Bijection between $mathsf{Sh}(p+1, q)$ and $mathsf{Sh}(p, q)sqcup mathsf{Sh}(p-1, q+1)$?
$begingroup$
Let $p$ and $q$ be two positive integers. Define $$mathsf{Sh}(p, q):={sigmainmathsf{S}_{p+q}: sigma(1)<ldots<sigma(p) textrm{and} sigma(p+1)<ldots<sigma(p+q)},$$ where $mathsf{S}_{p+q}$ is the set of permutations of the first $p+q$ integers, i.e, bijections of ${1, ldots, p+q}$. An element of $mathsf{Sh}(p, q)$ is called a $(p, q)$-shuffle.
It can be seen that $$#mathsf{Sh}(p, q)=binom{p+q}{p}.$$
In particular, we see that $$mathsf{Sh}(p+1, q)=#mathsf{Sh}(p, q)+#mathsf{Sh}(p+1, q-1),$$ and therefore $$#mathsf{Sh}(p+1, q)quad textrm{and}quad mathsf{Sh}(p, q)sqcup mathsf{Sh}(p+1, q-1)$$
are in bijection. How to construct an explicit bijection between those sets?
Thanks.
combinatorics
$endgroup$
add a comment |
$begingroup$
Let $p$ and $q$ be two positive integers. Define $$mathsf{Sh}(p, q):={sigmainmathsf{S}_{p+q}: sigma(1)<ldots<sigma(p) textrm{and} sigma(p+1)<ldots<sigma(p+q)},$$ where $mathsf{S}_{p+q}$ is the set of permutations of the first $p+q$ integers, i.e, bijections of ${1, ldots, p+q}$. An element of $mathsf{Sh}(p, q)$ is called a $(p, q)$-shuffle.
It can be seen that $$#mathsf{Sh}(p, q)=binom{p+q}{p}.$$
In particular, we see that $$mathsf{Sh}(p+1, q)=#mathsf{Sh}(p, q)+#mathsf{Sh}(p+1, q-1),$$ and therefore $$#mathsf{Sh}(p+1, q)quad textrm{and}quad mathsf{Sh}(p, q)sqcup mathsf{Sh}(p+1, q-1)$$
are in bijection. How to construct an explicit bijection between those sets?
Thanks.
combinatorics
$endgroup$
add a comment |
$begingroup$
Let $p$ and $q$ be two positive integers. Define $$mathsf{Sh}(p, q):={sigmainmathsf{S}_{p+q}: sigma(1)<ldots<sigma(p) textrm{and} sigma(p+1)<ldots<sigma(p+q)},$$ where $mathsf{S}_{p+q}$ is the set of permutations of the first $p+q$ integers, i.e, bijections of ${1, ldots, p+q}$. An element of $mathsf{Sh}(p, q)$ is called a $(p, q)$-shuffle.
It can be seen that $$#mathsf{Sh}(p, q)=binom{p+q}{p}.$$
In particular, we see that $$mathsf{Sh}(p+1, q)=#mathsf{Sh}(p, q)+#mathsf{Sh}(p+1, q-1),$$ and therefore $$#mathsf{Sh}(p+1, q)quad textrm{and}quad mathsf{Sh}(p, q)sqcup mathsf{Sh}(p+1, q-1)$$
are in bijection. How to construct an explicit bijection between those sets?
Thanks.
combinatorics
$endgroup$
Let $p$ and $q$ be two positive integers. Define $$mathsf{Sh}(p, q):={sigmainmathsf{S}_{p+q}: sigma(1)<ldots<sigma(p) textrm{and} sigma(p+1)<ldots<sigma(p+q)},$$ where $mathsf{S}_{p+q}$ is the set of permutations of the first $p+q$ integers, i.e, bijections of ${1, ldots, p+q}$. An element of $mathsf{Sh}(p, q)$ is called a $(p, q)$-shuffle.
It can be seen that $$#mathsf{Sh}(p, q)=binom{p+q}{p}.$$
In particular, we see that $$mathsf{Sh}(p+1, q)=#mathsf{Sh}(p, q)+#mathsf{Sh}(p+1, q-1),$$ and therefore $$#mathsf{Sh}(p+1, q)quad textrm{and}quad mathsf{Sh}(p, q)sqcup mathsf{Sh}(p+1, q-1)$$
are in bijection. How to construct an explicit bijection between those sets?
Thanks.
combinatorics
combinatorics
edited Dec 4 '18 at 23:11
PtF
asked Jun 3 '17 at 23:15
PtFPtF
3,94921733
3,94921733
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
As stated, you have a wrong identity. Notice that $Sh(3+1,2)=binom{6}{4}=15,Sh(3,2)=binom{5}{3}=10$ and $Sh(2,3)=binom{5}{2}=10$ but $15neq 10+10.$
I am going to make the assumption that you wanted to use Pascal's recursion, in which case the correct identity is $$|Sh(p,q+1)|=|Sh(p,q)|+|Sh(p-1,q+1)|.$$
In order to prove the later, let $sigma in Sh(p,q+1),$ then there are $2$ options:
$bullet $ $sigma ^{-1}(p+q+1)<=p$: if you remove $p+q+1$ you end up with a permutation in $Sh(pcolor{red}{-1},q+1).$
$bullet$ $sigma ^{-1}(p+q+1)>p$:if you remove $p+q+1$ you end up with a permutation in $Sh(p,q+1color{red}{-1})=Sh(p,q).$
It should be clear the bijection from here.
$endgroup$
$begingroup$
Sorry, I mistyped. Thanks for your answer =)
$endgroup$
– PtF
Jun 4 '17 at 12:38
$begingroup$
Sure, glad to help.
$endgroup$
– Phicar
Jun 4 '17 at 16:20
add a comment |
$begingroup$
I wrote down the details so I'm going to share just in case someone else needs it someday.
The first thing to be noticed is that $sigma^{-1}({1})={1, p+2}$, hence:
$$mathsf{Sh}(p+1, q)={sigmain mathsf{Sh}(p+1, q): sigma(1)=1}sqcup {sigmainmathsf{Sh}(p+1, q): sigma(p+2)=1}.$$
This allows us to define the bijection easily setting:
$$mathsf{Sh}(p, q)longrightarrow mathsf{Sh}(p+1, q)\ sigmalongmapsto left(begin{array}{ccccccc}1 & 2& ldots & p+2 & ldots &p+q+1\ 1 &sigma(1)+1 & ldots &sigma(p+1)+1 & ldots & sigma(p+q)+1 end{array}right)$$
and
$$ mathsf{Sh}(p+1, q-1)longrightarrow mathsf{Sh}(p+1, q)\ sigmalongmapsto left(begin{array}{ccccccc}1 & ldots &p+1 & p+2 & p+3& ldots & p+q+1\ sigma(1)+1 & ldots & sigma(p+1)+1 & 1 & sigma(p+2)+1 & ldots &sigma(p+q)+1 end{array}right).$$ The inverse should be clear from the definitions.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2308755%2fbijection-between-mathsfshp1-q-and-mathsfshp-q-sqcup-mathsfsh%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
As stated, you have a wrong identity. Notice that $Sh(3+1,2)=binom{6}{4}=15,Sh(3,2)=binom{5}{3}=10$ and $Sh(2,3)=binom{5}{2}=10$ but $15neq 10+10.$
I am going to make the assumption that you wanted to use Pascal's recursion, in which case the correct identity is $$|Sh(p,q+1)|=|Sh(p,q)|+|Sh(p-1,q+1)|.$$
In order to prove the later, let $sigma in Sh(p,q+1),$ then there are $2$ options:
$bullet $ $sigma ^{-1}(p+q+1)<=p$: if you remove $p+q+1$ you end up with a permutation in $Sh(pcolor{red}{-1},q+1).$
$bullet$ $sigma ^{-1}(p+q+1)>p$:if you remove $p+q+1$ you end up with a permutation in $Sh(p,q+1color{red}{-1})=Sh(p,q).$
It should be clear the bijection from here.
$endgroup$
$begingroup$
Sorry, I mistyped. Thanks for your answer =)
$endgroup$
– PtF
Jun 4 '17 at 12:38
$begingroup$
Sure, glad to help.
$endgroup$
– Phicar
Jun 4 '17 at 16:20
add a comment |
$begingroup$
As stated, you have a wrong identity. Notice that $Sh(3+1,2)=binom{6}{4}=15,Sh(3,2)=binom{5}{3}=10$ and $Sh(2,3)=binom{5}{2}=10$ but $15neq 10+10.$
I am going to make the assumption that you wanted to use Pascal's recursion, in which case the correct identity is $$|Sh(p,q+1)|=|Sh(p,q)|+|Sh(p-1,q+1)|.$$
In order to prove the later, let $sigma in Sh(p,q+1),$ then there are $2$ options:
$bullet $ $sigma ^{-1}(p+q+1)<=p$: if you remove $p+q+1$ you end up with a permutation in $Sh(pcolor{red}{-1},q+1).$
$bullet$ $sigma ^{-1}(p+q+1)>p$:if you remove $p+q+1$ you end up with a permutation in $Sh(p,q+1color{red}{-1})=Sh(p,q).$
It should be clear the bijection from here.
$endgroup$
$begingroup$
Sorry, I mistyped. Thanks for your answer =)
$endgroup$
– PtF
Jun 4 '17 at 12:38
$begingroup$
Sure, glad to help.
$endgroup$
– Phicar
Jun 4 '17 at 16:20
add a comment |
$begingroup$
As stated, you have a wrong identity. Notice that $Sh(3+1,2)=binom{6}{4}=15,Sh(3,2)=binom{5}{3}=10$ and $Sh(2,3)=binom{5}{2}=10$ but $15neq 10+10.$
I am going to make the assumption that you wanted to use Pascal's recursion, in which case the correct identity is $$|Sh(p,q+1)|=|Sh(p,q)|+|Sh(p-1,q+1)|.$$
In order to prove the later, let $sigma in Sh(p,q+1),$ then there are $2$ options:
$bullet $ $sigma ^{-1}(p+q+1)<=p$: if you remove $p+q+1$ you end up with a permutation in $Sh(pcolor{red}{-1},q+1).$
$bullet$ $sigma ^{-1}(p+q+1)>p$:if you remove $p+q+1$ you end up with a permutation in $Sh(p,q+1color{red}{-1})=Sh(p,q).$
It should be clear the bijection from here.
$endgroup$
As stated, you have a wrong identity. Notice that $Sh(3+1,2)=binom{6}{4}=15,Sh(3,2)=binom{5}{3}=10$ and $Sh(2,3)=binom{5}{2}=10$ but $15neq 10+10.$
I am going to make the assumption that you wanted to use Pascal's recursion, in which case the correct identity is $$|Sh(p,q+1)|=|Sh(p,q)|+|Sh(p-1,q+1)|.$$
In order to prove the later, let $sigma in Sh(p,q+1),$ then there are $2$ options:
$bullet $ $sigma ^{-1}(p+q+1)<=p$: if you remove $p+q+1$ you end up with a permutation in $Sh(pcolor{red}{-1},q+1).$
$bullet$ $sigma ^{-1}(p+q+1)>p$:if you remove $p+q+1$ you end up with a permutation in $Sh(p,q+1color{red}{-1})=Sh(p,q).$
It should be clear the bijection from here.
answered Jun 4 '17 at 5:12
PhicarPhicar
2,6251915
2,6251915
$begingroup$
Sorry, I mistyped. Thanks for your answer =)
$endgroup$
– PtF
Jun 4 '17 at 12:38
$begingroup$
Sure, glad to help.
$endgroup$
– Phicar
Jun 4 '17 at 16:20
add a comment |
$begingroup$
Sorry, I mistyped. Thanks for your answer =)
$endgroup$
– PtF
Jun 4 '17 at 12:38
$begingroup$
Sure, glad to help.
$endgroup$
– Phicar
Jun 4 '17 at 16:20
$begingroup$
Sorry, I mistyped. Thanks for your answer =)
$endgroup$
– PtF
Jun 4 '17 at 12:38
$begingroup$
Sorry, I mistyped. Thanks for your answer =)
$endgroup$
– PtF
Jun 4 '17 at 12:38
$begingroup$
Sure, glad to help.
$endgroup$
– Phicar
Jun 4 '17 at 16:20
$begingroup$
Sure, glad to help.
$endgroup$
– Phicar
Jun 4 '17 at 16:20
add a comment |
$begingroup$
I wrote down the details so I'm going to share just in case someone else needs it someday.
The first thing to be noticed is that $sigma^{-1}({1})={1, p+2}$, hence:
$$mathsf{Sh}(p+1, q)={sigmain mathsf{Sh}(p+1, q): sigma(1)=1}sqcup {sigmainmathsf{Sh}(p+1, q): sigma(p+2)=1}.$$
This allows us to define the bijection easily setting:
$$mathsf{Sh}(p, q)longrightarrow mathsf{Sh}(p+1, q)\ sigmalongmapsto left(begin{array}{ccccccc}1 & 2& ldots & p+2 & ldots &p+q+1\ 1 &sigma(1)+1 & ldots &sigma(p+1)+1 & ldots & sigma(p+q)+1 end{array}right)$$
and
$$ mathsf{Sh}(p+1, q-1)longrightarrow mathsf{Sh}(p+1, q)\ sigmalongmapsto left(begin{array}{ccccccc}1 & ldots &p+1 & p+2 & p+3& ldots & p+q+1\ sigma(1)+1 & ldots & sigma(p+1)+1 & 1 & sigma(p+2)+1 & ldots &sigma(p+q)+1 end{array}right).$$ The inverse should be clear from the definitions.
$endgroup$
add a comment |
$begingroup$
I wrote down the details so I'm going to share just in case someone else needs it someday.
The first thing to be noticed is that $sigma^{-1}({1})={1, p+2}$, hence:
$$mathsf{Sh}(p+1, q)={sigmain mathsf{Sh}(p+1, q): sigma(1)=1}sqcup {sigmainmathsf{Sh}(p+1, q): sigma(p+2)=1}.$$
This allows us to define the bijection easily setting:
$$mathsf{Sh}(p, q)longrightarrow mathsf{Sh}(p+1, q)\ sigmalongmapsto left(begin{array}{ccccccc}1 & 2& ldots & p+2 & ldots &p+q+1\ 1 &sigma(1)+1 & ldots &sigma(p+1)+1 & ldots & sigma(p+q)+1 end{array}right)$$
and
$$ mathsf{Sh}(p+1, q-1)longrightarrow mathsf{Sh}(p+1, q)\ sigmalongmapsto left(begin{array}{ccccccc}1 & ldots &p+1 & p+2 & p+3& ldots & p+q+1\ sigma(1)+1 & ldots & sigma(p+1)+1 & 1 & sigma(p+2)+1 & ldots &sigma(p+q)+1 end{array}right).$$ The inverse should be clear from the definitions.
$endgroup$
add a comment |
$begingroup$
I wrote down the details so I'm going to share just in case someone else needs it someday.
The first thing to be noticed is that $sigma^{-1}({1})={1, p+2}$, hence:
$$mathsf{Sh}(p+1, q)={sigmain mathsf{Sh}(p+1, q): sigma(1)=1}sqcup {sigmainmathsf{Sh}(p+1, q): sigma(p+2)=1}.$$
This allows us to define the bijection easily setting:
$$mathsf{Sh}(p, q)longrightarrow mathsf{Sh}(p+1, q)\ sigmalongmapsto left(begin{array}{ccccccc}1 & 2& ldots & p+2 & ldots &p+q+1\ 1 &sigma(1)+1 & ldots &sigma(p+1)+1 & ldots & sigma(p+q)+1 end{array}right)$$
and
$$ mathsf{Sh}(p+1, q-1)longrightarrow mathsf{Sh}(p+1, q)\ sigmalongmapsto left(begin{array}{ccccccc}1 & ldots &p+1 & p+2 & p+3& ldots & p+q+1\ sigma(1)+1 & ldots & sigma(p+1)+1 & 1 & sigma(p+2)+1 & ldots &sigma(p+q)+1 end{array}right).$$ The inverse should be clear from the definitions.
$endgroup$
I wrote down the details so I'm going to share just in case someone else needs it someday.
The first thing to be noticed is that $sigma^{-1}({1})={1, p+2}$, hence:
$$mathsf{Sh}(p+1, q)={sigmain mathsf{Sh}(p+1, q): sigma(1)=1}sqcup {sigmainmathsf{Sh}(p+1, q): sigma(p+2)=1}.$$
This allows us to define the bijection easily setting:
$$mathsf{Sh}(p, q)longrightarrow mathsf{Sh}(p+1, q)\ sigmalongmapsto left(begin{array}{ccccccc}1 & 2& ldots & p+2 & ldots &p+q+1\ 1 &sigma(1)+1 & ldots &sigma(p+1)+1 & ldots & sigma(p+q)+1 end{array}right)$$
and
$$ mathsf{Sh}(p+1, q-1)longrightarrow mathsf{Sh}(p+1, q)\ sigmalongmapsto left(begin{array}{ccccccc}1 & ldots &p+1 & p+2 & p+3& ldots & p+q+1\ sigma(1)+1 & ldots & sigma(p+1)+1 & 1 & sigma(p+2)+1 & ldots &sigma(p+q)+1 end{array}right).$$ The inverse should be clear from the definitions.
answered Jun 8 '17 at 12:24
PtFPtF
3,94921733
3,94921733
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2308755%2fbijection-between-mathsfshp1-q-and-mathsfshp-q-sqcup-mathsfsh%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown