggie
888
888
$begingroup$
Hint $(e^t+e^{-t})^2$ equals what?
$endgroup$
– AmateurMathPirate
Dec 30 '18 at 13:25
add a comment |
$begingroup$
Hint $(e^t+e^{-t})^2$ equals what?
$endgroup$
– AmateurMathPirate
Dec 30 '18 at 13:25
$begingroup$
Hint $(e^t+e^{-t})^2$ equals what?
$endgroup$
– AmateurMathPirate
Dec 30 '18 at 13:25
$begingroup$
Hint $(e^t+e^{-t})^2$ equals what?
$endgroup$
– AmateurMathPirate
Dec 30 '18 at 13:25
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint:
It's better to utilize $$e^{2t}+e^{-2t}+2=(e^t+e^{-t})^2$$
and $displaystyledfrac{d(e^{ax})}{dx}=ae^{ex}impliesint e^{ax} dx=dfrac{e^{ax}}a+K$
$endgroup$
$begingroup$
OK, I see it. So, $$int_{0}^{3} ({e^t} +{e^{-t}})dt$$ $$=[e^t+e^{-t}]_{0}^{3} $$ $$=e^3 - e^{-3}$$
$endgroup$
– Maggie
Dec 30 '18 at 13:42
add a comment |
$begingroup$
It is faster to use some hyperbolic trigonometry: as $x(t)=2cosh t$, we have $;x'(t)=2sinh t$, so
begin{align}
ell&=int_0^3sqrt{4(sinh^2t+1)},mathrm d t=2int_0^3cosh t,mathrm d t=2sinh tBiggmvert_0^3=2sinh 3=mathrm e^3-mathrm e^{-3}.
end{align}
$endgroup$
$begingroup$
This awesome! I forgot the formula $cosh^2 t - sinh^2 t =1$.
$endgroup$
– Maggie
Dec 30 '18 at 13:56
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056824%2ffind-the-exact-length-of-the-parametric-curve-x-ete-t-y-5-2t-0-le-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
It's better to utilize $$e^{2t}+e^{-2t}+2=(e^t+e^{-t})^2$$
and $displaystyledfrac{d(e^{ax})}{dx}=ae^{ex}impliesint e^{ax} dx=dfrac{e^{ax}}a+K$
$endgroup$
$begingroup$
OK, I see it. So, $$int_{0}^{3} ({e^t} +{e^{-t}})dt$$ $$=[e^t+e^{-t}]_{0}^{3} $$ $$=e^3 - e^{-3}$$
$endgroup$
– Maggie
Dec 30 '18 at 13:42
add a comment |
$begingroup$
Hint:
It's better to utilize $$e^{2t}+e^{-2t}+2=(e^t+e^{-t})^2$$
and $displaystyledfrac{d(e^{ax})}{dx}=ae^{ex}impliesint e^{ax} dx=dfrac{e^{ax}}a+K$
$endgroup$
$begingroup$
OK, I see it. So, $$int_{0}^{3} ({e^t} +{e^{-t}})dt$$ $$=[e^t+e^{-t}]_{0}^{3} $$ $$=e^3 - e^{-3}$$
$endgroup$
– Maggie
Dec 30 '18 at 13:42
add a comment |
$begingroup$
Hint:
It's better to utilize $$e^{2t}+e^{-2t}+2=(e^t+e^{-t})^2$$
and $displaystyledfrac{d(e^{ax})}{dx}=ae^{ex}impliesint e^{ax} dx=dfrac{e^{ax}}a+K$
$endgroup$
Hint:
It's better to utilize $$e^{2t}+e^{-2t}+2=(e^t+e^{-t})^2$$
and $displaystyledfrac{d(e^{ax})}{dx}=ae^{ex}impliesint e^{ax} dx=dfrac{e^{ax}}a+K$
answered Dec 30 '18 at 13:21
lab bhattacharjeelab bhattacharjee
227k15158277
227k15158277
$begingroup$
OK, I see it. So, $$int_{0}^{3} ({e^t} +{e^{-t}})dt$$ $$=[e^t+e^{-t}]_{0}^{3} $$ $$=e^3 - e^{-3}$$
$endgroup$
– Maggie
Dec 30 '18 at 13:42
add a comment |
$begingroup$
OK, I see it. So, $$int_{0}^{3} ({e^t} +{e^{-t}})dt$$ $$=[e^t+e^{-t}]_{0}^{3} $$ $$=e^3 - e^{-3}$$
$endgroup$
– Maggie
Dec 30 '18 at 13:42
$begingroup$
OK, I see it. So, $$int_{0}^{3} ({e^t} +{e^{-t}})dt$$ $$=[e^t+e^{-t}]_{0}^{3} $$ $$=e^3 - e^{-3}$$
$endgroup$
– Maggie
Dec 30 '18 at 13:42
$begingroup$
OK, I see it. So, $$int_{0}^{3} ({e^t} +{e^{-t}})dt$$ $$=[e^t+e^{-t}]_{0}^{3} $$ $$=e^3 - e^{-3}$$
$endgroup$
– Maggie
Dec 30 '18 at 13:42
add a comment |
$begingroup$
It is faster to use some hyperbolic trigonometry: as $x(t)=2cosh t$, we have $;x'(t)=2sinh t$, so
begin{align}
ell&=int_0^3sqrt{4(sinh^2t+1)},mathrm d t=2int_0^3cosh t,mathrm d t=2sinh tBiggmvert_0^3=2sinh 3=mathrm e^3-mathrm e^{-3}.
end{align}
$endgroup$
$begingroup$
This awesome! I forgot the formula $cosh^2 t - sinh^2 t =1$.
$endgroup$
– Maggie
Dec 30 '18 at 13:56
add a comment |
$begingroup$
It is faster to use some hyperbolic trigonometry: as $x(t)=2cosh t$, we have $;x'(t)=2sinh t$, so
begin{align}
ell&=int_0^3sqrt{4(sinh^2t+1)},mathrm d t=2int_0^3cosh t,mathrm d t=2sinh tBiggmvert_0^3=2sinh 3=mathrm e^3-mathrm e^{-3}.
end{align}
$endgroup$
$begingroup$
This awesome! I forgot the formula $cosh^2 t - sinh^2 t =1$.
$endgroup$
– Maggie
Dec 30 '18 at 13:56
add a comment |
$begingroup$
It is faster to use some hyperbolic trigonometry: as $x(t)=2cosh t$, we have $;x'(t)=2sinh t$, so
begin{align}
ell&=int_0^3sqrt{4(sinh^2t+1)},mathrm d t=2int_0^3cosh t,mathrm d t=2sinh tBiggmvert_0^3=2sinh 3=mathrm e^3-mathrm e^{-3}.
end{align}
$endgroup$
It is faster to use some hyperbolic trigonometry: as $x(t)=2cosh t$, we have $;x'(t)=2sinh t$, so
begin{align}
ell&=int_0^3sqrt{4(sinh^2t+1)},mathrm d t=2int_0^3cosh t,mathrm d t=2sinh tBiggmvert_0^3=2sinh 3=mathrm e^3-mathrm e^{-3}.
end{align}
answered Dec 30 '18 at 13:35
BernardBernard
123k741117
123k741117
$begingroup$
This awesome! I forgot the formula $cosh^2 t - sinh^2 t =1$.
$endgroup$
– Maggie
Dec 30 '18 at 13:56
add a comment |
$begingroup$
This awesome! I forgot the formula $cosh^2 t - sinh^2 t =1$.
$endgroup$
– Maggie
Dec 30 '18 at 13:56
$begingroup$
This awesome! I forgot the formula $cosh^2 t - sinh^2 t =1$.
$endgroup$
– Maggie
Dec 30 '18 at 13:56
$begingroup$
This awesome! I forgot the formula $cosh^2 t - sinh^2 t =1$.
$endgroup$
– Maggie
Dec 30 '18 at 13:56
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056824%2ffind-the-exact-length-of-the-parametric-curve-x-ete-t-y-5-2t-0-le-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Hint $(e^t+e^{-t})^2$ equals what?
$endgroup$
– AmateurMathPirate
Dec 30 '18 at 13:25