Prove that $sin(z) =frac{e^{iz}-e^{-iz}}{2i} =sin(x)cosh(y) +icos(x)sinh(y)$
For complex $z=x+iy$.
How to prove that
$$sin(z) =frac{e^{iz}-e^{-iz}}{2i} =sin(x)cosh(y) +icos(x)sinh(y)$$
by using the power series definition
$$sin(z)=z-frac{z^3}{3!}+frac{z^5}{5!}-ldots$$
and Euler's formula $$e^z =e^x (cos (y) +isin(y))?$$
complex-analysis algebra-precalculus trigonometry complex-numbers hyperbolic-functions
add a comment |
For complex $z=x+iy$.
How to prove that
$$sin(z) =frac{e^{iz}-e^{-iz}}{2i} =sin(x)cosh(y) +icos(x)sinh(y)$$
by using the power series definition
$$sin(z)=z-frac{z^3}{3!}+frac{z^5}{5!}-ldots$$
and Euler's formula $$e^z =e^x (cos (y) +isin(y))?$$
complex-analysis algebra-precalculus trigonometry complex-numbers hyperbolic-functions
add a comment |
For complex $z=x+iy$.
How to prove that
$$sin(z) =frac{e^{iz}-e^{-iz}}{2i} =sin(x)cosh(y) +icos(x)sinh(y)$$
by using the power series definition
$$sin(z)=z-frac{z^3}{3!}+frac{z^5}{5!}-ldots$$
and Euler's formula $$e^z =e^x (cos (y) +isin(y))?$$
complex-analysis algebra-precalculus trigonometry complex-numbers hyperbolic-functions
For complex $z=x+iy$.
How to prove that
$$sin(z) =frac{e^{iz}-e^{-iz}}{2i} =sin(x)cosh(y) +icos(x)sinh(y)$$
by using the power series definition
$$sin(z)=z-frac{z^3}{3!}+frac{z^5}{5!}-ldots$$
and Euler's formula $$e^z =e^x (cos (y) +isin(y))?$$
complex-analysis algebra-precalculus trigonometry complex-numbers hyperbolic-functions
complex-analysis algebra-precalculus trigonometry complex-numbers hyperbolic-functions
edited Nov 27 at 12:17
Martin Sleziak
44.7k7115270
44.7k7115270
asked Apr 10 at 4:41
user546987
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Is it really necessary to use the power series definition of sine? The left equality is easier to prove right-to-left with the exp. power expansion.
begin{align}
sin z &=sum_{n=0}^infty frac{(-1)^{n}}{(2n+1)!} z^{2n+1} =sum_{n=0}^infty frac{i^{2n}}{(2n+1)!} z^{2n+1}\
&=frac{1}{i} sum_{n=0}^infty frac{i^{2n+1}}{(2n+1)!} z^{2n+1} =frac{1}{i} sum_{n=0}^infty frac{(iz)^{2n+1}}{(2n+1)!}.
end{align}
Consider $dfrac{1-(-1)^k}{2}$ which equals $1$ for odd $k$ and $0$ for even $k$.
begin{align}
sin z &=frac{1}{i} sum_{k=0}^infty left(frac{1-(-1)^k}{2}right) frac{(iz)^k}{k!}
=frac{1}{2i} sum_{k=0}^infty frac{1-(-1)^k}{k!} (iz)^k\
&=frac{1}{2i} sum_{k=0}^infty frac{(iz)^k}{k!} -frac{1}{2i} sum_{k=0}^infty frac{(-iz)^k}{k!} \
&=frac{e^{zi} -e^{-zi}}{2i}\
&=frac{e^{(x+yi)i} -e^{-(x+yi)i}}{2i}\
&=frac{e^{-y+xi} -e^{y-xi}}{2i}\
&=frac{e^{-y} e^{xi} -e^{y} e^{-xi}}{2i}\
&=frac{e^{-y} (cos x +isin x) -e^{y} (cos x -isin x)}{2i}\
&=frac{i}{i} cdot sin x cdot frac{e^{y} +e^{-y}}{2} -frac{1}{i} cdot cos x cdot frac{e^{y} -e^{-y}}{2}\
&=sin x cosh y +i cos x sinh y.
end{align}
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2730426%2fprove-that-sinz-fraceiz-e-iz2i-sinx-coshy-i-cosx-sinhy%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Is it really necessary to use the power series definition of sine? The left equality is easier to prove right-to-left with the exp. power expansion.
begin{align}
sin z &=sum_{n=0}^infty frac{(-1)^{n}}{(2n+1)!} z^{2n+1} =sum_{n=0}^infty frac{i^{2n}}{(2n+1)!} z^{2n+1}\
&=frac{1}{i} sum_{n=0}^infty frac{i^{2n+1}}{(2n+1)!} z^{2n+1} =frac{1}{i} sum_{n=0}^infty frac{(iz)^{2n+1}}{(2n+1)!}.
end{align}
Consider $dfrac{1-(-1)^k}{2}$ which equals $1$ for odd $k$ and $0$ for even $k$.
begin{align}
sin z &=frac{1}{i} sum_{k=0}^infty left(frac{1-(-1)^k}{2}right) frac{(iz)^k}{k!}
=frac{1}{2i} sum_{k=0}^infty frac{1-(-1)^k}{k!} (iz)^k\
&=frac{1}{2i} sum_{k=0}^infty frac{(iz)^k}{k!} -frac{1}{2i} sum_{k=0}^infty frac{(-iz)^k}{k!} \
&=frac{e^{zi} -e^{-zi}}{2i}\
&=frac{e^{(x+yi)i} -e^{-(x+yi)i}}{2i}\
&=frac{e^{-y+xi} -e^{y-xi}}{2i}\
&=frac{e^{-y} e^{xi} -e^{y} e^{-xi}}{2i}\
&=frac{e^{-y} (cos x +isin x) -e^{y} (cos x -isin x)}{2i}\
&=frac{i}{i} cdot sin x cdot frac{e^{y} +e^{-y}}{2} -frac{1}{i} cdot cos x cdot frac{e^{y} -e^{-y}}{2}\
&=sin x cosh y +i cos x sinh y.
end{align}
add a comment |
Is it really necessary to use the power series definition of sine? The left equality is easier to prove right-to-left with the exp. power expansion.
begin{align}
sin z &=sum_{n=0}^infty frac{(-1)^{n}}{(2n+1)!} z^{2n+1} =sum_{n=0}^infty frac{i^{2n}}{(2n+1)!} z^{2n+1}\
&=frac{1}{i} sum_{n=0}^infty frac{i^{2n+1}}{(2n+1)!} z^{2n+1} =frac{1}{i} sum_{n=0}^infty frac{(iz)^{2n+1}}{(2n+1)!}.
end{align}
Consider $dfrac{1-(-1)^k}{2}$ which equals $1$ for odd $k$ and $0$ for even $k$.
begin{align}
sin z &=frac{1}{i} sum_{k=0}^infty left(frac{1-(-1)^k}{2}right) frac{(iz)^k}{k!}
=frac{1}{2i} sum_{k=0}^infty frac{1-(-1)^k}{k!} (iz)^k\
&=frac{1}{2i} sum_{k=0}^infty frac{(iz)^k}{k!} -frac{1}{2i} sum_{k=0}^infty frac{(-iz)^k}{k!} \
&=frac{e^{zi} -e^{-zi}}{2i}\
&=frac{e^{(x+yi)i} -e^{-(x+yi)i}}{2i}\
&=frac{e^{-y+xi} -e^{y-xi}}{2i}\
&=frac{e^{-y} e^{xi} -e^{y} e^{-xi}}{2i}\
&=frac{e^{-y} (cos x +isin x) -e^{y} (cos x -isin x)}{2i}\
&=frac{i}{i} cdot sin x cdot frac{e^{y} +e^{-y}}{2} -frac{1}{i} cdot cos x cdot frac{e^{y} -e^{-y}}{2}\
&=sin x cosh y +i cos x sinh y.
end{align}
add a comment |
Is it really necessary to use the power series definition of sine? The left equality is easier to prove right-to-left with the exp. power expansion.
begin{align}
sin z &=sum_{n=0}^infty frac{(-1)^{n}}{(2n+1)!} z^{2n+1} =sum_{n=0}^infty frac{i^{2n}}{(2n+1)!} z^{2n+1}\
&=frac{1}{i} sum_{n=0}^infty frac{i^{2n+1}}{(2n+1)!} z^{2n+1} =frac{1}{i} sum_{n=0}^infty frac{(iz)^{2n+1}}{(2n+1)!}.
end{align}
Consider $dfrac{1-(-1)^k}{2}$ which equals $1$ for odd $k$ and $0$ for even $k$.
begin{align}
sin z &=frac{1}{i} sum_{k=0}^infty left(frac{1-(-1)^k}{2}right) frac{(iz)^k}{k!}
=frac{1}{2i} sum_{k=0}^infty frac{1-(-1)^k}{k!} (iz)^k\
&=frac{1}{2i} sum_{k=0}^infty frac{(iz)^k}{k!} -frac{1}{2i} sum_{k=0}^infty frac{(-iz)^k}{k!} \
&=frac{e^{zi} -e^{-zi}}{2i}\
&=frac{e^{(x+yi)i} -e^{-(x+yi)i}}{2i}\
&=frac{e^{-y+xi} -e^{y-xi}}{2i}\
&=frac{e^{-y} e^{xi} -e^{y} e^{-xi}}{2i}\
&=frac{e^{-y} (cos x +isin x) -e^{y} (cos x -isin x)}{2i}\
&=frac{i}{i} cdot sin x cdot frac{e^{y} +e^{-y}}{2} -frac{1}{i} cdot cos x cdot frac{e^{y} -e^{-y}}{2}\
&=sin x cosh y +i cos x sinh y.
end{align}
Is it really necessary to use the power series definition of sine? The left equality is easier to prove right-to-left with the exp. power expansion.
begin{align}
sin z &=sum_{n=0}^infty frac{(-1)^{n}}{(2n+1)!} z^{2n+1} =sum_{n=0}^infty frac{i^{2n}}{(2n+1)!} z^{2n+1}\
&=frac{1}{i} sum_{n=0}^infty frac{i^{2n+1}}{(2n+1)!} z^{2n+1} =frac{1}{i} sum_{n=0}^infty frac{(iz)^{2n+1}}{(2n+1)!}.
end{align}
Consider $dfrac{1-(-1)^k}{2}$ which equals $1$ for odd $k$ and $0$ for even $k$.
begin{align}
sin z &=frac{1}{i} sum_{k=0}^infty left(frac{1-(-1)^k}{2}right) frac{(iz)^k}{k!}
=frac{1}{2i} sum_{k=0}^infty frac{1-(-1)^k}{k!} (iz)^k\
&=frac{1}{2i} sum_{k=0}^infty frac{(iz)^k}{k!} -frac{1}{2i} sum_{k=0}^infty frac{(-iz)^k}{k!} \
&=frac{e^{zi} -e^{-zi}}{2i}\
&=frac{e^{(x+yi)i} -e^{-(x+yi)i}}{2i}\
&=frac{e^{-y+xi} -e^{y-xi}}{2i}\
&=frac{e^{-y} e^{xi} -e^{y} e^{-xi}}{2i}\
&=frac{e^{-y} (cos x +isin x) -e^{y} (cos x -isin x)}{2i}\
&=frac{i}{i} cdot sin x cdot frac{e^{y} +e^{-y}}{2} -frac{1}{i} cdot cos x cdot frac{e^{y} -e^{-y}}{2}\
&=sin x cosh y +i cos x sinh y.
end{align}
edited Nov 18 at 18:00
answered Apr 10 at 10:08
Rócherz
2,7762721
2,7762721
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2730426%2fprove-that-sinz-fraceiz-e-iz2i-sinx-coshy-i-cosx-sinhy%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown