Finding the Taylor Series for $f(x) = sqrt{x-1}$ about $a = 5$
$begingroup$
$$f(x) = sqrt{x-1}$$ about $a=5$
So I found the polynomial, but getting it into a series is where I'm having trouble. The first two terms are positive, and then it alternates.
The $C_n$ term is $1$ divided by some power of $2$. That power goes $0, 2, 6, 9, 14, dots $
Any suggestions?
I can't post images apparently, but it's
$$2 + frac{1}{4}(x-5) - frac{1}{64}(x-5)^2 + frac{1}{512}(x-5)^3 - frac{5}{16384}(x-5)^4 + cdots$$
What I have so far:
$$sum_{n=0}^infty frac{(-1)^n(x-5)^n}{n!}$$
sequences-and-series
$endgroup$
add a comment |
$begingroup$
$$f(x) = sqrt{x-1}$$ about $a=5$
So I found the polynomial, but getting it into a series is where I'm having trouble. The first two terms are positive, and then it alternates.
The $C_n$ term is $1$ divided by some power of $2$. That power goes $0, 2, 6, 9, 14, dots $
Any suggestions?
I can't post images apparently, but it's
$$2 + frac{1}{4}(x-5) - frac{1}{64}(x-5)^2 + frac{1}{512}(x-5)^3 - frac{5}{16384}(x-5)^4 + cdots$$
What I have so far:
$$sum_{n=0}^infty frac{(-1)^n(x-5)^n}{n!}$$
sequences-and-series
$endgroup$
add a comment |
$begingroup$
$$f(x) = sqrt{x-1}$$ about $a=5$
So I found the polynomial, but getting it into a series is where I'm having trouble. The first two terms are positive, and then it alternates.
The $C_n$ term is $1$ divided by some power of $2$. That power goes $0, 2, 6, 9, 14, dots $
Any suggestions?
I can't post images apparently, but it's
$$2 + frac{1}{4}(x-5) - frac{1}{64}(x-5)^2 + frac{1}{512}(x-5)^3 - frac{5}{16384}(x-5)^4 + cdots$$
What I have so far:
$$sum_{n=0}^infty frac{(-1)^n(x-5)^n}{n!}$$
sequences-and-series
$endgroup$
$$f(x) = sqrt{x-1}$$ about $a=5$
So I found the polynomial, but getting it into a series is where I'm having trouble. The first two terms are positive, and then it alternates.
The $C_n$ term is $1$ divided by some power of $2$. That power goes $0, 2, 6, 9, 14, dots $
Any suggestions?
I can't post images apparently, but it's
$$2 + frac{1}{4}(x-5) - frac{1}{64}(x-5)^2 + frac{1}{512}(x-5)^3 - frac{5}{16384}(x-5)^4 + cdots$$
What I have so far:
$$sum_{n=0}^infty frac{(-1)^n(x-5)^n}{n!}$$
sequences-and-series
sequences-and-series
edited Dec 5 '18 at 5:07
user623028
asked Dec 5 '18 at 4:07
user623028user623028
114
114
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Let us forget the value of $5$ and be as lazy as I am.
Let $x=y+a$ to make
$$sqrt{x-1}=sqrt{y+(a-1)}=sqrt{(a-1)},sqrt{1+frac{y}{a-1}}$$ Now, let $z=frac{y}{a-1}$ and use the binomial expansion for $sqrt{1+z}=sum_{k=0}^inftybinom{1/2}{k}z^k$. Then, replace. So, around $x=a$,
$$sqrt{x-1}=sqrt{(a-1)},sum_{k=0}^inftybinom{frac 12}{k}left(frac{y}{a-1}right)^k=sum_{k=0}^inftyfrac{binom{frac 12}{k}}{(a-1)^{k-frac 12} }(x-a)^k $$
$endgroup$
add a comment |
$begingroup$
If you really want the specific closed form for the series, you need to express the $n$th derivative of $f$ evaluated at $x=5$ for all $n$.
Since $f(x)=(x-1)^{frac{1}{2}}$, we know that $f'(x)=frac{1}{2}(x-1)^{-frac{1}{2}}$. Note the change: the power on $(x-1)$ drops by 1, and you multiply on the current power.
This means the $n$th derivative of $f$, for $n>1$ is
$$begin{align*}
f^{(n)}(x)&=frac{1}{2}left(-frac{1}{2}right)dotscleft(frac{3}{2}-nright)(x-1)^{frac{1}{2}-n}\
&=frac{1}{2^n}left(1cdot(-1)cdot(-3)cdotdotsccdot(-(2n-3))right)(x-1)^{frac{1}{2}-n}\
&=frac{(-1)^{n-1}}{2^n}(1cdot3cdotdotsccdot(2n-3))(x-1)^{frac{1}{2}-n}\
&=-left(-frac{1}{2}right)^n(2n-3)!!(x-1)^{frac{1}{2}-n}
end{align*}$$
where $!!$ is the double factorial.
Now substitute $x=5$ to get $f(5)=4$, $f'(5)=1/4$, and
$$begin{align*}
f^{(n)}(5)&=-left(-frac{1}{2}right)^n(2n-3)!!cdot4^{frac{1}{2}-n}\
&=-2left(-frac{1}{8}right)^n(2n-3)!!
end{align*}$$
Putting that into the Taylor expansion gives
$$f(x)=4+frac{1}{4}(x-5)-2sum_{n=2}^{infty}frac{(-1)^n(2n-3)!!}{8^nn!}(x-5)^n$$
Note: if you really dislike the double factorial, rewrite it as
$$begin{align*}
(2n-1)!!&=1cdot3cdotdotsccdot(2n-1)\
&=frac{1cdot2cdot3cdotdotsccdot2n}{2cdot4cdot6cdotdotsccdot2n}\
&=frac{(2n)!}{2^nn!}
end{align*}$$
$endgroup$
add a comment |
$begingroup$
We know that taylor expansion is given as
begin{equation}
f(x) =
f(a)+frac {f'(a)}{1!} (x-a)+ frac{f''(a)}{2!} (x-a)^2+frac{f'''(a)}{3!}(x-a)^3+ +frac{f''''(a)}{4!}(x-a)^4+ cdots
end{equation}
In your case $a=5$, so
begin{equation}
f(x) =
f(5)+frac {f'(5)}{1!} (x-5)+ frac{f''(5)}{2!} (x-5)^2+frac{f'''(5)}{3!}(x-5)^3+ frac{f''''(5)}{4!}(x-5)^4+ cdots
end{equation}
Let's get all 4 derivatives
begin{align}
f'(x) &= dfrac{1}{2sqrt{x-1}}\
f''(x) &= -dfrac{1}{4left(x-1right)^frac{3}{2}}\
f'''(x) &= dfrac{3}{8left(x-1right)^frac{5}{2}}\
f''''(x) &= -dfrac{15}{16left(x-1right)^frac{7}{2}}
end{align}
Replacing for $x = a = 5$, we get
begin{align}
f(5) &= 2\
f'(5) &= frac{1}{4}\
f''(5) &= -frac{1}{32}\
f'''(5) &= frac{3}{256}\
f''''(5) &= -frac{15}{2048}
end{align}
Replacing we get
begin{equation}
f(x) =
2+ frac{1}{4} (x-5) -frac{1}{32(2)}(x-5)^2+frac{3}{3!(256)}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
end{equation}
that is
begin{equation}
f(x) =
2+ frac{1}{4} (x-5) -frac{1}{64}(x-5)^2+frac{1}{512}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
end{equation}
In General
We notice that for $n > 2$
begin{equation}
f^{(n)}(x)
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(x-1)^{frac{2n-1}{2}}}
end{equation}
so for $n>2$
begin{equation}
f^{(n)}(5)
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(5-1)^{frac{2n-1}{2}}}
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(4)^{frac{2n-1}{2}}}
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(2)^{2n-1}}
end{equation}
Replacing we get
begin{equation}
f(x)
=
2+
frac{1}{4}(x-5)
-
frac{1}{64}(x-5)^2
+
sum_{n=3}^{infty}
(-1)^{n+1}frac{prod_{k=1}^{n-2} (2k+1)}{underbrace{2^{n}(2)^{2n-1}}_{2^{3n-1}}n!}(x-5)^n
end{equation}
$endgroup$
$begingroup$
I already did that part, but thank you. Sorry if it's unclear, but I'm trying to find the series representing that polynomial. I tried doing it at the end of my OP.
$endgroup$
– user623028
Dec 5 '18 at 4:19
$begingroup$
i have edited @BigArsole
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:25
$begingroup$
When n=3, the denominator is not 512. n=4, the fraction is also incorrect. Sorry for nitpicking but I've been trying for a long time
$endgroup$
– user623028
Dec 5 '18 at 4:36
$begingroup$
you are definitely right, i forgot a numerator term .. let me edit
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:51
$begingroup$
btw your lastterm 16384 is not correct as well.. should be like the one mentioned here
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:54
|
show 1 more comment
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026605%2ffinding-the-taylor-series-for-fx-sqrtx-1-about-a-5%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let us forget the value of $5$ and be as lazy as I am.
Let $x=y+a$ to make
$$sqrt{x-1}=sqrt{y+(a-1)}=sqrt{(a-1)},sqrt{1+frac{y}{a-1}}$$ Now, let $z=frac{y}{a-1}$ and use the binomial expansion for $sqrt{1+z}=sum_{k=0}^inftybinom{1/2}{k}z^k$. Then, replace. So, around $x=a$,
$$sqrt{x-1}=sqrt{(a-1)},sum_{k=0}^inftybinom{frac 12}{k}left(frac{y}{a-1}right)^k=sum_{k=0}^inftyfrac{binom{frac 12}{k}}{(a-1)^{k-frac 12} }(x-a)^k $$
$endgroup$
add a comment |
$begingroup$
Let us forget the value of $5$ and be as lazy as I am.
Let $x=y+a$ to make
$$sqrt{x-1}=sqrt{y+(a-1)}=sqrt{(a-1)},sqrt{1+frac{y}{a-1}}$$ Now, let $z=frac{y}{a-1}$ and use the binomial expansion for $sqrt{1+z}=sum_{k=0}^inftybinom{1/2}{k}z^k$. Then, replace. So, around $x=a$,
$$sqrt{x-1}=sqrt{(a-1)},sum_{k=0}^inftybinom{frac 12}{k}left(frac{y}{a-1}right)^k=sum_{k=0}^inftyfrac{binom{frac 12}{k}}{(a-1)^{k-frac 12} }(x-a)^k $$
$endgroup$
add a comment |
$begingroup$
Let us forget the value of $5$ and be as lazy as I am.
Let $x=y+a$ to make
$$sqrt{x-1}=sqrt{y+(a-1)}=sqrt{(a-1)},sqrt{1+frac{y}{a-1}}$$ Now, let $z=frac{y}{a-1}$ and use the binomial expansion for $sqrt{1+z}=sum_{k=0}^inftybinom{1/2}{k}z^k$. Then, replace. So, around $x=a$,
$$sqrt{x-1}=sqrt{(a-1)},sum_{k=0}^inftybinom{frac 12}{k}left(frac{y}{a-1}right)^k=sum_{k=0}^inftyfrac{binom{frac 12}{k}}{(a-1)^{k-frac 12} }(x-a)^k $$
$endgroup$
Let us forget the value of $5$ and be as lazy as I am.
Let $x=y+a$ to make
$$sqrt{x-1}=sqrt{y+(a-1)}=sqrt{(a-1)},sqrt{1+frac{y}{a-1}}$$ Now, let $z=frac{y}{a-1}$ and use the binomial expansion for $sqrt{1+z}=sum_{k=0}^inftybinom{1/2}{k}z^k$. Then, replace. So, around $x=a$,
$$sqrt{x-1}=sqrt{(a-1)},sum_{k=0}^inftybinom{frac 12}{k}left(frac{y}{a-1}right)^k=sum_{k=0}^inftyfrac{binom{frac 12}{k}}{(a-1)^{k-frac 12} }(x-a)^k $$
answered Dec 5 '18 at 5:06
Claude LeiboviciClaude Leibovici
120k1157132
120k1157132
add a comment |
add a comment |
$begingroup$
If you really want the specific closed form for the series, you need to express the $n$th derivative of $f$ evaluated at $x=5$ for all $n$.
Since $f(x)=(x-1)^{frac{1}{2}}$, we know that $f'(x)=frac{1}{2}(x-1)^{-frac{1}{2}}$. Note the change: the power on $(x-1)$ drops by 1, and you multiply on the current power.
This means the $n$th derivative of $f$, for $n>1$ is
$$begin{align*}
f^{(n)}(x)&=frac{1}{2}left(-frac{1}{2}right)dotscleft(frac{3}{2}-nright)(x-1)^{frac{1}{2}-n}\
&=frac{1}{2^n}left(1cdot(-1)cdot(-3)cdotdotsccdot(-(2n-3))right)(x-1)^{frac{1}{2}-n}\
&=frac{(-1)^{n-1}}{2^n}(1cdot3cdotdotsccdot(2n-3))(x-1)^{frac{1}{2}-n}\
&=-left(-frac{1}{2}right)^n(2n-3)!!(x-1)^{frac{1}{2}-n}
end{align*}$$
where $!!$ is the double factorial.
Now substitute $x=5$ to get $f(5)=4$, $f'(5)=1/4$, and
$$begin{align*}
f^{(n)}(5)&=-left(-frac{1}{2}right)^n(2n-3)!!cdot4^{frac{1}{2}-n}\
&=-2left(-frac{1}{8}right)^n(2n-3)!!
end{align*}$$
Putting that into the Taylor expansion gives
$$f(x)=4+frac{1}{4}(x-5)-2sum_{n=2}^{infty}frac{(-1)^n(2n-3)!!}{8^nn!}(x-5)^n$$
Note: if you really dislike the double factorial, rewrite it as
$$begin{align*}
(2n-1)!!&=1cdot3cdotdotsccdot(2n-1)\
&=frac{1cdot2cdot3cdotdotsccdot2n}{2cdot4cdot6cdotdotsccdot2n}\
&=frac{(2n)!}{2^nn!}
end{align*}$$
$endgroup$
add a comment |
$begingroup$
If you really want the specific closed form for the series, you need to express the $n$th derivative of $f$ evaluated at $x=5$ for all $n$.
Since $f(x)=(x-1)^{frac{1}{2}}$, we know that $f'(x)=frac{1}{2}(x-1)^{-frac{1}{2}}$. Note the change: the power on $(x-1)$ drops by 1, and you multiply on the current power.
This means the $n$th derivative of $f$, for $n>1$ is
$$begin{align*}
f^{(n)}(x)&=frac{1}{2}left(-frac{1}{2}right)dotscleft(frac{3}{2}-nright)(x-1)^{frac{1}{2}-n}\
&=frac{1}{2^n}left(1cdot(-1)cdot(-3)cdotdotsccdot(-(2n-3))right)(x-1)^{frac{1}{2}-n}\
&=frac{(-1)^{n-1}}{2^n}(1cdot3cdotdotsccdot(2n-3))(x-1)^{frac{1}{2}-n}\
&=-left(-frac{1}{2}right)^n(2n-3)!!(x-1)^{frac{1}{2}-n}
end{align*}$$
where $!!$ is the double factorial.
Now substitute $x=5$ to get $f(5)=4$, $f'(5)=1/4$, and
$$begin{align*}
f^{(n)}(5)&=-left(-frac{1}{2}right)^n(2n-3)!!cdot4^{frac{1}{2}-n}\
&=-2left(-frac{1}{8}right)^n(2n-3)!!
end{align*}$$
Putting that into the Taylor expansion gives
$$f(x)=4+frac{1}{4}(x-5)-2sum_{n=2}^{infty}frac{(-1)^n(2n-3)!!}{8^nn!}(x-5)^n$$
Note: if you really dislike the double factorial, rewrite it as
$$begin{align*}
(2n-1)!!&=1cdot3cdotdotsccdot(2n-1)\
&=frac{1cdot2cdot3cdotdotsccdot2n}{2cdot4cdot6cdotdotsccdot2n}\
&=frac{(2n)!}{2^nn!}
end{align*}$$
$endgroup$
add a comment |
$begingroup$
If you really want the specific closed form for the series, you need to express the $n$th derivative of $f$ evaluated at $x=5$ for all $n$.
Since $f(x)=(x-1)^{frac{1}{2}}$, we know that $f'(x)=frac{1}{2}(x-1)^{-frac{1}{2}}$. Note the change: the power on $(x-1)$ drops by 1, and you multiply on the current power.
This means the $n$th derivative of $f$, for $n>1$ is
$$begin{align*}
f^{(n)}(x)&=frac{1}{2}left(-frac{1}{2}right)dotscleft(frac{3}{2}-nright)(x-1)^{frac{1}{2}-n}\
&=frac{1}{2^n}left(1cdot(-1)cdot(-3)cdotdotsccdot(-(2n-3))right)(x-1)^{frac{1}{2}-n}\
&=frac{(-1)^{n-1}}{2^n}(1cdot3cdotdotsccdot(2n-3))(x-1)^{frac{1}{2}-n}\
&=-left(-frac{1}{2}right)^n(2n-3)!!(x-1)^{frac{1}{2}-n}
end{align*}$$
where $!!$ is the double factorial.
Now substitute $x=5$ to get $f(5)=4$, $f'(5)=1/4$, and
$$begin{align*}
f^{(n)}(5)&=-left(-frac{1}{2}right)^n(2n-3)!!cdot4^{frac{1}{2}-n}\
&=-2left(-frac{1}{8}right)^n(2n-3)!!
end{align*}$$
Putting that into the Taylor expansion gives
$$f(x)=4+frac{1}{4}(x-5)-2sum_{n=2}^{infty}frac{(-1)^n(2n-3)!!}{8^nn!}(x-5)^n$$
Note: if you really dislike the double factorial, rewrite it as
$$begin{align*}
(2n-1)!!&=1cdot3cdotdotsccdot(2n-1)\
&=frac{1cdot2cdot3cdotdotsccdot2n}{2cdot4cdot6cdotdotsccdot2n}\
&=frac{(2n)!}{2^nn!}
end{align*}$$
$endgroup$
If you really want the specific closed form for the series, you need to express the $n$th derivative of $f$ evaluated at $x=5$ for all $n$.
Since $f(x)=(x-1)^{frac{1}{2}}$, we know that $f'(x)=frac{1}{2}(x-1)^{-frac{1}{2}}$. Note the change: the power on $(x-1)$ drops by 1, and you multiply on the current power.
This means the $n$th derivative of $f$, for $n>1$ is
$$begin{align*}
f^{(n)}(x)&=frac{1}{2}left(-frac{1}{2}right)dotscleft(frac{3}{2}-nright)(x-1)^{frac{1}{2}-n}\
&=frac{1}{2^n}left(1cdot(-1)cdot(-3)cdotdotsccdot(-(2n-3))right)(x-1)^{frac{1}{2}-n}\
&=frac{(-1)^{n-1}}{2^n}(1cdot3cdotdotsccdot(2n-3))(x-1)^{frac{1}{2}-n}\
&=-left(-frac{1}{2}right)^n(2n-3)!!(x-1)^{frac{1}{2}-n}
end{align*}$$
where $!!$ is the double factorial.
Now substitute $x=5$ to get $f(5)=4$, $f'(5)=1/4$, and
$$begin{align*}
f^{(n)}(5)&=-left(-frac{1}{2}right)^n(2n-3)!!cdot4^{frac{1}{2}-n}\
&=-2left(-frac{1}{8}right)^n(2n-3)!!
end{align*}$$
Putting that into the Taylor expansion gives
$$f(x)=4+frac{1}{4}(x-5)-2sum_{n=2}^{infty}frac{(-1)^n(2n-3)!!}{8^nn!}(x-5)^n$$
Note: if you really dislike the double factorial, rewrite it as
$$begin{align*}
(2n-1)!!&=1cdot3cdotdotsccdot(2n-1)\
&=frac{1cdot2cdot3cdotdotsccdot2n}{2cdot4cdot6cdotdotsccdot2n}\
&=frac{(2n)!}{2^nn!}
end{align*}$$
edited Dec 5 '18 at 4:53
answered Dec 5 '18 at 4:40
obscuransobscurans
1,027311
1,027311
add a comment |
add a comment |
$begingroup$
We know that taylor expansion is given as
begin{equation}
f(x) =
f(a)+frac {f'(a)}{1!} (x-a)+ frac{f''(a)}{2!} (x-a)^2+frac{f'''(a)}{3!}(x-a)^3+ +frac{f''''(a)}{4!}(x-a)^4+ cdots
end{equation}
In your case $a=5$, so
begin{equation}
f(x) =
f(5)+frac {f'(5)}{1!} (x-5)+ frac{f''(5)}{2!} (x-5)^2+frac{f'''(5)}{3!}(x-5)^3+ frac{f''''(5)}{4!}(x-5)^4+ cdots
end{equation}
Let's get all 4 derivatives
begin{align}
f'(x) &= dfrac{1}{2sqrt{x-1}}\
f''(x) &= -dfrac{1}{4left(x-1right)^frac{3}{2}}\
f'''(x) &= dfrac{3}{8left(x-1right)^frac{5}{2}}\
f''''(x) &= -dfrac{15}{16left(x-1right)^frac{7}{2}}
end{align}
Replacing for $x = a = 5$, we get
begin{align}
f(5) &= 2\
f'(5) &= frac{1}{4}\
f''(5) &= -frac{1}{32}\
f'''(5) &= frac{3}{256}\
f''''(5) &= -frac{15}{2048}
end{align}
Replacing we get
begin{equation}
f(x) =
2+ frac{1}{4} (x-5) -frac{1}{32(2)}(x-5)^2+frac{3}{3!(256)}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
end{equation}
that is
begin{equation}
f(x) =
2+ frac{1}{4} (x-5) -frac{1}{64}(x-5)^2+frac{1}{512}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
end{equation}
In General
We notice that for $n > 2$
begin{equation}
f^{(n)}(x)
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(x-1)^{frac{2n-1}{2}}}
end{equation}
so for $n>2$
begin{equation}
f^{(n)}(5)
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(5-1)^{frac{2n-1}{2}}}
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(4)^{frac{2n-1}{2}}}
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(2)^{2n-1}}
end{equation}
Replacing we get
begin{equation}
f(x)
=
2+
frac{1}{4}(x-5)
-
frac{1}{64}(x-5)^2
+
sum_{n=3}^{infty}
(-1)^{n+1}frac{prod_{k=1}^{n-2} (2k+1)}{underbrace{2^{n}(2)^{2n-1}}_{2^{3n-1}}n!}(x-5)^n
end{equation}
$endgroup$
$begingroup$
I already did that part, but thank you. Sorry if it's unclear, but I'm trying to find the series representing that polynomial. I tried doing it at the end of my OP.
$endgroup$
– user623028
Dec 5 '18 at 4:19
$begingroup$
i have edited @BigArsole
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:25
$begingroup$
When n=3, the denominator is not 512. n=4, the fraction is also incorrect. Sorry for nitpicking but I've been trying for a long time
$endgroup$
– user623028
Dec 5 '18 at 4:36
$begingroup$
you are definitely right, i forgot a numerator term .. let me edit
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:51
$begingroup$
btw your lastterm 16384 is not correct as well.. should be like the one mentioned here
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:54
|
show 1 more comment
$begingroup$
We know that taylor expansion is given as
begin{equation}
f(x) =
f(a)+frac {f'(a)}{1!} (x-a)+ frac{f''(a)}{2!} (x-a)^2+frac{f'''(a)}{3!}(x-a)^3+ +frac{f''''(a)}{4!}(x-a)^4+ cdots
end{equation}
In your case $a=5$, so
begin{equation}
f(x) =
f(5)+frac {f'(5)}{1!} (x-5)+ frac{f''(5)}{2!} (x-5)^2+frac{f'''(5)}{3!}(x-5)^3+ frac{f''''(5)}{4!}(x-5)^4+ cdots
end{equation}
Let's get all 4 derivatives
begin{align}
f'(x) &= dfrac{1}{2sqrt{x-1}}\
f''(x) &= -dfrac{1}{4left(x-1right)^frac{3}{2}}\
f'''(x) &= dfrac{3}{8left(x-1right)^frac{5}{2}}\
f''''(x) &= -dfrac{15}{16left(x-1right)^frac{7}{2}}
end{align}
Replacing for $x = a = 5$, we get
begin{align}
f(5) &= 2\
f'(5) &= frac{1}{4}\
f''(5) &= -frac{1}{32}\
f'''(5) &= frac{3}{256}\
f''''(5) &= -frac{15}{2048}
end{align}
Replacing we get
begin{equation}
f(x) =
2+ frac{1}{4} (x-5) -frac{1}{32(2)}(x-5)^2+frac{3}{3!(256)}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
end{equation}
that is
begin{equation}
f(x) =
2+ frac{1}{4} (x-5) -frac{1}{64}(x-5)^2+frac{1}{512}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
end{equation}
In General
We notice that for $n > 2$
begin{equation}
f^{(n)}(x)
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(x-1)^{frac{2n-1}{2}}}
end{equation}
so for $n>2$
begin{equation}
f^{(n)}(5)
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(5-1)^{frac{2n-1}{2}}}
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(4)^{frac{2n-1}{2}}}
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(2)^{2n-1}}
end{equation}
Replacing we get
begin{equation}
f(x)
=
2+
frac{1}{4}(x-5)
-
frac{1}{64}(x-5)^2
+
sum_{n=3}^{infty}
(-1)^{n+1}frac{prod_{k=1}^{n-2} (2k+1)}{underbrace{2^{n}(2)^{2n-1}}_{2^{3n-1}}n!}(x-5)^n
end{equation}
$endgroup$
$begingroup$
I already did that part, but thank you. Sorry if it's unclear, but I'm trying to find the series representing that polynomial. I tried doing it at the end of my OP.
$endgroup$
– user623028
Dec 5 '18 at 4:19
$begingroup$
i have edited @BigArsole
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:25
$begingroup$
When n=3, the denominator is not 512. n=4, the fraction is also incorrect. Sorry for nitpicking but I've been trying for a long time
$endgroup$
– user623028
Dec 5 '18 at 4:36
$begingroup$
you are definitely right, i forgot a numerator term .. let me edit
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:51
$begingroup$
btw your lastterm 16384 is not correct as well.. should be like the one mentioned here
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:54
|
show 1 more comment
$begingroup$
We know that taylor expansion is given as
begin{equation}
f(x) =
f(a)+frac {f'(a)}{1!} (x-a)+ frac{f''(a)}{2!} (x-a)^2+frac{f'''(a)}{3!}(x-a)^3+ +frac{f''''(a)}{4!}(x-a)^4+ cdots
end{equation}
In your case $a=5$, so
begin{equation}
f(x) =
f(5)+frac {f'(5)}{1!} (x-5)+ frac{f''(5)}{2!} (x-5)^2+frac{f'''(5)}{3!}(x-5)^3+ frac{f''''(5)}{4!}(x-5)^4+ cdots
end{equation}
Let's get all 4 derivatives
begin{align}
f'(x) &= dfrac{1}{2sqrt{x-1}}\
f''(x) &= -dfrac{1}{4left(x-1right)^frac{3}{2}}\
f'''(x) &= dfrac{3}{8left(x-1right)^frac{5}{2}}\
f''''(x) &= -dfrac{15}{16left(x-1right)^frac{7}{2}}
end{align}
Replacing for $x = a = 5$, we get
begin{align}
f(5) &= 2\
f'(5) &= frac{1}{4}\
f''(5) &= -frac{1}{32}\
f'''(5) &= frac{3}{256}\
f''''(5) &= -frac{15}{2048}
end{align}
Replacing we get
begin{equation}
f(x) =
2+ frac{1}{4} (x-5) -frac{1}{32(2)}(x-5)^2+frac{3}{3!(256)}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
end{equation}
that is
begin{equation}
f(x) =
2+ frac{1}{4} (x-5) -frac{1}{64}(x-5)^2+frac{1}{512}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
end{equation}
In General
We notice that for $n > 2$
begin{equation}
f^{(n)}(x)
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(x-1)^{frac{2n-1}{2}}}
end{equation}
so for $n>2$
begin{equation}
f^{(n)}(5)
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(5-1)^{frac{2n-1}{2}}}
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(4)^{frac{2n-1}{2}}}
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(2)^{2n-1}}
end{equation}
Replacing we get
begin{equation}
f(x)
=
2+
frac{1}{4}(x-5)
-
frac{1}{64}(x-5)^2
+
sum_{n=3}^{infty}
(-1)^{n+1}frac{prod_{k=1}^{n-2} (2k+1)}{underbrace{2^{n}(2)^{2n-1}}_{2^{3n-1}}n!}(x-5)^n
end{equation}
$endgroup$
We know that taylor expansion is given as
begin{equation}
f(x) =
f(a)+frac {f'(a)}{1!} (x-a)+ frac{f''(a)}{2!} (x-a)^2+frac{f'''(a)}{3!}(x-a)^3+ +frac{f''''(a)}{4!}(x-a)^4+ cdots
end{equation}
In your case $a=5$, so
begin{equation}
f(x) =
f(5)+frac {f'(5)}{1!} (x-5)+ frac{f''(5)}{2!} (x-5)^2+frac{f'''(5)}{3!}(x-5)^3+ frac{f''''(5)}{4!}(x-5)^4+ cdots
end{equation}
Let's get all 4 derivatives
begin{align}
f'(x) &= dfrac{1}{2sqrt{x-1}}\
f''(x) &= -dfrac{1}{4left(x-1right)^frac{3}{2}}\
f'''(x) &= dfrac{3}{8left(x-1right)^frac{5}{2}}\
f''''(x) &= -dfrac{15}{16left(x-1right)^frac{7}{2}}
end{align}
Replacing for $x = a = 5$, we get
begin{align}
f(5) &= 2\
f'(5) &= frac{1}{4}\
f''(5) &= -frac{1}{32}\
f'''(5) &= frac{3}{256}\
f''''(5) &= -frac{15}{2048}
end{align}
Replacing we get
begin{equation}
f(x) =
2+ frac{1}{4} (x-5) -frac{1}{32(2)}(x-5)^2+frac{3}{3!(256)}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
end{equation}
that is
begin{equation}
f(x) =
2+ frac{1}{4} (x-5) -frac{1}{64}(x-5)^2+frac{1}{512}(x-5)^3-frac{15}{4!(2048)}(x-5)^4+ cdots
end{equation}
In General
We notice that for $n > 2$
begin{equation}
f^{(n)}(x)
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(x-1)^{frac{2n-1}{2}}}
end{equation}
so for $n>2$
begin{equation}
f^{(n)}(5)
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(5-1)^{frac{2n-1}{2}}}
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(4)^{frac{2n-1}{2}}}
=
(-1)^{n+1}
frac{prod_{k=1}^{n-2} (2k+1)}{2^{n}(2)^{2n-1}}
end{equation}
Replacing we get
begin{equation}
f(x)
=
2+
frac{1}{4}(x-5)
-
frac{1}{64}(x-5)^2
+
sum_{n=3}^{infty}
(-1)^{n+1}frac{prod_{k=1}^{n-2} (2k+1)}{underbrace{2^{n}(2)^{2n-1}}_{2^{3n-1}}n!}(x-5)^n
end{equation}
edited Dec 5 '18 at 5:05
answered Dec 5 '18 at 4:14
Ahmad BazziAhmad Bazzi
8,0362724
8,0362724
$begingroup$
I already did that part, but thank you. Sorry if it's unclear, but I'm trying to find the series representing that polynomial. I tried doing it at the end of my OP.
$endgroup$
– user623028
Dec 5 '18 at 4:19
$begingroup$
i have edited @BigArsole
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:25
$begingroup$
When n=3, the denominator is not 512. n=4, the fraction is also incorrect. Sorry for nitpicking but I've been trying for a long time
$endgroup$
– user623028
Dec 5 '18 at 4:36
$begingroup$
you are definitely right, i forgot a numerator term .. let me edit
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:51
$begingroup$
btw your lastterm 16384 is not correct as well.. should be like the one mentioned here
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:54
|
show 1 more comment
$begingroup$
I already did that part, but thank you. Sorry if it's unclear, but I'm trying to find the series representing that polynomial. I tried doing it at the end of my OP.
$endgroup$
– user623028
Dec 5 '18 at 4:19
$begingroup$
i have edited @BigArsole
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:25
$begingroup$
When n=3, the denominator is not 512. n=4, the fraction is also incorrect. Sorry for nitpicking but I've been trying for a long time
$endgroup$
– user623028
Dec 5 '18 at 4:36
$begingroup$
you are definitely right, i forgot a numerator term .. let me edit
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:51
$begingroup$
btw your lastterm 16384 is not correct as well.. should be like the one mentioned here
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:54
$begingroup$
I already did that part, but thank you. Sorry if it's unclear, but I'm trying to find the series representing that polynomial. I tried doing it at the end of my OP.
$endgroup$
– user623028
Dec 5 '18 at 4:19
$begingroup$
I already did that part, but thank you. Sorry if it's unclear, but I'm trying to find the series representing that polynomial. I tried doing it at the end of my OP.
$endgroup$
– user623028
Dec 5 '18 at 4:19
$begingroup$
i have edited @BigArsole
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:25
$begingroup$
i have edited @BigArsole
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:25
$begingroup$
When n=3, the denominator is not 512. n=4, the fraction is also incorrect. Sorry for nitpicking but I've been trying for a long time
$endgroup$
– user623028
Dec 5 '18 at 4:36
$begingroup$
When n=3, the denominator is not 512. n=4, the fraction is also incorrect. Sorry for nitpicking but I've been trying for a long time
$endgroup$
– user623028
Dec 5 '18 at 4:36
$begingroup$
you are definitely right, i forgot a numerator term .. let me edit
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:51
$begingroup$
you are definitely right, i forgot a numerator term .. let me edit
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:51
$begingroup$
btw your lastterm 16384 is not correct as well.. should be like the one mentioned here
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:54
$begingroup$
btw your lastterm 16384 is not correct as well.. should be like the one mentioned here
$endgroup$
– Ahmad Bazzi
Dec 5 '18 at 4:54
|
show 1 more comment
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026605%2ffinding-the-taylor-series-for-fx-sqrtx-1-about-a-5%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown