Prove that $sin(z) =frac{e^{iz}-e^{-iz}}{2i} =sin(x)cosh(y) +icos(x)sinh(y)$












1














For complex $z=x+iy$.
How to prove that
$$sin(z) =frac{e^{iz}-e^{-iz}}{2i} =sin(x)cosh(y) +icos(x)sinh(y)$$
by using the power series definition
$$sin(z)=z-frac{z^3}{3!}+frac{z^5}{5!}-ldots$$
and Euler's formula $$e^z =e^x (cos (y) +isin(y))?$$










share|cite|improve this question





























    1














    For complex $z=x+iy$.
    How to prove that
    $$sin(z) =frac{e^{iz}-e^{-iz}}{2i} =sin(x)cosh(y) +icos(x)sinh(y)$$
    by using the power series definition
    $$sin(z)=z-frac{z^3}{3!}+frac{z^5}{5!}-ldots$$
    and Euler's formula $$e^z =e^x (cos (y) +isin(y))?$$










    share|cite|improve this question



























      1












      1








      1


      1





      For complex $z=x+iy$.
      How to prove that
      $$sin(z) =frac{e^{iz}-e^{-iz}}{2i} =sin(x)cosh(y) +icos(x)sinh(y)$$
      by using the power series definition
      $$sin(z)=z-frac{z^3}{3!}+frac{z^5}{5!}-ldots$$
      and Euler's formula $$e^z =e^x (cos (y) +isin(y))?$$










      share|cite|improve this question















      For complex $z=x+iy$.
      How to prove that
      $$sin(z) =frac{e^{iz}-e^{-iz}}{2i} =sin(x)cosh(y) +icos(x)sinh(y)$$
      by using the power series definition
      $$sin(z)=z-frac{z^3}{3!}+frac{z^5}{5!}-ldots$$
      and Euler's formula $$e^z =e^x (cos (y) +isin(y))?$$







      complex-analysis algebra-precalculus trigonometry complex-numbers hyperbolic-functions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 27 at 12:17









      Martin Sleziak

      44.7k7115270




      44.7k7115270










      asked Apr 10 at 4:41







      user546987





























          1 Answer
          1






          active

          oldest

          votes


















          0














          Is it really necessary to use the power series definition of sine? The left equality is easier to prove right-to-left with the exp. power expansion.
          begin{align}
          sin z &=sum_{n=0}^infty frac{(-1)^{n}}{(2n+1)!} z^{2n+1} =sum_{n=0}^infty frac{i^{2n}}{(2n+1)!} z^{2n+1}\
          &=frac{1}{i} sum_{n=0}^infty frac{i^{2n+1}}{(2n+1)!} z^{2n+1} =frac{1}{i} sum_{n=0}^infty frac{(iz)^{2n+1}}{(2n+1)!}.
          end{align}

          Consider $dfrac{1-(-1)^k}{2}$ which equals $1$ for odd $k$ and $0$ for even $k$.



          begin{align}
          sin z &=frac{1}{i} sum_{k=0}^infty left(frac{1-(-1)^k}{2}right) frac{(iz)^k}{k!}
          =frac{1}{2i} sum_{k=0}^infty frac{1-(-1)^k}{k!} (iz)^k\
          &=frac{1}{2i} sum_{k=0}^infty frac{(iz)^k}{k!} -frac{1}{2i} sum_{k=0}^infty frac{(-iz)^k}{k!} \
          &=frac{e^{zi} -e^{-zi}}{2i}\
          &=frac{e^{(x+yi)i} -e^{-(x+yi)i}}{2i}\
          &=frac{e^{-y+xi} -e^{y-xi}}{2i}\
          &=frac{e^{-y} e^{xi} -e^{y} e^{-xi}}{2i}\
          &=frac{e^{-y} (cos x +isin x) -e^{y} (cos x -isin x)}{2i}\
          &=frac{i}{i} cdot sin x cdot frac{e^{y} +e^{-y}}{2} -frac{1}{i} cdot cos x cdot frac{e^{y} -e^{-y}}{2}\
          &=sin x cosh y +i cos x sinh y.
          end{align}






          share|cite|improve this answer























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2730426%2fprove-that-sinz-fraceiz-e-iz2i-sinx-coshy-i-cosx-sinhy%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown
























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0














            Is it really necessary to use the power series definition of sine? The left equality is easier to prove right-to-left with the exp. power expansion.
            begin{align}
            sin z &=sum_{n=0}^infty frac{(-1)^{n}}{(2n+1)!} z^{2n+1} =sum_{n=0}^infty frac{i^{2n}}{(2n+1)!} z^{2n+1}\
            &=frac{1}{i} sum_{n=0}^infty frac{i^{2n+1}}{(2n+1)!} z^{2n+1} =frac{1}{i} sum_{n=0}^infty frac{(iz)^{2n+1}}{(2n+1)!}.
            end{align}

            Consider $dfrac{1-(-1)^k}{2}$ which equals $1$ for odd $k$ and $0$ for even $k$.



            begin{align}
            sin z &=frac{1}{i} sum_{k=0}^infty left(frac{1-(-1)^k}{2}right) frac{(iz)^k}{k!}
            =frac{1}{2i} sum_{k=0}^infty frac{1-(-1)^k}{k!} (iz)^k\
            &=frac{1}{2i} sum_{k=0}^infty frac{(iz)^k}{k!} -frac{1}{2i} sum_{k=0}^infty frac{(-iz)^k}{k!} \
            &=frac{e^{zi} -e^{-zi}}{2i}\
            &=frac{e^{(x+yi)i} -e^{-(x+yi)i}}{2i}\
            &=frac{e^{-y+xi} -e^{y-xi}}{2i}\
            &=frac{e^{-y} e^{xi} -e^{y} e^{-xi}}{2i}\
            &=frac{e^{-y} (cos x +isin x) -e^{y} (cos x -isin x)}{2i}\
            &=frac{i}{i} cdot sin x cdot frac{e^{y} +e^{-y}}{2} -frac{1}{i} cdot cos x cdot frac{e^{y} -e^{-y}}{2}\
            &=sin x cosh y +i cos x sinh y.
            end{align}






            share|cite|improve this answer




























              0














              Is it really necessary to use the power series definition of sine? The left equality is easier to prove right-to-left with the exp. power expansion.
              begin{align}
              sin z &=sum_{n=0}^infty frac{(-1)^{n}}{(2n+1)!} z^{2n+1} =sum_{n=0}^infty frac{i^{2n}}{(2n+1)!} z^{2n+1}\
              &=frac{1}{i} sum_{n=0}^infty frac{i^{2n+1}}{(2n+1)!} z^{2n+1} =frac{1}{i} sum_{n=0}^infty frac{(iz)^{2n+1}}{(2n+1)!}.
              end{align}

              Consider $dfrac{1-(-1)^k}{2}$ which equals $1$ for odd $k$ and $0$ for even $k$.



              begin{align}
              sin z &=frac{1}{i} sum_{k=0}^infty left(frac{1-(-1)^k}{2}right) frac{(iz)^k}{k!}
              =frac{1}{2i} sum_{k=0}^infty frac{1-(-1)^k}{k!} (iz)^k\
              &=frac{1}{2i} sum_{k=0}^infty frac{(iz)^k}{k!} -frac{1}{2i} sum_{k=0}^infty frac{(-iz)^k}{k!} \
              &=frac{e^{zi} -e^{-zi}}{2i}\
              &=frac{e^{(x+yi)i} -e^{-(x+yi)i}}{2i}\
              &=frac{e^{-y+xi} -e^{y-xi}}{2i}\
              &=frac{e^{-y} e^{xi} -e^{y} e^{-xi}}{2i}\
              &=frac{e^{-y} (cos x +isin x) -e^{y} (cos x -isin x)}{2i}\
              &=frac{i}{i} cdot sin x cdot frac{e^{y} +e^{-y}}{2} -frac{1}{i} cdot cos x cdot frac{e^{y} -e^{-y}}{2}\
              &=sin x cosh y +i cos x sinh y.
              end{align}






              share|cite|improve this answer


























                0












                0








                0






                Is it really necessary to use the power series definition of sine? The left equality is easier to prove right-to-left with the exp. power expansion.
                begin{align}
                sin z &=sum_{n=0}^infty frac{(-1)^{n}}{(2n+1)!} z^{2n+1} =sum_{n=0}^infty frac{i^{2n}}{(2n+1)!} z^{2n+1}\
                &=frac{1}{i} sum_{n=0}^infty frac{i^{2n+1}}{(2n+1)!} z^{2n+1} =frac{1}{i} sum_{n=0}^infty frac{(iz)^{2n+1}}{(2n+1)!}.
                end{align}

                Consider $dfrac{1-(-1)^k}{2}$ which equals $1$ for odd $k$ and $0$ for even $k$.



                begin{align}
                sin z &=frac{1}{i} sum_{k=0}^infty left(frac{1-(-1)^k}{2}right) frac{(iz)^k}{k!}
                =frac{1}{2i} sum_{k=0}^infty frac{1-(-1)^k}{k!} (iz)^k\
                &=frac{1}{2i} sum_{k=0}^infty frac{(iz)^k}{k!} -frac{1}{2i} sum_{k=0}^infty frac{(-iz)^k}{k!} \
                &=frac{e^{zi} -e^{-zi}}{2i}\
                &=frac{e^{(x+yi)i} -e^{-(x+yi)i}}{2i}\
                &=frac{e^{-y+xi} -e^{y-xi}}{2i}\
                &=frac{e^{-y} e^{xi} -e^{y} e^{-xi}}{2i}\
                &=frac{e^{-y} (cos x +isin x) -e^{y} (cos x -isin x)}{2i}\
                &=frac{i}{i} cdot sin x cdot frac{e^{y} +e^{-y}}{2} -frac{1}{i} cdot cos x cdot frac{e^{y} -e^{-y}}{2}\
                &=sin x cosh y +i cos x sinh y.
                end{align}






                share|cite|improve this answer














                Is it really necessary to use the power series definition of sine? The left equality is easier to prove right-to-left with the exp. power expansion.
                begin{align}
                sin z &=sum_{n=0}^infty frac{(-1)^{n}}{(2n+1)!} z^{2n+1} =sum_{n=0}^infty frac{i^{2n}}{(2n+1)!} z^{2n+1}\
                &=frac{1}{i} sum_{n=0}^infty frac{i^{2n+1}}{(2n+1)!} z^{2n+1} =frac{1}{i} sum_{n=0}^infty frac{(iz)^{2n+1}}{(2n+1)!}.
                end{align}

                Consider $dfrac{1-(-1)^k}{2}$ which equals $1$ for odd $k$ and $0$ for even $k$.



                begin{align}
                sin z &=frac{1}{i} sum_{k=0}^infty left(frac{1-(-1)^k}{2}right) frac{(iz)^k}{k!}
                =frac{1}{2i} sum_{k=0}^infty frac{1-(-1)^k}{k!} (iz)^k\
                &=frac{1}{2i} sum_{k=0}^infty frac{(iz)^k}{k!} -frac{1}{2i} sum_{k=0}^infty frac{(-iz)^k}{k!} \
                &=frac{e^{zi} -e^{-zi}}{2i}\
                &=frac{e^{(x+yi)i} -e^{-(x+yi)i}}{2i}\
                &=frac{e^{-y+xi} -e^{y-xi}}{2i}\
                &=frac{e^{-y} e^{xi} -e^{y} e^{-xi}}{2i}\
                &=frac{e^{-y} (cos x +isin x) -e^{y} (cos x -isin x)}{2i}\
                &=frac{i}{i} cdot sin x cdot frac{e^{y} +e^{-y}}{2} -frac{1}{i} cdot cos x cdot frac{e^{y} -e^{-y}}{2}\
                &=sin x cosh y +i cos x sinh y.
                end{align}







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Nov 18 at 18:00

























                answered Apr 10 at 10:08









                Rócherz

                2,7762721




                2,7762721






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2730426%2fprove-that-sinz-fraceiz-e-iz2i-sinx-coshy-i-cosx-sinhy%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Probability when a professor distributes a quiz and homework assignment to a class of n students.

                    Aardman Animations

                    Are they similar matrix