Prove that $|p^2+2q^2-n|<sqrt[4]{9n}$
$begingroup$
Prove that $forall n in mathbb{N}_+,exists p,q in mathbb{Z}$ such that $|p^2+2q^2-n|<sqrt[4]{9n}$
Solution.
1) Assertion is true $forall nin[1,108]$
proof: Let $pin{0,1,2,3,4,5}$
If $nin[3p^2,3p^2+2p+1)$ :
$min(n-(2p^2+p^2),(2p^2+(p+1)^2)-n)le p<sqrt[4]{27p^2}<sqrt[4]{9n}$
If $nin[3p^2+2p+1,3p^2+4p+2)$ :
$min(n-(2p^2+(p+1)^2),(2(p+1)^2+p^2)-n)le p<sqrt[4]{27p^2}<sqrt[4]{9n}$
If $nin[3p^2+4p+2,3(p+1)^2]$ :
$min(n-(2(p+1)^2+p^2),(2(p+1)^2+(p+1)^2)-n)le p<sqrt[4]{27p^2}<sqrt[4]{9n}$
Q.E.D.
2) Assertion is true $forall nin [108,289]$
Proof:
Assertion is true $forall nin{108,118}$
$min(n-(2.2^2+10^2),(2.3^2+10^2)-n)le 5<sqrt[4]{9times 108}lesqrt[4]{9n}$
Assertion is true $forall nin{118,129}$
$min(n-(2.3^2+10^2),(2.8^2+1^2)-n)le 5<sqrt[4]{9times 118}lesqrt[4]{9n}$
Assertion is true $forall nin{129,139}$
$min(n-(2.8^2+1^2),(2.3^2+11^2)-n)le 5<sqrt[4]{9times 129}lesqrt[4]{9n}$
Assertion is true $forall nin{139,150}$
$min(n-(2.3^2+11^2),(2.5^2+10^2)-n)le 5<sqrt[4]{9times 139}lesqrt[4]{9n}$
Assertion is true $forall nin{150,162}$
$min(n-(2.5^2+10^2),(2.3^2+12^2)-n)le 6<sqrt[4]{9times 150}lesqrt[4]{9n}$
Assertion is true $forall nin{162,172}$
$min(n-(2.3^2+12^2),(2.6^2+10^2)-n)le 5<sqrt[4]{9times 162}lesqrt[4]{9n}$
Assertion is true $forall nin{172,179}$
$min(n-(2.6^2+10^2),(2.7^2+9^2)-n)le 3<sqrt[4]{9times 172}lesqrt[4]{9n}$
Assertion is true $forall nin{179,187}$
$min(n-(2.7^2+9^2),(2.9^2+5^2)-n)le 4<sqrt[4]{9times 179}lesqrt[4]{9n}$
Assertion is true $forall nin{187,198}$
$min(n-(2.9^2+5^2),(2.1^2+14^2)-n)le 5<sqrt[4]{9times 187}lesqrt[4]{9n}$
Assertion is true $forall nin{198,209}$
$min(n-(2.1^2+14^2),(2.10^2+3^2)-n)le 5<sqrt[4]{9times 198}lesqrt[4]{9n}$
Assertion is true $forall nin{209,219}$
$min(n-(2.10^2+3^2),(2.5^2+13^2)-n)le 5<sqrt[4]{9times 209}lesqrt[4]{9n}$
Assertion is true $forall nin{219,228}$
$min(n-(2.5^2+13^2),(2.4^2+14^2)-n)le 5<sqrt[4]{9times 219}lesqrt[4]{9n}$
Assertion is true $forall nin{228,241}$
$min(n-(2.4^2+14^2),(2.6^2+13^2)-n)le 6<sqrt[4]{9times 228}lesqrt[4]{9n}$
Assertion is true $forall nin{241,251}$
$min(n-(2.6^2+13^2),(2.11^2+3^2)-n)le 5<sqrt[4]{9times 241}lesqrt[4]{9n}$
Assertion is true $forall nin{251,264}$
$min(n-(2.11^2+3^2),(2.2^2+16^2)-n)le 6<sqrt[4]{9times 251}lesqrt[4]{9n}$
Assertion is true $forall nin{264,275}$
$min(n-(2.2^2+16^2),(2.5^2+15^2)-n)le 6<sqrt[4]{9times 264}lesqrt[4]{9n}$
Assertion is true $forall nin{275,289}$
$min(n-(2.5^2+15^2),(2.12^2+15^2)-n)le 7<sqrt[4]{9times 275}lesqrt[4]{9n}$
3) Assertion is true $forall nge 290$
Proof: Let $p=leftlfloorsqrt{frac{n-1}2}rightrfloor$ so that $nin{2p^2+1,2(p+1)^2}$
So $nin[2p^2+k^2,2p^2+(k+1)^2)$ for some $kin{1,2,...,leftlfloorsqrt{4p+3}rightrfloor}$
And so $min(n-2p^2-k^2,2p^2+(k+1)^2-n)le k$ $le leftlfloorsqrt{4p+3}rightrfloor$
And so it remains to prove that :
$leftlfloorsqrt{4p+3}rightrfloor<sqrt[4]{9n}$ where $p=leftlfloorsqrt{frac{n-1}2}rightrfloor$
Enough to prove $sqrt{4sqrt{frac{n-1}2}+3}<sqrt[4]{9n}$, which is easily proved true $forall nge 290$
Q.E.D.
I hope someone will post a nicer solution !
number-theory inequality
$endgroup$
add a comment |
$begingroup$
Prove that $forall n in mathbb{N}_+,exists p,q in mathbb{Z}$ such that $|p^2+2q^2-n|<sqrt[4]{9n}$
Solution.
1) Assertion is true $forall nin[1,108]$
proof: Let $pin{0,1,2,3,4,5}$
If $nin[3p^2,3p^2+2p+1)$ :
$min(n-(2p^2+p^2),(2p^2+(p+1)^2)-n)le p<sqrt[4]{27p^2}<sqrt[4]{9n}$
If $nin[3p^2+2p+1,3p^2+4p+2)$ :
$min(n-(2p^2+(p+1)^2),(2(p+1)^2+p^2)-n)le p<sqrt[4]{27p^2}<sqrt[4]{9n}$
If $nin[3p^2+4p+2,3(p+1)^2]$ :
$min(n-(2(p+1)^2+p^2),(2(p+1)^2+(p+1)^2)-n)le p<sqrt[4]{27p^2}<sqrt[4]{9n}$
Q.E.D.
2) Assertion is true $forall nin [108,289]$
Proof:
Assertion is true $forall nin{108,118}$
$min(n-(2.2^2+10^2),(2.3^2+10^2)-n)le 5<sqrt[4]{9times 108}lesqrt[4]{9n}$
Assertion is true $forall nin{118,129}$
$min(n-(2.3^2+10^2),(2.8^2+1^2)-n)le 5<sqrt[4]{9times 118}lesqrt[4]{9n}$
Assertion is true $forall nin{129,139}$
$min(n-(2.8^2+1^2),(2.3^2+11^2)-n)le 5<sqrt[4]{9times 129}lesqrt[4]{9n}$
Assertion is true $forall nin{139,150}$
$min(n-(2.3^2+11^2),(2.5^2+10^2)-n)le 5<sqrt[4]{9times 139}lesqrt[4]{9n}$
Assertion is true $forall nin{150,162}$
$min(n-(2.5^2+10^2),(2.3^2+12^2)-n)le 6<sqrt[4]{9times 150}lesqrt[4]{9n}$
Assertion is true $forall nin{162,172}$
$min(n-(2.3^2+12^2),(2.6^2+10^2)-n)le 5<sqrt[4]{9times 162}lesqrt[4]{9n}$
Assertion is true $forall nin{172,179}$
$min(n-(2.6^2+10^2),(2.7^2+9^2)-n)le 3<sqrt[4]{9times 172}lesqrt[4]{9n}$
Assertion is true $forall nin{179,187}$
$min(n-(2.7^2+9^2),(2.9^2+5^2)-n)le 4<sqrt[4]{9times 179}lesqrt[4]{9n}$
Assertion is true $forall nin{187,198}$
$min(n-(2.9^2+5^2),(2.1^2+14^2)-n)le 5<sqrt[4]{9times 187}lesqrt[4]{9n}$
Assertion is true $forall nin{198,209}$
$min(n-(2.1^2+14^2),(2.10^2+3^2)-n)le 5<sqrt[4]{9times 198}lesqrt[4]{9n}$
Assertion is true $forall nin{209,219}$
$min(n-(2.10^2+3^2),(2.5^2+13^2)-n)le 5<sqrt[4]{9times 209}lesqrt[4]{9n}$
Assertion is true $forall nin{219,228}$
$min(n-(2.5^2+13^2),(2.4^2+14^2)-n)le 5<sqrt[4]{9times 219}lesqrt[4]{9n}$
Assertion is true $forall nin{228,241}$
$min(n-(2.4^2+14^2),(2.6^2+13^2)-n)le 6<sqrt[4]{9times 228}lesqrt[4]{9n}$
Assertion is true $forall nin{241,251}$
$min(n-(2.6^2+13^2),(2.11^2+3^2)-n)le 5<sqrt[4]{9times 241}lesqrt[4]{9n}$
Assertion is true $forall nin{251,264}$
$min(n-(2.11^2+3^2),(2.2^2+16^2)-n)le 6<sqrt[4]{9times 251}lesqrt[4]{9n}$
Assertion is true $forall nin{264,275}$
$min(n-(2.2^2+16^2),(2.5^2+15^2)-n)le 6<sqrt[4]{9times 264}lesqrt[4]{9n}$
Assertion is true $forall nin{275,289}$
$min(n-(2.5^2+15^2),(2.12^2+15^2)-n)le 7<sqrt[4]{9times 275}lesqrt[4]{9n}$
3) Assertion is true $forall nge 290$
Proof: Let $p=leftlfloorsqrt{frac{n-1}2}rightrfloor$ so that $nin{2p^2+1,2(p+1)^2}$
So $nin[2p^2+k^2,2p^2+(k+1)^2)$ for some $kin{1,2,...,leftlfloorsqrt{4p+3}rightrfloor}$
And so $min(n-2p^2-k^2,2p^2+(k+1)^2-n)le k$ $le leftlfloorsqrt{4p+3}rightrfloor$
And so it remains to prove that :
$leftlfloorsqrt{4p+3}rightrfloor<sqrt[4]{9n}$ where $p=leftlfloorsqrt{frac{n-1}2}rightrfloor$
Enough to prove $sqrt{4sqrt{frac{n-1}2}+3}<sqrt[4]{9n}$, which is easily proved true $forall nge 290$
Q.E.D.
I hope someone will post a nicer solution !
number-theory inequality
$endgroup$
$begingroup$
It is better to use cdot than a period for multiplication. In my first reading $2.3^2$ looked like $5.29$ (which you may write $5,29$), not $18$ You could also look at the recurrence for the Pell equation for finding $p,q$
$endgroup$
– Ross Millikan
Dec 16 '18 at 3:06
$begingroup$
compare Bambah and Chowla 1947 insa.nic.in/writereaddata/UpLoadedFiles/PINSA/…
$endgroup$
– Will Jagy
Dec 22 '18 at 18:33
$begingroup$
Do you have any solution?
$endgroup$
– nam
Dec 23 '18 at 7:51
add a comment |
$begingroup$
Prove that $forall n in mathbb{N}_+,exists p,q in mathbb{Z}$ such that $|p^2+2q^2-n|<sqrt[4]{9n}$
Solution.
1) Assertion is true $forall nin[1,108]$
proof: Let $pin{0,1,2,3,4,5}$
If $nin[3p^2,3p^2+2p+1)$ :
$min(n-(2p^2+p^2),(2p^2+(p+1)^2)-n)le p<sqrt[4]{27p^2}<sqrt[4]{9n}$
If $nin[3p^2+2p+1,3p^2+4p+2)$ :
$min(n-(2p^2+(p+1)^2),(2(p+1)^2+p^2)-n)le p<sqrt[4]{27p^2}<sqrt[4]{9n}$
If $nin[3p^2+4p+2,3(p+1)^2]$ :
$min(n-(2(p+1)^2+p^2),(2(p+1)^2+(p+1)^2)-n)le p<sqrt[4]{27p^2}<sqrt[4]{9n}$
Q.E.D.
2) Assertion is true $forall nin [108,289]$
Proof:
Assertion is true $forall nin{108,118}$
$min(n-(2.2^2+10^2),(2.3^2+10^2)-n)le 5<sqrt[4]{9times 108}lesqrt[4]{9n}$
Assertion is true $forall nin{118,129}$
$min(n-(2.3^2+10^2),(2.8^2+1^2)-n)le 5<sqrt[4]{9times 118}lesqrt[4]{9n}$
Assertion is true $forall nin{129,139}$
$min(n-(2.8^2+1^2),(2.3^2+11^2)-n)le 5<sqrt[4]{9times 129}lesqrt[4]{9n}$
Assertion is true $forall nin{139,150}$
$min(n-(2.3^2+11^2),(2.5^2+10^2)-n)le 5<sqrt[4]{9times 139}lesqrt[4]{9n}$
Assertion is true $forall nin{150,162}$
$min(n-(2.5^2+10^2),(2.3^2+12^2)-n)le 6<sqrt[4]{9times 150}lesqrt[4]{9n}$
Assertion is true $forall nin{162,172}$
$min(n-(2.3^2+12^2),(2.6^2+10^2)-n)le 5<sqrt[4]{9times 162}lesqrt[4]{9n}$
Assertion is true $forall nin{172,179}$
$min(n-(2.6^2+10^2),(2.7^2+9^2)-n)le 3<sqrt[4]{9times 172}lesqrt[4]{9n}$
Assertion is true $forall nin{179,187}$
$min(n-(2.7^2+9^2),(2.9^2+5^2)-n)le 4<sqrt[4]{9times 179}lesqrt[4]{9n}$
Assertion is true $forall nin{187,198}$
$min(n-(2.9^2+5^2),(2.1^2+14^2)-n)le 5<sqrt[4]{9times 187}lesqrt[4]{9n}$
Assertion is true $forall nin{198,209}$
$min(n-(2.1^2+14^2),(2.10^2+3^2)-n)le 5<sqrt[4]{9times 198}lesqrt[4]{9n}$
Assertion is true $forall nin{209,219}$
$min(n-(2.10^2+3^2),(2.5^2+13^2)-n)le 5<sqrt[4]{9times 209}lesqrt[4]{9n}$
Assertion is true $forall nin{219,228}$
$min(n-(2.5^2+13^2),(2.4^2+14^2)-n)le 5<sqrt[4]{9times 219}lesqrt[4]{9n}$
Assertion is true $forall nin{228,241}$
$min(n-(2.4^2+14^2),(2.6^2+13^2)-n)le 6<sqrt[4]{9times 228}lesqrt[4]{9n}$
Assertion is true $forall nin{241,251}$
$min(n-(2.6^2+13^2),(2.11^2+3^2)-n)le 5<sqrt[4]{9times 241}lesqrt[4]{9n}$
Assertion is true $forall nin{251,264}$
$min(n-(2.11^2+3^2),(2.2^2+16^2)-n)le 6<sqrt[4]{9times 251}lesqrt[4]{9n}$
Assertion is true $forall nin{264,275}$
$min(n-(2.2^2+16^2),(2.5^2+15^2)-n)le 6<sqrt[4]{9times 264}lesqrt[4]{9n}$
Assertion is true $forall nin{275,289}$
$min(n-(2.5^2+15^2),(2.12^2+15^2)-n)le 7<sqrt[4]{9times 275}lesqrt[4]{9n}$
3) Assertion is true $forall nge 290$
Proof: Let $p=leftlfloorsqrt{frac{n-1}2}rightrfloor$ so that $nin{2p^2+1,2(p+1)^2}$
So $nin[2p^2+k^2,2p^2+(k+1)^2)$ for some $kin{1,2,...,leftlfloorsqrt{4p+3}rightrfloor}$
And so $min(n-2p^2-k^2,2p^2+(k+1)^2-n)le k$ $le leftlfloorsqrt{4p+3}rightrfloor$
And so it remains to prove that :
$leftlfloorsqrt{4p+3}rightrfloor<sqrt[4]{9n}$ where $p=leftlfloorsqrt{frac{n-1}2}rightrfloor$
Enough to prove $sqrt{4sqrt{frac{n-1}2}+3}<sqrt[4]{9n}$, which is easily proved true $forall nge 290$
Q.E.D.
I hope someone will post a nicer solution !
number-theory inequality
$endgroup$
Prove that $forall n in mathbb{N}_+,exists p,q in mathbb{Z}$ such that $|p^2+2q^2-n|<sqrt[4]{9n}$
Solution.
1) Assertion is true $forall nin[1,108]$
proof: Let $pin{0,1,2,3,4,5}$
If $nin[3p^2,3p^2+2p+1)$ :
$min(n-(2p^2+p^2),(2p^2+(p+1)^2)-n)le p<sqrt[4]{27p^2}<sqrt[4]{9n}$
If $nin[3p^2+2p+1,3p^2+4p+2)$ :
$min(n-(2p^2+(p+1)^2),(2(p+1)^2+p^2)-n)le p<sqrt[4]{27p^2}<sqrt[4]{9n}$
If $nin[3p^2+4p+2,3(p+1)^2]$ :
$min(n-(2(p+1)^2+p^2),(2(p+1)^2+(p+1)^2)-n)le p<sqrt[4]{27p^2}<sqrt[4]{9n}$
Q.E.D.
2) Assertion is true $forall nin [108,289]$
Proof:
Assertion is true $forall nin{108,118}$
$min(n-(2.2^2+10^2),(2.3^2+10^2)-n)le 5<sqrt[4]{9times 108}lesqrt[4]{9n}$
Assertion is true $forall nin{118,129}$
$min(n-(2.3^2+10^2),(2.8^2+1^2)-n)le 5<sqrt[4]{9times 118}lesqrt[4]{9n}$
Assertion is true $forall nin{129,139}$
$min(n-(2.8^2+1^2),(2.3^2+11^2)-n)le 5<sqrt[4]{9times 129}lesqrt[4]{9n}$
Assertion is true $forall nin{139,150}$
$min(n-(2.3^2+11^2),(2.5^2+10^2)-n)le 5<sqrt[4]{9times 139}lesqrt[4]{9n}$
Assertion is true $forall nin{150,162}$
$min(n-(2.5^2+10^2),(2.3^2+12^2)-n)le 6<sqrt[4]{9times 150}lesqrt[4]{9n}$
Assertion is true $forall nin{162,172}$
$min(n-(2.3^2+12^2),(2.6^2+10^2)-n)le 5<sqrt[4]{9times 162}lesqrt[4]{9n}$
Assertion is true $forall nin{172,179}$
$min(n-(2.6^2+10^2),(2.7^2+9^2)-n)le 3<sqrt[4]{9times 172}lesqrt[4]{9n}$
Assertion is true $forall nin{179,187}$
$min(n-(2.7^2+9^2),(2.9^2+5^2)-n)le 4<sqrt[4]{9times 179}lesqrt[4]{9n}$
Assertion is true $forall nin{187,198}$
$min(n-(2.9^2+5^2),(2.1^2+14^2)-n)le 5<sqrt[4]{9times 187}lesqrt[4]{9n}$
Assertion is true $forall nin{198,209}$
$min(n-(2.1^2+14^2),(2.10^2+3^2)-n)le 5<sqrt[4]{9times 198}lesqrt[4]{9n}$
Assertion is true $forall nin{209,219}$
$min(n-(2.10^2+3^2),(2.5^2+13^2)-n)le 5<sqrt[4]{9times 209}lesqrt[4]{9n}$
Assertion is true $forall nin{219,228}$
$min(n-(2.5^2+13^2),(2.4^2+14^2)-n)le 5<sqrt[4]{9times 219}lesqrt[4]{9n}$
Assertion is true $forall nin{228,241}$
$min(n-(2.4^2+14^2),(2.6^2+13^2)-n)le 6<sqrt[4]{9times 228}lesqrt[4]{9n}$
Assertion is true $forall nin{241,251}$
$min(n-(2.6^2+13^2),(2.11^2+3^2)-n)le 5<sqrt[4]{9times 241}lesqrt[4]{9n}$
Assertion is true $forall nin{251,264}$
$min(n-(2.11^2+3^2),(2.2^2+16^2)-n)le 6<sqrt[4]{9times 251}lesqrt[4]{9n}$
Assertion is true $forall nin{264,275}$
$min(n-(2.2^2+16^2),(2.5^2+15^2)-n)le 6<sqrt[4]{9times 264}lesqrt[4]{9n}$
Assertion is true $forall nin{275,289}$
$min(n-(2.5^2+15^2),(2.12^2+15^2)-n)le 7<sqrt[4]{9times 275}lesqrt[4]{9n}$
3) Assertion is true $forall nge 290$
Proof: Let $p=leftlfloorsqrt{frac{n-1}2}rightrfloor$ so that $nin{2p^2+1,2(p+1)^2}$
So $nin[2p^2+k^2,2p^2+(k+1)^2)$ for some $kin{1,2,...,leftlfloorsqrt{4p+3}rightrfloor}$
And so $min(n-2p^2-k^2,2p^2+(k+1)^2-n)le k$ $le leftlfloorsqrt{4p+3}rightrfloor$
And so it remains to prove that :
$leftlfloorsqrt{4p+3}rightrfloor<sqrt[4]{9n}$ where $p=leftlfloorsqrt{frac{n-1}2}rightrfloor$
Enough to prove $sqrt{4sqrt{frac{n-1}2}+3}<sqrt[4]{9n}$, which is easily proved true $forall nge 290$
Q.E.D.
I hope someone will post a nicer solution !
number-theory inequality
number-theory inequality
asked Dec 16 '18 at 2:09
namnam
973
973
$begingroup$
It is better to use cdot than a period for multiplication. In my first reading $2.3^2$ looked like $5.29$ (which you may write $5,29$), not $18$ You could also look at the recurrence for the Pell equation for finding $p,q$
$endgroup$
– Ross Millikan
Dec 16 '18 at 3:06
$begingroup$
compare Bambah and Chowla 1947 insa.nic.in/writereaddata/UpLoadedFiles/PINSA/…
$endgroup$
– Will Jagy
Dec 22 '18 at 18:33
$begingroup$
Do you have any solution?
$endgroup$
– nam
Dec 23 '18 at 7:51
add a comment |
$begingroup$
It is better to use cdot than a period for multiplication. In my first reading $2.3^2$ looked like $5.29$ (which you may write $5,29$), not $18$ You could also look at the recurrence for the Pell equation for finding $p,q$
$endgroup$
– Ross Millikan
Dec 16 '18 at 3:06
$begingroup$
compare Bambah and Chowla 1947 insa.nic.in/writereaddata/UpLoadedFiles/PINSA/…
$endgroup$
– Will Jagy
Dec 22 '18 at 18:33
$begingroup$
Do you have any solution?
$endgroup$
– nam
Dec 23 '18 at 7:51
$begingroup$
It is better to use cdot than a period for multiplication. In my first reading $2.3^2$ looked like $5.29$ (which you may write $5,29$), not $18$ You could also look at the recurrence for the Pell equation for finding $p,q$
$endgroup$
– Ross Millikan
Dec 16 '18 at 3:06
$begingroup$
It is better to use cdot than a period for multiplication. In my first reading $2.3^2$ looked like $5.29$ (which you may write $5,29$), not $18$ You could also look at the recurrence for the Pell equation for finding $p,q$
$endgroup$
– Ross Millikan
Dec 16 '18 at 3:06
$begingroup$
compare Bambah and Chowla 1947 insa.nic.in/writereaddata/UpLoadedFiles/PINSA/…
$endgroup$
– Will Jagy
Dec 22 '18 at 18:33
$begingroup$
compare Bambah and Chowla 1947 insa.nic.in/writereaddata/UpLoadedFiles/PINSA/…
$endgroup$
– Will Jagy
Dec 22 '18 at 18:33
$begingroup$
Do you have any solution?
$endgroup$
– nam
Dec 23 '18 at 7:51
$begingroup$
Do you have any solution?
$endgroup$
– nam
Dec 23 '18 at 7:51
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042161%2fprove-that-p22q2-n-sqrt49n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042161%2fprove-that-p22q2-n-sqrt49n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
It is better to use cdot than a period for multiplication. In my first reading $2.3^2$ looked like $5.29$ (which you may write $5,29$), not $18$ You could also look at the recurrence for the Pell equation for finding $p,q$
$endgroup$
– Ross Millikan
Dec 16 '18 at 3:06
$begingroup$
compare Bambah and Chowla 1947 insa.nic.in/writereaddata/UpLoadedFiles/PINSA/…
$endgroup$
– Will Jagy
Dec 22 '18 at 18:33
$begingroup$
Do you have any solution?
$endgroup$
– nam
Dec 23 '18 at 7:51