How do I find the magnitude and phase of the frequency response function for a third order system using...












1












$begingroup$



A third order system is described by:
$$frac{{rm d}^3 y}{{rm d}t^3} + 2 frac{{rm d}^2 y}{{rm d}t^2} + 6 frac{{rm d} y}{{rm d}t} + 5y = u + 2 frac{{rm d} u}{{rm d}t}.$$ Determine the magnitude and phase of its frequency response function.




I know I have to change the equation into a transfer function but after that is where I get stuck because it doesn't simply very nicely. Any help would be appreciated, thanks in advance!



edit: This is the work I've done
Work I've done










share|cite|improve this question











$endgroup$












  • $begingroup$
    You don't need to simplify. You get a Laplace domain function in the variable s that is rational (polynomial on top and bottom). Set $s = j omega$. You now have a complex number for a given choice of $omega$. This number has a magnitude and a phase, which you compute using complex arithmetic. If you are looking to plot this, look into the Bode plot, which is exactly a plot of magnitude and phase
    $endgroup$
    – Michael Stachowsky
    Jan 4 '17 at 16:00










  • $begingroup$
    @Moo I've edited my work in!
    $endgroup$
    – Fukuyama
    Jan 4 '17 at 16:15






  • 1




    $begingroup$
    @Fukuyama: Your $H(s)$ looks quite okay to me. Now substitute $s = jmath omega$ to get $G(omega)$. Then forming the magnitude is relatively straightforward complex arithmetic.
    $endgroup$
    – Florian
    Jan 4 '17 at 16:21










  • $begingroup$
    @Florian Thank you! And what would I do for the phase if I may ask?
    $endgroup$
    – Fukuyama
    Jan 4 '17 at 16:23






  • 1




    $begingroup$
    Your $G(omega)$ will be in the form $frac{A+jmath B}{C+jmath D}$. Expanding with $C-jmath D$ gives $frac{(A+jmath B)(C-jmath D)}{C^2+D^2} = frac{AC+BD +jmath (BC-AD)}{C^2+D^2}$. This separates real from imaginary part. The phase of a complex number $x+jmath y$ is basically $tan^{-1}frac{y}{x}$, i.e., in your case something like $tan^{-1}frac{BC-AD}{AC+BD}$. To get the four-quadrant phase, use atan2 if needed.
    $endgroup$
    – Florian
    Jan 4 '17 at 16:31


















1












$begingroup$



A third order system is described by:
$$frac{{rm d}^3 y}{{rm d}t^3} + 2 frac{{rm d}^2 y}{{rm d}t^2} + 6 frac{{rm d} y}{{rm d}t} + 5y = u + 2 frac{{rm d} u}{{rm d}t}.$$ Determine the magnitude and phase of its frequency response function.




I know I have to change the equation into a transfer function but after that is where I get stuck because it doesn't simply very nicely. Any help would be appreciated, thanks in advance!



edit: This is the work I've done
Work I've done










share|cite|improve this question











$endgroup$












  • $begingroup$
    You don't need to simplify. You get a Laplace domain function in the variable s that is rational (polynomial on top and bottom). Set $s = j omega$. You now have a complex number for a given choice of $omega$. This number has a magnitude and a phase, which you compute using complex arithmetic. If you are looking to plot this, look into the Bode plot, which is exactly a plot of magnitude and phase
    $endgroup$
    – Michael Stachowsky
    Jan 4 '17 at 16:00










  • $begingroup$
    @Moo I've edited my work in!
    $endgroup$
    – Fukuyama
    Jan 4 '17 at 16:15






  • 1




    $begingroup$
    @Fukuyama: Your $H(s)$ looks quite okay to me. Now substitute $s = jmath omega$ to get $G(omega)$. Then forming the magnitude is relatively straightforward complex arithmetic.
    $endgroup$
    – Florian
    Jan 4 '17 at 16:21










  • $begingroup$
    @Florian Thank you! And what would I do for the phase if I may ask?
    $endgroup$
    – Fukuyama
    Jan 4 '17 at 16:23






  • 1




    $begingroup$
    Your $G(omega)$ will be in the form $frac{A+jmath B}{C+jmath D}$. Expanding with $C-jmath D$ gives $frac{(A+jmath B)(C-jmath D)}{C^2+D^2} = frac{AC+BD +jmath (BC-AD)}{C^2+D^2}$. This separates real from imaginary part. The phase of a complex number $x+jmath y$ is basically $tan^{-1}frac{y}{x}$, i.e., in your case something like $tan^{-1}frac{BC-AD}{AC+BD}$. To get the four-quadrant phase, use atan2 if needed.
    $endgroup$
    – Florian
    Jan 4 '17 at 16:31
















1












1








1





$begingroup$



A third order system is described by:
$$frac{{rm d}^3 y}{{rm d}t^3} + 2 frac{{rm d}^2 y}{{rm d}t^2} + 6 frac{{rm d} y}{{rm d}t} + 5y = u + 2 frac{{rm d} u}{{rm d}t}.$$ Determine the magnitude and phase of its frequency response function.




I know I have to change the equation into a transfer function but after that is where I get stuck because it doesn't simply very nicely. Any help would be appreciated, thanks in advance!



edit: This is the work I've done
Work I've done










share|cite|improve this question











$endgroup$





A third order system is described by:
$$frac{{rm d}^3 y}{{rm d}t^3} + 2 frac{{rm d}^2 y}{{rm d}t^2} + 6 frac{{rm d} y}{{rm d}t} + 5y = u + 2 frac{{rm d} u}{{rm d}t}.$$ Determine the magnitude and phase of its frequency response function.




I know I have to change the equation into a transfer function but after that is where I get stuck because it doesn't simply very nicely. Any help would be appreciated, thanks in advance!



edit: This is the work I've done
Work I've done







ordinary-differential-equations fourier-analysis systems-of-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 4 '17 at 16:34









Florian

1,4571721




1,4571721










asked Jan 4 '17 at 15:49









Fukuyama Fukuyama

113




113












  • $begingroup$
    You don't need to simplify. You get a Laplace domain function in the variable s that is rational (polynomial on top and bottom). Set $s = j omega$. You now have a complex number for a given choice of $omega$. This number has a magnitude and a phase, which you compute using complex arithmetic. If you are looking to plot this, look into the Bode plot, which is exactly a plot of magnitude and phase
    $endgroup$
    – Michael Stachowsky
    Jan 4 '17 at 16:00










  • $begingroup$
    @Moo I've edited my work in!
    $endgroup$
    – Fukuyama
    Jan 4 '17 at 16:15






  • 1




    $begingroup$
    @Fukuyama: Your $H(s)$ looks quite okay to me. Now substitute $s = jmath omega$ to get $G(omega)$. Then forming the magnitude is relatively straightforward complex arithmetic.
    $endgroup$
    – Florian
    Jan 4 '17 at 16:21










  • $begingroup$
    @Florian Thank you! And what would I do for the phase if I may ask?
    $endgroup$
    – Fukuyama
    Jan 4 '17 at 16:23






  • 1




    $begingroup$
    Your $G(omega)$ will be in the form $frac{A+jmath B}{C+jmath D}$. Expanding with $C-jmath D$ gives $frac{(A+jmath B)(C-jmath D)}{C^2+D^2} = frac{AC+BD +jmath (BC-AD)}{C^2+D^2}$. This separates real from imaginary part. The phase of a complex number $x+jmath y$ is basically $tan^{-1}frac{y}{x}$, i.e., in your case something like $tan^{-1}frac{BC-AD}{AC+BD}$. To get the four-quadrant phase, use atan2 if needed.
    $endgroup$
    – Florian
    Jan 4 '17 at 16:31




















  • $begingroup$
    You don't need to simplify. You get a Laplace domain function in the variable s that is rational (polynomial on top and bottom). Set $s = j omega$. You now have a complex number for a given choice of $omega$. This number has a magnitude and a phase, which you compute using complex arithmetic. If you are looking to plot this, look into the Bode plot, which is exactly a plot of magnitude and phase
    $endgroup$
    – Michael Stachowsky
    Jan 4 '17 at 16:00










  • $begingroup$
    @Moo I've edited my work in!
    $endgroup$
    – Fukuyama
    Jan 4 '17 at 16:15






  • 1




    $begingroup$
    @Fukuyama: Your $H(s)$ looks quite okay to me. Now substitute $s = jmath omega$ to get $G(omega)$. Then forming the magnitude is relatively straightforward complex arithmetic.
    $endgroup$
    – Florian
    Jan 4 '17 at 16:21










  • $begingroup$
    @Florian Thank you! And what would I do for the phase if I may ask?
    $endgroup$
    – Fukuyama
    Jan 4 '17 at 16:23






  • 1




    $begingroup$
    Your $G(omega)$ will be in the form $frac{A+jmath B}{C+jmath D}$. Expanding with $C-jmath D$ gives $frac{(A+jmath B)(C-jmath D)}{C^2+D^2} = frac{AC+BD +jmath (BC-AD)}{C^2+D^2}$. This separates real from imaginary part. The phase of a complex number $x+jmath y$ is basically $tan^{-1}frac{y}{x}$, i.e., in your case something like $tan^{-1}frac{BC-AD}{AC+BD}$. To get the four-quadrant phase, use atan2 if needed.
    $endgroup$
    – Florian
    Jan 4 '17 at 16:31


















$begingroup$
You don't need to simplify. You get a Laplace domain function in the variable s that is rational (polynomial on top and bottom). Set $s = j omega$. You now have a complex number for a given choice of $omega$. This number has a magnitude and a phase, which you compute using complex arithmetic. If you are looking to plot this, look into the Bode plot, which is exactly a plot of magnitude and phase
$endgroup$
– Michael Stachowsky
Jan 4 '17 at 16:00




$begingroup$
You don't need to simplify. You get a Laplace domain function in the variable s that is rational (polynomial on top and bottom). Set $s = j omega$. You now have a complex number for a given choice of $omega$. This number has a magnitude and a phase, which you compute using complex arithmetic. If you are looking to plot this, look into the Bode plot, which is exactly a plot of magnitude and phase
$endgroup$
– Michael Stachowsky
Jan 4 '17 at 16:00












$begingroup$
@Moo I've edited my work in!
$endgroup$
– Fukuyama
Jan 4 '17 at 16:15




$begingroup$
@Moo I've edited my work in!
$endgroup$
– Fukuyama
Jan 4 '17 at 16:15




1




1




$begingroup$
@Fukuyama: Your $H(s)$ looks quite okay to me. Now substitute $s = jmath omega$ to get $G(omega)$. Then forming the magnitude is relatively straightforward complex arithmetic.
$endgroup$
– Florian
Jan 4 '17 at 16:21




$begingroup$
@Fukuyama: Your $H(s)$ looks quite okay to me. Now substitute $s = jmath omega$ to get $G(omega)$. Then forming the magnitude is relatively straightforward complex arithmetic.
$endgroup$
– Florian
Jan 4 '17 at 16:21












$begingroup$
@Florian Thank you! And what would I do for the phase if I may ask?
$endgroup$
– Fukuyama
Jan 4 '17 at 16:23




$begingroup$
@Florian Thank you! And what would I do for the phase if I may ask?
$endgroup$
– Fukuyama
Jan 4 '17 at 16:23




1




1




$begingroup$
Your $G(omega)$ will be in the form $frac{A+jmath B}{C+jmath D}$. Expanding with $C-jmath D$ gives $frac{(A+jmath B)(C-jmath D)}{C^2+D^2} = frac{AC+BD +jmath (BC-AD)}{C^2+D^2}$. This separates real from imaginary part. The phase of a complex number $x+jmath y$ is basically $tan^{-1}frac{y}{x}$, i.e., in your case something like $tan^{-1}frac{BC-AD}{AC+BD}$. To get the four-quadrant phase, use atan2 if needed.
$endgroup$
– Florian
Jan 4 '17 at 16:31






$begingroup$
Your $G(omega)$ will be in the form $frac{A+jmath B}{C+jmath D}$. Expanding with $C-jmath D$ gives $frac{(A+jmath B)(C-jmath D)}{C^2+D^2} = frac{AC+BD +jmath (BC-AD)}{C^2+D^2}$. This separates real from imaginary part. The phase of a complex number $x+jmath y$ is basically $tan^{-1}frac{y}{x}$, i.e., in your case something like $tan^{-1}frac{BC-AD}{AC+BD}$. To get the four-quadrant phase, use atan2 if needed.
$endgroup$
– Florian
Jan 4 '17 at 16:31












1 Answer
1






active

oldest

votes


















0












$begingroup$


Laplace transform:



$$text{F}left(text{s}right)=mathcal{L}_tleft[text{f}left(tright)right]_{left(text{s}right)}:=int_0^inftytext{f}left(tright)e^{-text{s}t}spacetext{d}ttag1$$






So, we get:



$$text{n}_1cdottext{y}'''left(tright)+text{n}_2cdottext{y}''left(tright)+text{n}_3cdottext{y}'left(tright)+text{n}_4cdottext{y}left(tright)=text{n}_5cdottext{u}left(tright)+text{n}_6cdottext{u}'left(tright)tag2$$



Where $text{n}_text{a}$ is a constant for every $text{a}$



Now, when we take the Laplace transform of both sides, we need to know:




  1. $$mathcal{L}_tleft[text{n}_1cdottext{y}'''left(tright)right]_{left(text{s}right)}:=text{n}_1cdotint_0^inftytext{y}'''left(tright)e^{-text{s}t}spacetext{d}t=$$
    $$text{n}_1cdotleft(text{s}^3cdottext{Y}left(text{s}right)-text{s}^2cdottext{y}left(0right)-text{s}cdottext{y}'left(0right)-text{y}''left(0right)right)tag3$$

  2. $$mathcal{L}_tleft[text{n}_2cdottext{y}''left(tright)right]_{left(text{s}right)}:=text{n}_2cdotint_0^inftytext{y}''left(tright)e^{-text{s}t}spacetext{d}t=text{n}_2cdotleft(text{s}^2cdottext{Y}left(text{s}right)-text{s}cdottext{y}left(0right)-text{y}'left(0right)right)tag4$$

  3. $$mathcal{L}_tleft[text{n}_3cdottext{y}'left(tright)right]_{left(text{s}right)}:=text{n}_3cdotint_0^inftytext{y}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_3cdotleft(text{s}cdottext{Y}left(text{s}right)-text{y}left(0right)right)tag5$$

  4. $$mathcal{L}_tleft[text{n}_4cdottext{y}left(tright)right]_{left(text{s}right)}:=text{n}_4cdotint_0^inftytext{y}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_4cdottext{Y}left(text{s}right)tag6$$

  5. $$mathcal{L}_tleft[text{n}_5cdottext{u}left(tright)right]_{left(text{s}right)}:=text{n}_5cdotint_0^inftytext{u}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_5cdottext{U}left(text{s}right)tag7$$

  6. $$mathcal{L}_tleft[text{n}_6cdottext{u}'left(tright)right]_{left(text{s}right)}:=text{n}_6cdotint_0^inftytext{u}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_6cdotleft(text{s}cdottext{U}left(text{s}right)-text{u}left(0right)right)tag8$$


Assuming that a initial conditions are equal to zero, we get:



$$text{n}_1cdottext{s}^3cdottext{Y}left(text{s}right)+text{n}_2cdottext{s}^2cdottext{Y}left(text{s}right)+text{n}_3cdottext{s}cdottext{Y}left(text{s}right)+text{n}_4cdottext{Y}left(text{s}right)=text{n}_5cdottext{U}left(text{s}right)+text{n}_6cdottext{s}cdottext{U}left(text{s}right)tag9$$



Simplifying it a little bit:



$$text{Y}left(text{s}right)cdotleft(text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4right)=text{U}left(text{s}right)cdotleft(text{n}_5+text{n}_6cdottext{s}right)tag{10}$$



So, we also know that:



$$text{H}left(text{s}right)=frac{text{Y}left(text{s}right)}{text{U}left(text{s}right)}=frac{text{n}_5+text{n}_6cdottext{s}}{text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4}tag{11}$$





For the respons you're looking for, we can use:



$$text{s}=text{j}omegatag{12}$$



Where $text{j}^2=-1$



So, we will also get:



$$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotleft(text{j}omegaright)}{text{n}_1cdotleft(text{j}omegaright)^3+text{n}_2cdotleft(text{j}omegaright)^2+text{n}_3cdotleft(text{j}omegaright)+text{n}_4}tag{13}$$



Simplying it a little bit, gives us:



$$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotomegacdottext{j}}{text{n}_4-text{n}_2cdotomega^2+text{j}cdotomegacdotleft(text{n}_3-text{n}_1cdotomega^2right)}tag{14}$$



For the magnitude we get:



$$left|text{H}left(text{j}omegaright)right|=frac{left|text{Y}left(text{j}omegaright)right|}{left|text{U}left(text{j}omegaright)right|}=frac{sqrt{text{n}_5^2+text{n}_6^2cdotomega^2}}{sqrt{left(text{n}_4-text{n}_2cdotomega^2right)^2+omega^2cdotleft(text{n}_3-text{n}_1cdotomega^2right)^2}}tag{15}$$



And for the phase, you can use:



$$argtext{H}left(text{j}omegaright)=argfrac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=argleft(text{Y}left(text{j}omegaright)right)-argleft(text{U}left(text{j}omegaright)right)tag{16}$$



Now, when $text{n}_5spacewedgespaceomegainmathbb{R}^+$:



$$argleft(text{Y}left(text{j}omegaright)right)=arctanleft(frac{text{n}_6cdotomega}{text{n}_5}right)tag{17}$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2083536%2fhow-do-i-find-the-magnitude-and-phase-of-the-frequency-response-function-for-a-t%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$


    Laplace transform:



    $$text{F}left(text{s}right)=mathcal{L}_tleft[text{f}left(tright)right]_{left(text{s}right)}:=int_0^inftytext{f}left(tright)e^{-text{s}t}spacetext{d}ttag1$$






    So, we get:



    $$text{n}_1cdottext{y}'''left(tright)+text{n}_2cdottext{y}''left(tright)+text{n}_3cdottext{y}'left(tright)+text{n}_4cdottext{y}left(tright)=text{n}_5cdottext{u}left(tright)+text{n}_6cdottext{u}'left(tright)tag2$$



    Where $text{n}_text{a}$ is a constant for every $text{a}$



    Now, when we take the Laplace transform of both sides, we need to know:




    1. $$mathcal{L}_tleft[text{n}_1cdottext{y}'''left(tright)right]_{left(text{s}right)}:=text{n}_1cdotint_0^inftytext{y}'''left(tright)e^{-text{s}t}spacetext{d}t=$$
      $$text{n}_1cdotleft(text{s}^3cdottext{Y}left(text{s}right)-text{s}^2cdottext{y}left(0right)-text{s}cdottext{y}'left(0right)-text{y}''left(0right)right)tag3$$

    2. $$mathcal{L}_tleft[text{n}_2cdottext{y}''left(tright)right]_{left(text{s}right)}:=text{n}_2cdotint_0^inftytext{y}''left(tright)e^{-text{s}t}spacetext{d}t=text{n}_2cdotleft(text{s}^2cdottext{Y}left(text{s}right)-text{s}cdottext{y}left(0right)-text{y}'left(0right)right)tag4$$

    3. $$mathcal{L}_tleft[text{n}_3cdottext{y}'left(tright)right]_{left(text{s}right)}:=text{n}_3cdotint_0^inftytext{y}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_3cdotleft(text{s}cdottext{Y}left(text{s}right)-text{y}left(0right)right)tag5$$

    4. $$mathcal{L}_tleft[text{n}_4cdottext{y}left(tright)right]_{left(text{s}right)}:=text{n}_4cdotint_0^inftytext{y}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_4cdottext{Y}left(text{s}right)tag6$$

    5. $$mathcal{L}_tleft[text{n}_5cdottext{u}left(tright)right]_{left(text{s}right)}:=text{n}_5cdotint_0^inftytext{u}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_5cdottext{U}left(text{s}right)tag7$$

    6. $$mathcal{L}_tleft[text{n}_6cdottext{u}'left(tright)right]_{left(text{s}right)}:=text{n}_6cdotint_0^inftytext{u}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_6cdotleft(text{s}cdottext{U}left(text{s}right)-text{u}left(0right)right)tag8$$


    Assuming that a initial conditions are equal to zero, we get:



    $$text{n}_1cdottext{s}^3cdottext{Y}left(text{s}right)+text{n}_2cdottext{s}^2cdottext{Y}left(text{s}right)+text{n}_3cdottext{s}cdottext{Y}left(text{s}right)+text{n}_4cdottext{Y}left(text{s}right)=text{n}_5cdottext{U}left(text{s}right)+text{n}_6cdottext{s}cdottext{U}left(text{s}right)tag9$$



    Simplifying it a little bit:



    $$text{Y}left(text{s}right)cdotleft(text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4right)=text{U}left(text{s}right)cdotleft(text{n}_5+text{n}_6cdottext{s}right)tag{10}$$



    So, we also know that:



    $$text{H}left(text{s}right)=frac{text{Y}left(text{s}right)}{text{U}left(text{s}right)}=frac{text{n}_5+text{n}_6cdottext{s}}{text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4}tag{11}$$





    For the respons you're looking for, we can use:



    $$text{s}=text{j}omegatag{12}$$



    Where $text{j}^2=-1$



    So, we will also get:



    $$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotleft(text{j}omegaright)}{text{n}_1cdotleft(text{j}omegaright)^3+text{n}_2cdotleft(text{j}omegaright)^2+text{n}_3cdotleft(text{j}omegaright)+text{n}_4}tag{13}$$



    Simplying it a little bit, gives us:



    $$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotomegacdottext{j}}{text{n}_4-text{n}_2cdotomega^2+text{j}cdotomegacdotleft(text{n}_3-text{n}_1cdotomega^2right)}tag{14}$$



    For the magnitude we get:



    $$left|text{H}left(text{j}omegaright)right|=frac{left|text{Y}left(text{j}omegaright)right|}{left|text{U}left(text{j}omegaright)right|}=frac{sqrt{text{n}_5^2+text{n}_6^2cdotomega^2}}{sqrt{left(text{n}_4-text{n}_2cdotomega^2right)^2+omega^2cdotleft(text{n}_3-text{n}_1cdotomega^2right)^2}}tag{15}$$



    And for the phase, you can use:



    $$argtext{H}left(text{j}omegaright)=argfrac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=argleft(text{Y}left(text{j}omegaright)right)-argleft(text{U}left(text{j}omegaright)right)tag{16}$$



    Now, when $text{n}_5spacewedgespaceomegainmathbb{R}^+$:



    $$argleft(text{Y}left(text{j}omegaright)right)=arctanleft(frac{text{n}_6cdotomega}{text{n}_5}right)tag{17}$$






    share|cite|improve this answer











    $endgroup$


















      0












      $begingroup$


      Laplace transform:



      $$text{F}left(text{s}right)=mathcal{L}_tleft[text{f}left(tright)right]_{left(text{s}right)}:=int_0^inftytext{f}left(tright)e^{-text{s}t}spacetext{d}ttag1$$






      So, we get:



      $$text{n}_1cdottext{y}'''left(tright)+text{n}_2cdottext{y}''left(tright)+text{n}_3cdottext{y}'left(tright)+text{n}_4cdottext{y}left(tright)=text{n}_5cdottext{u}left(tright)+text{n}_6cdottext{u}'left(tright)tag2$$



      Where $text{n}_text{a}$ is a constant for every $text{a}$



      Now, when we take the Laplace transform of both sides, we need to know:




      1. $$mathcal{L}_tleft[text{n}_1cdottext{y}'''left(tright)right]_{left(text{s}right)}:=text{n}_1cdotint_0^inftytext{y}'''left(tright)e^{-text{s}t}spacetext{d}t=$$
        $$text{n}_1cdotleft(text{s}^3cdottext{Y}left(text{s}right)-text{s}^2cdottext{y}left(0right)-text{s}cdottext{y}'left(0right)-text{y}''left(0right)right)tag3$$

      2. $$mathcal{L}_tleft[text{n}_2cdottext{y}''left(tright)right]_{left(text{s}right)}:=text{n}_2cdotint_0^inftytext{y}''left(tright)e^{-text{s}t}spacetext{d}t=text{n}_2cdotleft(text{s}^2cdottext{Y}left(text{s}right)-text{s}cdottext{y}left(0right)-text{y}'left(0right)right)tag4$$

      3. $$mathcal{L}_tleft[text{n}_3cdottext{y}'left(tright)right]_{left(text{s}right)}:=text{n}_3cdotint_0^inftytext{y}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_3cdotleft(text{s}cdottext{Y}left(text{s}right)-text{y}left(0right)right)tag5$$

      4. $$mathcal{L}_tleft[text{n}_4cdottext{y}left(tright)right]_{left(text{s}right)}:=text{n}_4cdotint_0^inftytext{y}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_4cdottext{Y}left(text{s}right)tag6$$

      5. $$mathcal{L}_tleft[text{n}_5cdottext{u}left(tright)right]_{left(text{s}right)}:=text{n}_5cdotint_0^inftytext{u}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_5cdottext{U}left(text{s}right)tag7$$

      6. $$mathcal{L}_tleft[text{n}_6cdottext{u}'left(tright)right]_{left(text{s}right)}:=text{n}_6cdotint_0^inftytext{u}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_6cdotleft(text{s}cdottext{U}left(text{s}right)-text{u}left(0right)right)tag8$$


      Assuming that a initial conditions are equal to zero, we get:



      $$text{n}_1cdottext{s}^3cdottext{Y}left(text{s}right)+text{n}_2cdottext{s}^2cdottext{Y}left(text{s}right)+text{n}_3cdottext{s}cdottext{Y}left(text{s}right)+text{n}_4cdottext{Y}left(text{s}right)=text{n}_5cdottext{U}left(text{s}right)+text{n}_6cdottext{s}cdottext{U}left(text{s}right)tag9$$



      Simplifying it a little bit:



      $$text{Y}left(text{s}right)cdotleft(text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4right)=text{U}left(text{s}right)cdotleft(text{n}_5+text{n}_6cdottext{s}right)tag{10}$$



      So, we also know that:



      $$text{H}left(text{s}right)=frac{text{Y}left(text{s}right)}{text{U}left(text{s}right)}=frac{text{n}_5+text{n}_6cdottext{s}}{text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4}tag{11}$$





      For the respons you're looking for, we can use:



      $$text{s}=text{j}omegatag{12}$$



      Where $text{j}^2=-1$



      So, we will also get:



      $$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotleft(text{j}omegaright)}{text{n}_1cdotleft(text{j}omegaright)^3+text{n}_2cdotleft(text{j}omegaright)^2+text{n}_3cdotleft(text{j}omegaright)+text{n}_4}tag{13}$$



      Simplying it a little bit, gives us:



      $$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotomegacdottext{j}}{text{n}_4-text{n}_2cdotomega^2+text{j}cdotomegacdotleft(text{n}_3-text{n}_1cdotomega^2right)}tag{14}$$



      For the magnitude we get:



      $$left|text{H}left(text{j}omegaright)right|=frac{left|text{Y}left(text{j}omegaright)right|}{left|text{U}left(text{j}omegaright)right|}=frac{sqrt{text{n}_5^2+text{n}_6^2cdotomega^2}}{sqrt{left(text{n}_4-text{n}_2cdotomega^2right)^2+omega^2cdotleft(text{n}_3-text{n}_1cdotomega^2right)^2}}tag{15}$$



      And for the phase, you can use:



      $$argtext{H}left(text{j}omegaright)=argfrac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=argleft(text{Y}left(text{j}omegaright)right)-argleft(text{U}left(text{j}omegaright)right)tag{16}$$



      Now, when $text{n}_5spacewedgespaceomegainmathbb{R}^+$:



      $$argleft(text{Y}left(text{j}omegaright)right)=arctanleft(frac{text{n}_6cdotomega}{text{n}_5}right)tag{17}$$






      share|cite|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$


        Laplace transform:



        $$text{F}left(text{s}right)=mathcal{L}_tleft[text{f}left(tright)right]_{left(text{s}right)}:=int_0^inftytext{f}left(tright)e^{-text{s}t}spacetext{d}ttag1$$






        So, we get:



        $$text{n}_1cdottext{y}'''left(tright)+text{n}_2cdottext{y}''left(tright)+text{n}_3cdottext{y}'left(tright)+text{n}_4cdottext{y}left(tright)=text{n}_5cdottext{u}left(tright)+text{n}_6cdottext{u}'left(tright)tag2$$



        Where $text{n}_text{a}$ is a constant for every $text{a}$



        Now, when we take the Laplace transform of both sides, we need to know:




        1. $$mathcal{L}_tleft[text{n}_1cdottext{y}'''left(tright)right]_{left(text{s}right)}:=text{n}_1cdotint_0^inftytext{y}'''left(tright)e^{-text{s}t}spacetext{d}t=$$
          $$text{n}_1cdotleft(text{s}^3cdottext{Y}left(text{s}right)-text{s}^2cdottext{y}left(0right)-text{s}cdottext{y}'left(0right)-text{y}''left(0right)right)tag3$$

        2. $$mathcal{L}_tleft[text{n}_2cdottext{y}''left(tright)right]_{left(text{s}right)}:=text{n}_2cdotint_0^inftytext{y}''left(tright)e^{-text{s}t}spacetext{d}t=text{n}_2cdotleft(text{s}^2cdottext{Y}left(text{s}right)-text{s}cdottext{y}left(0right)-text{y}'left(0right)right)tag4$$

        3. $$mathcal{L}_tleft[text{n}_3cdottext{y}'left(tright)right]_{left(text{s}right)}:=text{n}_3cdotint_0^inftytext{y}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_3cdotleft(text{s}cdottext{Y}left(text{s}right)-text{y}left(0right)right)tag5$$

        4. $$mathcal{L}_tleft[text{n}_4cdottext{y}left(tright)right]_{left(text{s}right)}:=text{n}_4cdotint_0^inftytext{y}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_4cdottext{Y}left(text{s}right)tag6$$

        5. $$mathcal{L}_tleft[text{n}_5cdottext{u}left(tright)right]_{left(text{s}right)}:=text{n}_5cdotint_0^inftytext{u}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_5cdottext{U}left(text{s}right)tag7$$

        6. $$mathcal{L}_tleft[text{n}_6cdottext{u}'left(tright)right]_{left(text{s}right)}:=text{n}_6cdotint_0^inftytext{u}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_6cdotleft(text{s}cdottext{U}left(text{s}right)-text{u}left(0right)right)tag8$$


        Assuming that a initial conditions are equal to zero, we get:



        $$text{n}_1cdottext{s}^3cdottext{Y}left(text{s}right)+text{n}_2cdottext{s}^2cdottext{Y}left(text{s}right)+text{n}_3cdottext{s}cdottext{Y}left(text{s}right)+text{n}_4cdottext{Y}left(text{s}right)=text{n}_5cdottext{U}left(text{s}right)+text{n}_6cdottext{s}cdottext{U}left(text{s}right)tag9$$



        Simplifying it a little bit:



        $$text{Y}left(text{s}right)cdotleft(text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4right)=text{U}left(text{s}right)cdotleft(text{n}_5+text{n}_6cdottext{s}right)tag{10}$$



        So, we also know that:



        $$text{H}left(text{s}right)=frac{text{Y}left(text{s}right)}{text{U}left(text{s}right)}=frac{text{n}_5+text{n}_6cdottext{s}}{text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4}tag{11}$$





        For the respons you're looking for, we can use:



        $$text{s}=text{j}omegatag{12}$$



        Where $text{j}^2=-1$



        So, we will also get:



        $$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotleft(text{j}omegaright)}{text{n}_1cdotleft(text{j}omegaright)^3+text{n}_2cdotleft(text{j}omegaright)^2+text{n}_3cdotleft(text{j}omegaright)+text{n}_4}tag{13}$$



        Simplying it a little bit, gives us:



        $$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotomegacdottext{j}}{text{n}_4-text{n}_2cdotomega^2+text{j}cdotomegacdotleft(text{n}_3-text{n}_1cdotomega^2right)}tag{14}$$



        For the magnitude we get:



        $$left|text{H}left(text{j}omegaright)right|=frac{left|text{Y}left(text{j}omegaright)right|}{left|text{U}left(text{j}omegaright)right|}=frac{sqrt{text{n}_5^2+text{n}_6^2cdotomega^2}}{sqrt{left(text{n}_4-text{n}_2cdotomega^2right)^2+omega^2cdotleft(text{n}_3-text{n}_1cdotomega^2right)^2}}tag{15}$$



        And for the phase, you can use:



        $$argtext{H}left(text{j}omegaright)=argfrac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=argleft(text{Y}left(text{j}omegaright)right)-argleft(text{U}left(text{j}omegaright)right)tag{16}$$



        Now, when $text{n}_5spacewedgespaceomegainmathbb{R}^+$:



        $$argleft(text{Y}left(text{j}omegaright)right)=arctanleft(frac{text{n}_6cdotomega}{text{n}_5}right)tag{17}$$






        share|cite|improve this answer











        $endgroup$




        Laplace transform:



        $$text{F}left(text{s}right)=mathcal{L}_tleft[text{f}left(tright)right]_{left(text{s}right)}:=int_0^inftytext{f}left(tright)e^{-text{s}t}spacetext{d}ttag1$$






        So, we get:



        $$text{n}_1cdottext{y}'''left(tright)+text{n}_2cdottext{y}''left(tright)+text{n}_3cdottext{y}'left(tright)+text{n}_4cdottext{y}left(tright)=text{n}_5cdottext{u}left(tright)+text{n}_6cdottext{u}'left(tright)tag2$$



        Where $text{n}_text{a}$ is a constant for every $text{a}$



        Now, when we take the Laplace transform of both sides, we need to know:




        1. $$mathcal{L}_tleft[text{n}_1cdottext{y}'''left(tright)right]_{left(text{s}right)}:=text{n}_1cdotint_0^inftytext{y}'''left(tright)e^{-text{s}t}spacetext{d}t=$$
          $$text{n}_1cdotleft(text{s}^3cdottext{Y}left(text{s}right)-text{s}^2cdottext{y}left(0right)-text{s}cdottext{y}'left(0right)-text{y}''left(0right)right)tag3$$

        2. $$mathcal{L}_tleft[text{n}_2cdottext{y}''left(tright)right]_{left(text{s}right)}:=text{n}_2cdotint_0^inftytext{y}''left(tright)e^{-text{s}t}spacetext{d}t=text{n}_2cdotleft(text{s}^2cdottext{Y}left(text{s}right)-text{s}cdottext{y}left(0right)-text{y}'left(0right)right)tag4$$

        3. $$mathcal{L}_tleft[text{n}_3cdottext{y}'left(tright)right]_{left(text{s}right)}:=text{n}_3cdotint_0^inftytext{y}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_3cdotleft(text{s}cdottext{Y}left(text{s}right)-text{y}left(0right)right)tag5$$

        4. $$mathcal{L}_tleft[text{n}_4cdottext{y}left(tright)right]_{left(text{s}right)}:=text{n}_4cdotint_0^inftytext{y}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_4cdottext{Y}left(text{s}right)tag6$$

        5. $$mathcal{L}_tleft[text{n}_5cdottext{u}left(tright)right]_{left(text{s}right)}:=text{n}_5cdotint_0^inftytext{u}left(tright)e^{-text{s}t}spacetext{d}t=text{n}_5cdottext{U}left(text{s}right)tag7$$

        6. $$mathcal{L}_tleft[text{n}_6cdottext{u}'left(tright)right]_{left(text{s}right)}:=text{n}_6cdotint_0^inftytext{u}'left(tright)e^{-text{s}t}spacetext{d}t=text{n}_6cdotleft(text{s}cdottext{U}left(text{s}right)-text{u}left(0right)right)tag8$$


        Assuming that a initial conditions are equal to zero, we get:



        $$text{n}_1cdottext{s}^3cdottext{Y}left(text{s}right)+text{n}_2cdottext{s}^2cdottext{Y}left(text{s}right)+text{n}_3cdottext{s}cdottext{Y}left(text{s}right)+text{n}_4cdottext{Y}left(text{s}right)=text{n}_5cdottext{U}left(text{s}right)+text{n}_6cdottext{s}cdottext{U}left(text{s}right)tag9$$



        Simplifying it a little bit:



        $$text{Y}left(text{s}right)cdotleft(text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4right)=text{U}left(text{s}right)cdotleft(text{n}_5+text{n}_6cdottext{s}right)tag{10}$$



        So, we also know that:



        $$text{H}left(text{s}right)=frac{text{Y}left(text{s}right)}{text{U}left(text{s}right)}=frac{text{n}_5+text{n}_6cdottext{s}}{text{n}_1cdottext{s}^3+text{n}_2cdottext{s}^2+text{n}_3cdottext{s}+text{n}_4}tag{11}$$





        For the respons you're looking for, we can use:



        $$text{s}=text{j}omegatag{12}$$



        Where $text{j}^2=-1$



        So, we will also get:



        $$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotleft(text{j}omegaright)}{text{n}_1cdotleft(text{j}omegaright)^3+text{n}_2cdotleft(text{j}omegaright)^2+text{n}_3cdotleft(text{j}omegaright)+text{n}_4}tag{13}$$



        Simplying it a little bit, gives us:



        $$text{H}left(text{j}omegaright)=frac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=frac{text{n}_5+text{n}_6cdotomegacdottext{j}}{text{n}_4-text{n}_2cdotomega^2+text{j}cdotomegacdotleft(text{n}_3-text{n}_1cdotomega^2right)}tag{14}$$



        For the magnitude we get:



        $$left|text{H}left(text{j}omegaright)right|=frac{left|text{Y}left(text{j}omegaright)right|}{left|text{U}left(text{j}omegaright)right|}=frac{sqrt{text{n}_5^2+text{n}_6^2cdotomega^2}}{sqrt{left(text{n}_4-text{n}_2cdotomega^2right)^2+omega^2cdotleft(text{n}_3-text{n}_1cdotomega^2right)^2}}tag{15}$$



        And for the phase, you can use:



        $$argtext{H}left(text{j}omegaright)=argfrac{text{Y}left(text{j}omegaright)}{text{U}left(text{j}omegaright)}=argleft(text{Y}left(text{j}omegaright)right)-argleft(text{U}left(text{j}omegaright)right)tag{16}$$



        Now, when $text{n}_5spacewedgespaceomegainmathbb{R}^+$:



        $$argleft(text{Y}left(text{j}omegaright)right)=arctanleft(frac{text{n}_6cdotomega}{text{n}_5}right)tag{17}$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 13 '17 at 16:48

























        answered Jan 4 '17 at 17:44









        JanJan

        21.8k31240




        21.8k31240






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2083536%2fhow-do-i-find-the-magnitude-and-phase-of-the-frequency-response-function-for-a-t%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Probability when a professor distributes a quiz and homework assignment to a class of n students.

            Aardman Animations

            Are they similar matrix