How do I find the magnitude and phase of the frequency response function for a third order system using...
$begingroup$
A third order system is described by:
$$frac{{rm d}^3 y}{{rm d}t^3} + 2 frac{{rm d}^2 y}{{rm d}t^2} + 6 frac{{rm d} y}{{rm d}t} + 5y = u + 2 frac{{rm d} u}{{rm d}t}.$$ Determine the magnitude and phase of its frequency response function.
I know I have to change the equation into a transfer function but after that is where I get stuck because it doesn't simply very nicely. Any help would be appreciated, thanks in advance!
edit: This is the work I've done
Work I've done
ordinary-differential-equations fourier-analysis systems-of-equations
$endgroup$
|
show 1 more comment
$begingroup$
A third order system is described by:
$$frac{{rm d}^3 y}{{rm d}t^3} + 2 frac{{rm d}^2 y}{{rm d}t^2} + 6 frac{{rm d} y}{{rm d}t} + 5y = u + 2 frac{{rm d} u}{{rm d}t}.$$ Determine the magnitude and phase of its frequency response function.
I know I have to change the equation into a transfer function but after that is where I get stuck because it doesn't simply very nicely. Any help would be appreciated, thanks in advance!
edit: This is the work I've done
Work I've done
ordinary-differential-equations fourier-analysis systems-of-equations
$endgroup$
$begingroup$
You don't need to simplify. You get a Laplace domain function in the variable s that is rational (polynomial on top and bottom). Set $s = j omega$. You now have a complex number for a given choice of $omega$. This number has a magnitude and a phase, which you compute using complex arithmetic. If you are looking to plot this, look into the Bode plot, which is exactly a plot of magnitude and phase
$endgroup$
– Michael Stachowsky
Jan 4 '17 at 16:00
$begingroup$
@Moo I've edited my work in!
$endgroup$
– Fukuyama
Jan 4 '17 at 16:15
1
$begingroup$
@Fukuyama: Your $H(s)$ looks quite okay to me. Now substitute $s = jmath omega$ to get $G(omega)$. Then forming the magnitude is relatively straightforward complex arithmetic.
$endgroup$
– Florian
Jan 4 '17 at 16:21
$begingroup$
@Florian Thank you! And what would I do for the phase if I may ask?
$endgroup$
– Fukuyama
Jan 4 '17 at 16:23
1
$begingroup$
Your $G(omega)$ will be in the form $frac{A+jmath B}{C+jmath D}$. Expanding with $C-jmath D$ gives $frac{(A+jmath B)(C-jmath D)}{C^2+D^2} = frac{AC+BD +jmath (BC-AD)}{C^2+D^2}$. This separates real from imaginary part. The phase of a complex number $x+jmath y$ is basically $tan^{-1}frac{y}{x}$, i.e., in your case something like $tan^{-1}frac{BC-AD}{AC+BD}$. To get the four-quadrant phase, use atan2 if needed.
$endgroup$
– Florian
Jan 4 '17 at 16:31
|
show 1 more comment
$begingroup$
A third order system is described by:
$$frac{{rm d}^3 y}{{rm d}t^3} + 2 frac{{rm d}^2 y}{{rm d}t^2} + 6 frac{{rm d} y}{{rm d}t} + 5y = u + 2 frac{{rm d} u}{{rm d}t}.$$ Determine the magnitude and phase of its frequency response function.
I know I have to change the equation into a transfer function but after that is where I get stuck because it doesn't simply very nicely. Any help would be appreciated, thanks in advance!
edit: This is the work I've done
Work I've done
ordinary-differential-equations fourier-analysis systems-of-equations
$endgroup$
A third order system is described by:
$$frac{{rm d}^3 y}{{rm d}t^3} + 2 frac{{rm d}^2 y}{{rm d}t^2} + 6 frac{{rm d} y}{{rm d}t} + 5y = u + 2 frac{{rm d} u}{{rm d}t}.$$ Determine the magnitude and phase of its frequency response function.
I know I have to change the equation into a transfer function but after that is where I get stuck because it doesn't simply very nicely. Any help would be appreciated, thanks in advance!
edit: This is the work I've done
Work I've done
ordinary-differential-equations fourier-analysis systems-of-equations
ordinary-differential-equations fourier-analysis systems-of-equations
edited Jan 4 '17 at 16:34
Florian
1,4571721
1,4571721
asked Jan 4 '17 at 15:49
Fukuyama Fukuyama
113
113
$begingroup$
You don't need to simplify. You get a Laplace domain function in the variable s that is rational (polynomial on top and bottom). Set $s = j omega$. You now have a complex number for a given choice of $omega$. This number has a magnitude and a phase, which you compute using complex arithmetic. If you are looking to plot this, look into the Bode plot, which is exactly a plot of magnitude and phase
$endgroup$
– Michael Stachowsky
Jan 4 '17 at 16:00
$begingroup$
@Moo I've edited my work in!
$endgroup$
– Fukuyama
Jan 4 '17 at 16:15
1
$begingroup$
@Fukuyama: Your $H(s)$ looks quite okay to me. Now substitute $s = jmath omega$ to get $G(omega)$. Then forming the magnitude is relatively straightforward complex arithmetic.
$endgroup$
– Florian
Jan 4 '17 at 16:21
$begingroup$
@Florian Thank you! And what would I do for the phase if I may ask?
$endgroup$
– Fukuyama
Jan 4 '17 at 16:23
1
$begingroup$
Your $G(omega)$ will be in the form $frac{A+jmath B}{C+jmath D}$. Expanding with $C-jmath D$ gives $frac{(A+jmath B)(C-jmath D)}{C^2+D^2} = frac{AC+BD +jmath (BC-AD)}{C^2+D^2}$. This separates real from imaginary part. The phase of a complex number $x+jmath y$ is basically $tan^{-1}frac{y}{x}$, i.e., in your case something like $tan^{-1}frac{BC-AD}{AC+BD}$. To get the four-quadrant phase, use atan2 if needed.
$endgroup$
– Florian
Jan 4 '17 at 16:31
|
show 1 more comment
$begingroup$
You don't need to simplify. You get a Laplace domain function in the variable s that is rational (polynomial on top and bottom). Set $s = j omega$. You now have a complex number for a given choice of $omega$. This number has a magnitude and a phase, which you compute using complex arithmetic. If you are looking to plot this, look into the Bode plot, which is exactly a plot of magnitude and phase
$endgroup$
– Michael Stachowsky
Jan 4 '17 at 16:00
$begingroup$
@Moo I've edited my work in!
$endgroup$
– Fukuyama
Jan 4 '17 at 16:15
1
$begingroup$
@Fukuyama: Your $H(s)$ looks quite okay to me. Now substitute $s = jmath omega$ to get $G(omega)$. Then forming the magnitude is relatively straightforward complex arithmetic.
$endgroup$
– Florian
Jan 4 '17 at 16:21
$begingroup$
@Florian Thank you! And what would I do for the phase if I may ask?
$endgroup$
– Fukuyama
Jan 4 '17 at 16:23
1
$begingroup$
Your $G(omega)$ will be in the form $frac{A+jmath B}{C+jmath D}$. Expanding with $C-jmath D$ gives $frac{(A+jmath B)(C-jmath D)}{C^2+D^2} = frac{AC+BD +jmath (BC-AD)}{C^2+D^2}$. This separates real from imaginary part. The phase of a complex number $x+jmath y$ is basically $tan^{-1}frac{y}{x}$, i.e., in your case something like $tan^{-1}frac{BC-AD}{AC+BD}$. To get the four-quadrant phase, use atan2 if needed.
$endgroup$
– Florian
Jan 4 '17 at 16:31
$begingroup$
You don't need to simplify. You get a Laplace domain function in the variable s that is rational (polynomial on top and bottom). Set $s = j omega$. You now have a complex number for a given choice of $omega$. This number has a magnitude and a phase, which you compute using complex arithmetic. If you are looking to plot this, look into the Bode plot, which is exactly a plot of magnitude and phase
$endgroup$
– Michael Stachowsky
Jan 4 '17 at 16:00
$begingroup$
You don't need to simplify. You get a Laplace domain function in the variable s that is rational (polynomial on top and bottom). Set $s = j omega$. You now have a complex number for a given choice of $omega$. This number has a magnitude and a phase, which you compute using complex arithmetic. If you are looking to plot this, look into the Bode plot, which is exactly a plot of magnitude and phase
$endgroup$
– Michael Stachowsky
Jan 4 '17 at 16:00
$begingroup$
@Moo I've edited my work in!
$endgroup$
– Fukuyama
Jan 4 '17 at 16:15
$begingroup$
@Moo I've edited my work in!
$endgroup$
– Fukuyama
Jan 4 '17 at 16:15
1
1
$begingroup$
@Fukuyama: Your $H(s)$ looks quite okay to me. Now substitute $s = jmath omega$ to get $G(omega)$. Then forming the magnitude is relatively straightforward complex arithmetic.
$endgroup$
– Florian
Jan 4 '17 at 16:21
$begingroup$
@Fukuyama: Your $H(s)$ looks quite okay to me. Now substitute $s = jmath omega$ to get $G(omega)$. Then forming the magnitude is relatively straightforward complex arithmetic.
$endgroup$
– Florian
Jan 4 '17 at 16:21
$begingroup$
@Florian Thank you! And what would I do for the phase if I may ask?
$endgroup$
– Fukuyama
Jan 4 '17 at 16:23
$begingroup$
@Florian Thank you! And what would I do for the phase if I may ask?
$endgroup$
– Fukuyama
Jan 4 '17 at 16:23
1
1
$begingroup$
Your $G(omega)$ will be in the form $frac{A+jmath B}{C+jmath D}$. Expanding with $C-jmath D$ gives $frac{(A+jmath B)(C-jmath D)}{C^2+D^2} = frac{AC+BD +jmath (BC-AD)}{C^2+D^2}$. This separates real from imaginary part. The phase of a complex number $x+jmath y$ is basically $tan^{-1}frac{y}{x}$, i.e., in your case something like $tan^{-1}frac{BC-AD}{AC+BD}$. To get the four-quadrant phase, use atan2 if needed.
$endgroup$
– Florian
Jan 4 '17 at 16:31
$begingroup$
Your $G(omega)$ will be in the form $frac{A+jmath B}{C+jmath D}$. Expanding with $C-jmath D$ gives $frac{(A+jmath B)(C-jmath D)}{C^2+D^2} = frac{AC+BD +jmath (BC-AD)}{C^2+D^2}$. This separates real from imaginary part. The phase of a complex number $x+jmath y$ is basically $tan^{-1}frac{y}{x}$, i.e., in your case something like $tan^{-1}frac{BC-AD}{AC+BD}$. To get the four-quadrant phase, use atan2 if needed.
$endgroup$
– Florian
Jan 4 '17 at 16:31
|
show 1 more comment
1 Answer
1
active
oldest
votes
$begingroup$
Laplace transform:
$$text{F}left(text{s}right)=mathcal{L}_tleft[text{f}left(tright)right]_{left(text{s}right)}:=int_0^inftytext{f}left(tright)e^{-text{s}t}spacetext{d}ttag1$$
So, we get:
$$text{n}_1cdottext{y}'''left(tright)+text{n}_2cdottext{y}''left(tright)+text{n}_3cdottext{y}'left(tright)+text{n}_4cdottext{y}left(tright)=text{n}_5cdottext{u}left(tright)+text{n}_6cdottext{u}'left(tright)tag2$$
Where $text{n}_text{a}$ is a constant for every $text{a}$
Now, when we take the Laplace transform of both sides, we need to know:
- $$mathcal{L}_tleft[text{n}_1cdottext{y}'''left(tright)right]_{left(text{s}right)}:=text{n}_1cdotint_0^inftytext{y}'''left(tright)e^{-text{s}t}spacetext{d}t=$$
$$text{n}_1cdotleft(text{s}^3cdottext{Y}left(text{s}right)-text{s}^2cdottext{y}left(0right)-text{s}cdottext{y}'left(0right)-text{y}''left(0right)right)tag3$$ - $$mathcal{L}_tleft[text{n}_2cdottext{y}''left(tright)right]_{left(text{s}right)}:=text{n}_2cdotint_0^inftytext{y}''left(tright)e^{-text{s}t}spacetext{d}t=text{n}_2cdotleft(text{s}^2cdottext{Y}left(text{s}right)-text{s}cdottext{y}left(0right)-text{y}'left(0right)right)tag4$$
- $$mathcal{L}_tleft[text{n}_3cdottext{y}'left(tright)right]_{left(text{s}right)}:=text{n}_3cdotint_0^inftytext{y}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_3cdotleft(text{s}cdottext{Y}left(text{s}right)-text{y}left(0right)right)tag5$$
- $$mathcal{L}_tleft[text{n}_4cdottext{y}left(tright)right]_{left(text{s}right)}:=text{n}_4cdotint_0^inftytext{y}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_4cdottext{Y}left(text{s}right)tag6$$
- $$mathcal{L}_tleft[text{n}_5cdottext{u}left(tright)right]_{left(text{s}right)}:=text{n}_5cdotint_0^inftytext{u}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_5cdottext{U}left(text{s}right)tag7$$
- $$mathcal{L}_tleft[text{n}_6cdottext{u}'left(tright)right]_{left(text{s}right)}:=text{n}_6cdotint_0^inftytext{u}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_6cdotleft(text{s}cdottext{U}left(text{s}right)-text{u}left(0right)right)tag8$$
Assuming that a initial conditions are equal to zero, we get:
$$text{n}_1cdottext{s}^3cdottext{Y}left(text{s}right)+text{n}_2cdottext{s}^2cdottext{Y}left(text{s}right)+text{n}_3cdottext{s}cdottext{Y}left(text{s}right)+text{n}_4cdottext{Y}left(text{s}right)=text{n}_5cdottext{U}left(text{s}right)+text{n}_6cdottext{s}cdottext{U}left(text{s}right)tag9$$
Simplifying it a little bit:
$$text{Y}left(text{s}right)cdotleft(text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4right)=text{U}left(text{s}right)cdotleft(text{n}_5+text{n}_6cdottext{s}right)tag{10}$$
So, we also know that:
$$text{H}left(text{s}right)=frac{text{Y}left(text{s}right)}{text{U}left(text{s}right)}=frac{text{n}_5+text{n}_6cdottext{s}}{text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4}tag{11}$$
For the respons you're looking for, we can use:
$$text{s}=text{j}omegatag{12}$$
Where $text{j}^2=-1$
So, we will also get:
$$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotleft(text{j}omegaright)}{text{n}_1cdotleft(text{j}omegaright)^3+text{n}_2cdotleft(text{j}omegaright)^2+text{n}_3cdotleft(text{j}omegaright)+text{n}_4}tag{13}$$
Simplying it a little bit, gives us:
$$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotomegacdottext{j}}{text{n}_4-text{n}_2cdotomega^2+text{j}cdotomegacdotleft(text{n}_3-text{n}_1cdotomega^2right)}tag{14}$$
For the magnitude we get:
$$left|text{H}left(text{j}omegaright)right|=frac{left|text{Y}left(text{j}omegaright)right|}{left|text{U}left(text{j}omegaright)right|}=frac{sqrt{text{n}_5^2+text{n}_6^2cdotomega^2}}{sqrt{left(text{n}_4-text{n}_2cdotomega^2right)^2+omega^2cdotleft(text{n}_3-text{n}_1cdotomega^2right)^2}}tag{15}$$
And for the phase, you can use:
$$argtext{H}left(text{j}omegaright)=argfrac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=argleft(text{Y}left(text{j}omegaright)right)-argleft(text{U}left(text{j}omegaright)right)tag{16}$$
Now, when $text{n}_5spacewedgespaceomegainmathbb{R}^+$:
$$argleft(text{Y}left(text{j}omegaright)right)=arctanleft(frac{text{n}_6cdotomega}{text{n}_5}right)tag{17}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2083536%2fhow-do-i-find-the-magnitude-and-phase-of-the-frequency-response-function-for-a-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Laplace transform:
$$text{F}left(text{s}right)=mathcal{L}_tleft[text{f}left(tright)right]_{left(text{s}right)}:=int_0^inftytext{f}left(tright)e^{-text{s}t}spacetext{d}ttag1$$
So, we get:
$$text{n}_1cdottext{y}'''left(tright)+text{n}_2cdottext{y}''left(tright)+text{n}_3cdottext{y}'left(tright)+text{n}_4cdottext{y}left(tright)=text{n}_5cdottext{u}left(tright)+text{n}_6cdottext{u}'left(tright)tag2$$
Where $text{n}_text{a}$ is a constant for every $text{a}$
Now, when we take the Laplace transform of both sides, we need to know:
- $$mathcal{L}_tleft[text{n}_1cdottext{y}'''left(tright)right]_{left(text{s}right)}:=text{n}_1cdotint_0^inftytext{y}'''left(tright)e^{-text{s}t}spacetext{d}t=$$
$$text{n}_1cdotleft(text{s}^3cdottext{Y}left(text{s}right)-text{s}^2cdottext{y}left(0right)-text{s}cdottext{y}'left(0right)-text{y}''left(0right)right)tag3$$ - $$mathcal{L}_tleft[text{n}_2cdottext{y}''left(tright)right]_{left(text{s}right)}:=text{n}_2cdotint_0^inftytext{y}''left(tright)e^{-text{s}t}spacetext{d}t=text{n}_2cdotleft(text{s}^2cdottext{Y}left(text{s}right)-text{s}cdottext{y}left(0right)-text{y}'left(0right)right)tag4$$
- $$mathcal{L}_tleft[text{n}_3cdottext{y}'left(tright)right]_{left(text{s}right)}:=text{n}_3cdotint_0^inftytext{y}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_3cdotleft(text{s}cdottext{Y}left(text{s}right)-text{y}left(0right)right)tag5$$
- $$mathcal{L}_tleft[text{n}_4cdottext{y}left(tright)right]_{left(text{s}right)}:=text{n}_4cdotint_0^inftytext{y}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_4cdottext{Y}left(text{s}right)tag6$$
- $$mathcal{L}_tleft[text{n}_5cdottext{u}left(tright)right]_{left(text{s}right)}:=text{n}_5cdotint_0^inftytext{u}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_5cdottext{U}left(text{s}right)tag7$$
- $$mathcal{L}_tleft[text{n}_6cdottext{u}'left(tright)right]_{left(text{s}right)}:=text{n}_6cdotint_0^inftytext{u}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_6cdotleft(text{s}cdottext{U}left(text{s}right)-text{u}left(0right)right)tag8$$
Assuming that a initial conditions are equal to zero, we get:
$$text{n}_1cdottext{s}^3cdottext{Y}left(text{s}right)+text{n}_2cdottext{s}^2cdottext{Y}left(text{s}right)+text{n}_3cdottext{s}cdottext{Y}left(text{s}right)+text{n}_4cdottext{Y}left(text{s}right)=text{n}_5cdottext{U}left(text{s}right)+text{n}_6cdottext{s}cdottext{U}left(text{s}right)tag9$$
Simplifying it a little bit:
$$text{Y}left(text{s}right)cdotleft(text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4right)=text{U}left(text{s}right)cdotleft(text{n}_5+text{n}_6cdottext{s}right)tag{10}$$
So, we also know that:
$$text{H}left(text{s}right)=frac{text{Y}left(text{s}right)}{text{U}left(text{s}right)}=frac{text{n}_5+text{n}_6cdottext{s}}{text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4}tag{11}$$
For the respons you're looking for, we can use:
$$text{s}=text{j}omegatag{12}$$
Where $text{j}^2=-1$
So, we will also get:
$$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotleft(text{j}omegaright)}{text{n}_1cdotleft(text{j}omegaright)^3+text{n}_2cdotleft(text{j}omegaright)^2+text{n}_3cdotleft(text{j}omegaright)+text{n}_4}tag{13}$$
Simplying it a little bit, gives us:
$$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotomegacdottext{j}}{text{n}_4-text{n}_2cdotomega^2+text{j}cdotomegacdotleft(text{n}_3-text{n}_1cdotomega^2right)}tag{14}$$
For the magnitude we get:
$$left|text{H}left(text{j}omegaright)right|=frac{left|text{Y}left(text{j}omegaright)right|}{left|text{U}left(text{j}omegaright)right|}=frac{sqrt{text{n}_5^2+text{n}_6^2cdotomega^2}}{sqrt{left(text{n}_4-text{n}_2cdotomega^2right)^2+omega^2cdotleft(text{n}_3-text{n}_1cdotomega^2right)^2}}tag{15}$$
And for the phase, you can use:
$$argtext{H}left(text{j}omegaright)=argfrac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=argleft(text{Y}left(text{j}omegaright)right)-argleft(text{U}left(text{j}omegaright)right)tag{16}$$
Now, when $text{n}_5spacewedgespaceomegainmathbb{R}^+$:
$$argleft(text{Y}left(text{j}omegaright)right)=arctanleft(frac{text{n}_6cdotomega}{text{n}_5}right)tag{17}$$
$endgroup$
add a comment |
$begingroup$
Laplace transform:
$$text{F}left(text{s}right)=mathcal{L}_tleft[text{f}left(tright)right]_{left(text{s}right)}:=int_0^inftytext{f}left(tright)e^{-text{s}t}spacetext{d}ttag1$$
So, we get:
$$text{n}_1cdottext{y}'''left(tright)+text{n}_2cdottext{y}''left(tright)+text{n}_3cdottext{y}'left(tright)+text{n}_4cdottext{y}left(tright)=text{n}_5cdottext{u}left(tright)+text{n}_6cdottext{u}'left(tright)tag2$$
Where $text{n}_text{a}$ is a constant for every $text{a}$
Now, when we take the Laplace transform of both sides, we need to know:
- $$mathcal{L}_tleft[text{n}_1cdottext{y}'''left(tright)right]_{left(text{s}right)}:=text{n}_1cdotint_0^inftytext{y}'''left(tright)e^{-text{s}t}spacetext{d}t=$$
$$text{n}_1cdotleft(text{s}^3cdottext{Y}left(text{s}right)-text{s}^2cdottext{y}left(0right)-text{s}cdottext{y}'left(0right)-text{y}''left(0right)right)tag3$$ - $$mathcal{L}_tleft[text{n}_2cdottext{y}''left(tright)right]_{left(text{s}right)}:=text{n}_2cdotint_0^inftytext{y}''left(tright)e^{-text{s}t}spacetext{d}t=text{n}_2cdotleft(text{s}^2cdottext{Y}left(text{s}right)-text{s}cdottext{y}left(0right)-text{y}'left(0right)right)tag4$$
- $$mathcal{L}_tleft[text{n}_3cdottext{y}'left(tright)right]_{left(text{s}right)}:=text{n}_3cdotint_0^inftytext{y}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_3cdotleft(text{s}cdottext{Y}left(text{s}right)-text{y}left(0right)right)tag5$$
- $$mathcal{L}_tleft[text{n}_4cdottext{y}left(tright)right]_{left(text{s}right)}:=text{n}_4cdotint_0^inftytext{y}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_4cdottext{Y}left(text{s}right)tag6$$
- $$mathcal{L}_tleft[text{n}_5cdottext{u}left(tright)right]_{left(text{s}right)}:=text{n}_5cdotint_0^inftytext{u}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_5cdottext{U}left(text{s}right)tag7$$
- $$mathcal{L}_tleft[text{n}_6cdottext{u}'left(tright)right]_{left(text{s}right)}:=text{n}_6cdotint_0^inftytext{u}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_6cdotleft(text{s}cdottext{U}left(text{s}right)-text{u}left(0right)right)tag8$$
Assuming that a initial conditions are equal to zero, we get:
$$text{n}_1cdottext{s}^3cdottext{Y}left(text{s}right)+text{n}_2cdottext{s}^2cdottext{Y}left(text{s}right)+text{n}_3cdottext{s}cdottext{Y}left(text{s}right)+text{n}_4cdottext{Y}left(text{s}right)=text{n}_5cdottext{U}left(text{s}right)+text{n}_6cdottext{s}cdottext{U}left(text{s}right)tag9$$
Simplifying it a little bit:
$$text{Y}left(text{s}right)cdotleft(text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4right)=text{U}left(text{s}right)cdotleft(text{n}_5+text{n}_6cdottext{s}right)tag{10}$$
So, we also know that:
$$text{H}left(text{s}right)=frac{text{Y}left(text{s}right)}{text{U}left(text{s}right)}=frac{text{n}_5+text{n}_6cdottext{s}}{text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4}tag{11}$$
For the respons you're looking for, we can use:
$$text{s}=text{j}omegatag{12}$$
Where $text{j}^2=-1$
So, we will also get:
$$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotleft(text{j}omegaright)}{text{n}_1cdotleft(text{j}omegaright)^3+text{n}_2cdotleft(text{j}omegaright)^2+text{n}_3cdotleft(text{j}omegaright)+text{n}_4}tag{13}$$
Simplying it a little bit, gives us:
$$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotomegacdottext{j}}{text{n}_4-text{n}_2cdotomega^2+text{j}cdotomegacdotleft(text{n}_3-text{n}_1cdotomega^2right)}tag{14}$$
For the magnitude we get:
$$left|text{H}left(text{j}omegaright)right|=frac{left|text{Y}left(text{j}omegaright)right|}{left|text{U}left(text{j}omegaright)right|}=frac{sqrt{text{n}_5^2+text{n}_6^2cdotomega^2}}{sqrt{left(text{n}_4-text{n}_2cdotomega^2right)^2+omega^2cdotleft(text{n}_3-text{n}_1cdotomega^2right)^2}}tag{15}$$
And for the phase, you can use:
$$argtext{H}left(text{j}omegaright)=argfrac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=argleft(text{Y}left(text{j}omegaright)right)-argleft(text{U}left(text{j}omegaright)right)tag{16}$$
Now, when $text{n}_5spacewedgespaceomegainmathbb{R}^+$:
$$argleft(text{Y}left(text{j}omegaright)right)=arctanleft(frac{text{n}_6cdotomega}{text{n}_5}right)tag{17}$$
$endgroup$
add a comment |
$begingroup$
Laplace transform:
$$text{F}left(text{s}right)=mathcal{L}_tleft[text{f}left(tright)right]_{left(text{s}right)}:=int_0^inftytext{f}left(tright)e^{-text{s}t}spacetext{d}ttag1$$
So, we get:
$$text{n}_1cdottext{y}'''left(tright)+text{n}_2cdottext{y}''left(tright)+text{n}_3cdottext{y}'left(tright)+text{n}_4cdottext{y}left(tright)=text{n}_5cdottext{u}left(tright)+text{n}_6cdottext{u}'left(tright)tag2$$
Where $text{n}_text{a}$ is a constant for every $text{a}$
Now, when we take the Laplace transform of both sides, we need to know:
- $$mathcal{L}_tleft[text{n}_1cdottext{y}'''left(tright)right]_{left(text{s}right)}:=text{n}_1cdotint_0^inftytext{y}'''left(tright)e^{-text{s}t}spacetext{d}t=$$
$$text{n}_1cdotleft(text{s}^3cdottext{Y}left(text{s}right)-text{s}^2cdottext{y}left(0right)-text{s}cdottext{y}'left(0right)-text{y}''left(0right)right)tag3$$ - $$mathcal{L}_tleft[text{n}_2cdottext{y}''left(tright)right]_{left(text{s}right)}:=text{n}_2cdotint_0^inftytext{y}''left(tright)e^{-text{s}t}spacetext{d}t=text{n}_2cdotleft(text{s}^2cdottext{Y}left(text{s}right)-text{s}cdottext{y}left(0right)-text{y}'left(0right)right)tag4$$
- $$mathcal{L}_tleft[text{n}_3cdottext{y}'left(tright)right]_{left(text{s}right)}:=text{n}_3cdotint_0^inftytext{y}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_3cdotleft(text{s}cdottext{Y}left(text{s}right)-text{y}left(0right)right)tag5$$
- $$mathcal{L}_tleft[text{n}_4cdottext{y}left(tright)right]_{left(text{s}right)}:=text{n}_4cdotint_0^inftytext{y}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_4cdottext{Y}left(text{s}right)tag6$$
- $$mathcal{L}_tleft[text{n}_5cdottext{u}left(tright)right]_{left(text{s}right)}:=text{n}_5cdotint_0^inftytext{u}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_5cdottext{U}left(text{s}right)tag7$$
- $$mathcal{L}_tleft[text{n}_6cdottext{u}'left(tright)right]_{left(text{s}right)}:=text{n}_6cdotint_0^inftytext{u}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_6cdotleft(text{s}cdottext{U}left(text{s}right)-text{u}left(0right)right)tag8$$
Assuming that a initial conditions are equal to zero, we get:
$$text{n}_1cdottext{s}^3cdottext{Y}left(text{s}right)+text{n}_2cdottext{s}^2cdottext{Y}left(text{s}right)+text{n}_3cdottext{s}cdottext{Y}left(text{s}right)+text{n}_4cdottext{Y}left(text{s}right)=text{n}_5cdottext{U}left(text{s}right)+text{n}_6cdottext{s}cdottext{U}left(text{s}right)tag9$$
Simplifying it a little bit:
$$text{Y}left(text{s}right)cdotleft(text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4right)=text{U}left(text{s}right)cdotleft(text{n}_5+text{n}_6cdottext{s}right)tag{10}$$
So, we also know that:
$$text{H}left(text{s}right)=frac{text{Y}left(text{s}right)}{text{U}left(text{s}right)}=frac{text{n}_5+text{n}_6cdottext{s}}{text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4}tag{11}$$
For the respons you're looking for, we can use:
$$text{s}=text{j}omegatag{12}$$
Where $text{j}^2=-1$
So, we will also get:
$$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotleft(text{j}omegaright)}{text{n}_1cdotleft(text{j}omegaright)^3+text{n}_2cdotleft(text{j}omegaright)^2+text{n}_3cdotleft(text{j}omegaright)+text{n}_4}tag{13}$$
Simplying it a little bit, gives us:
$$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotomegacdottext{j}}{text{n}_4-text{n}_2cdotomega^2+text{j}cdotomegacdotleft(text{n}_3-text{n}_1cdotomega^2right)}tag{14}$$
For the magnitude we get:
$$left|text{H}left(text{j}omegaright)right|=frac{left|text{Y}left(text{j}omegaright)right|}{left|text{U}left(text{j}omegaright)right|}=frac{sqrt{text{n}_5^2+text{n}_6^2cdotomega^2}}{sqrt{left(text{n}_4-text{n}_2cdotomega^2right)^2+omega^2cdotleft(text{n}_3-text{n}_1cdotomega^2right)^2}}tag{15}$$
And for the phase, you can use:
$$argtext{H}left(text{j}omegaright)=argfrac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=argleft(text{Y}left(text{j}omegaright)right)-argleft(text{U}left(text{j}omegaright)right)tag{16}$$
Now, when $text{n}_5spacewedgespaceomegainmathbb{R}^+$:
$$argleft(text{Y}left(text{j}omegaright)right)=arctanleft(frac{text{n}_6cdotomega}{text{n}_5}right)tag{17}$$
$endgroup$
Laplace transform:
$$text{F}left(text{s}right)=mathcal{L}_tleft[text{f}left(tright)right]_{left(text{s}right)}:=int_0^inftytext{f}left(tright)e^{-text{s}t}spacetext{d}ttag1$$
So, we get:
$$text{n}_1cdottext{y}'''left(tright)+text{n}_2cdottext{y}''left(tright)+text{n}_3cdottext{y}'left(tright)+text{n}_4cdottext{y}left(tright)=text{n}_5cdottext{u}left(tright)+text{n}_6cdottext{u}'left(tright)tag2$$
Where $text{n}_text{a}$ is a constant for every $text{a}$
Now, when we take the Laplace transform of both sides, we need to know:
- $$mathcal{L}_tleft[text{n}_1cdottext{y}'''left(tright)right]_{left(text{s}right)}:=text{n}_1cdotint_0^inftytext{y}'''left(tright)e^{-text{s}t}spacetext{d}t=$$
$$text{n}_1cdotleft(text{s}^3cdottext{Y}left(text{s}right)-text{s}^2cdottext{y}left(0right)-text{s}cdottext{y}'left(0right)-text{y}''left(0right)right)tag3$$ - $$mathcal{L}_tleft[text{n}_2cdottext{y}''left(tright)right]_{left(text{s}right)}:=text{n}_2cdotint_0^inftytext{y}''left(tright)e^{-text{s}t}spacetext{d}t=text{n}_2cdotleft(text{s}^2cdottext{Y}left(text{s}right)-text{s}cdottext{y}left(0right)-text{y}'left(0right)right)tag4$$
- $$mathcal{L}_tleft[text{n}_3cdottext{y}'left(tright)right]_{left(text{s}right)}:=text{n}_3cdotint_0^inftytext{y}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_3cdotleft(text{s}cdottext{Y}left(text{s}right)-text{y}left(0right)right)tag5$$
- $$mathcal{L}_tleft[text{n}_4cdottext{y}left(tright)right]_{left(text{s}right)}:=text{n}_4cdotint_0^inftytext{y}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_4cdottext{Y}left(text{s}right)tag6$$
- $$mathcal{L}_tleft[text{n}_5cdottext{u}left(tright)right]_{left(text{s}right)}:=text{n}_5cdotint_0^inftytext{u}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_5cdottext{U}left(text{s}right)tag7$$
- $$mathcal{L}_tleft[text{n}_6cdottext{u}'left(tright)right]_{left(text{s}right)}:=text{n}_6cdotint_0^inftytext{u}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_6cdotleft(text{s}cdottext{U}left(text{s}right)-text{u}left(0right)right)tag8$$
Assuming that a initial conditions are equal to zero, we get:
$$text{n}_1cdottext{s}^3cdottext{Y}left(text{s}right)+text{n}_2cdottext{s}^2cdottext{Y}left(text{s}right)+text{n}_3cdottext{s}cdottext{Y}left(text{s}right)+text{n}_4cdottext{Y}left(text{s}right)=text{n}_5cdottext{U}left(text{s}right)+text{n}_6cdottext{s}cdottext{U}left(text{s}right)tag9$$
Simplifying it a little bit:
$$text{Y}left(text{s}right)cdotleft(text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4right)=text{U}left(text{s}right)cdotleft(text{n}_5+text{n}_6cdottext{s}right)tag{10}$$
So, we also know that:
$$text{H}left(text{s}right)=frac{text{Y}left(text{s}right)}{text{U}left(text{s}right)}=frac{text{n}_5+text{n}_6cdottext{s}}{text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4}tag{11}$$
For the respons you're looking for, we can use:
$$text{s}=text{j}omegatag{12}$$
Where $text{j}^2=-1$
So, we will also get:
$$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotleft(text{j}omegaright)}{text{n}_1cdotleft(text{j}omegaright)^3+text{n}_2cdotleft(text{j}omegaright)^2+text{n}_3cdotleft(text{j}omegaright)+text{n}_4}tag{13}$$
Simplying it a little bit, gives us:
$$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotomegacdottext{j}}{text{n}_4-text{n}_2cdotomega^2+text{j}cdotomegacdotleft(text{n}_3-text{n}_1cdotomega^2right)}tag{14}$$
For the magnitude we get:
$$left|text{H}left(text{j}omegaright)right|=frac{left|text{Y}left(text{j}omegaright)right|}{left|text{U}left(text{j}omegaright)right|}=frac{sqrt{text{n}_5^2+text{n}_6^2cdotomega^2}}{sqrt{left(text{n}_4-text{n}_2cdotomega^2right)^2+omega^2cdotleft(text{n}_3-text{n}_1cdotomega^2right)^2}}tag{15}$$
And for the phase, you can use:
$$argtext{H}left(text{j}omegaright)=argfrac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=argleft(text{Y}left(text{j}omegaright)right)-argleft(text{U}left(text{j}omegaright)right)tag{16}$$
Now, when $text{n}_5spacewedgespaceomegainmathbb{R}^+$:
$$argleft(text{Y}left(text{j}omegaright)right)=arctanleft(frac{text{n}_6cdotomega}{text{n}_5}right)tag{17}$$
edited Jan 13 '17 at 16:48
answered Jan 4 '17 at 17:44
JanJan
21.8k31240
21.8k31240
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2083536%2fhow-do-i-find-the-magnitude-and-phase-of-the-frequency-response-function-for-a-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You don't need to simplify. You get a Laplace domain function in the variable s that is rational (polynomial on top and bottom). Set $s = j omega$. You now have a complex number for a given choice of $omega$. This number has a magnitude and a phase, which you compute using complex arithmetic. If you are looking to plot this, look into the Bode plot, which is exactly a plot of magnitude and phase
$endgroup$
– Michael Stachowsky
Jan 4 '17 at 16:00
$begingroup$
@Moo I've edited my work in!
$endgroup$
– Fukuyama
Jan 4 '17 at 16:15
1
$begingroup$
@Fukuyama: Your $H(s)$ looks quite okay to me. Now substitute $s = jmath omega$ to get $G(omega)$. Then forming the magnitude is relatively straightforward complex arithmetic.
$endgroup$
– Florian
Jan 4 '17 at 16:21
$begingroup$
@Florian Thank you! And what would I do for the phase if I may ask?
$endgroup$
– Fukuyama
Jan 4 '17 at 16:23
1
$begingroup$
Your $G(omega)$ will be in the form $frac{A+jmath B}{C+jmath D}$. Expanding with $C-jmath D$ gives $frac{(A+jmath B)(C-jmath D)}{C^2+D^2} = frac{AC+BD +jmath (BC-AD)}{C^2+D^2}$. This separates real from imaginary part. The phase of a complex number $x+jmath y$ is basically $tan^{-1}frac{y}{x}$, i.e., in your case something like $tan^{-1}frac{BC-AD}{AC+BD}$. To get the four-quadrant phase, use atan2 if needed.
$endgroup$
– Florian
Jan 4 '17 at 16:31