How to find $partialchi^2/partial b$ when $chi^2=sum_{i=1}^Ndfrac{D(x_i)-a-b(x_i)^2}{sigma_i^2} $?...












0















This question is an exact duplicate of:




  • How to find $partialchi^2/partial a$ where $chi^2=sum_{i=1}^Ndfrac{D(x_i)-a-b(x_i)^2}{sigma_i^2}$?

    1 answer




How do I find How to find $partialchi^2/partial b$ when $chi^2=sum_{i=1}^Ndfrac{D(x_i)-a-b(x_i)^2}{sigma_i^2} $?



My attempt:
begin{align*}
dfrac{partial}{partial b}sum_{i=1}^Ndfrac{D(x_i)-a-b(x_i)^2}{sigma_i^2} &= dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{D(x_i)-a}{sigma_i^2}-sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
&= dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{D(x_i)-a}{sigma_i^2}Bigg]-dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
&= 0-dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
&= -dfrac{partial}{partial b}Bigg[dfrac{b(x_1)^2}{sigma_1^2}+dfrac{b(x_2)^2}{sigma_2^2}+cdots+dfrac{b(x_N)^2}{sigma_N^2}Bigg]\
&= -dfrac{partial}{partial b}Bigg[dfrac{b(x_1)^2}{sigma_1^2}Bigg]+dfrac{partial}{partial b}Bigg[dfrac{b(x_2)^2}{sigma_2^2}Bigg]+cdots+dfrac{partial}{partial b}Bigg[dfrac{b(x_N)^2}{sigma_N^2}Bigg]\
&= -dfrac{1}{sigma_1^2}dfrac{partial}{partial b}Bigg[b(x_1)^2Bigg]-dfrac{1}{sigma_2^2}dfrac{partial}{partial b}Bigg[b(x_2)^2Bigg]-cdots-dfrac{1}{sigma_N^2}dfrac{partial}{partial b}Bigg[b(x_N)^2Bigg]\
&= -dfrac{1}{sigma_1^2}cdot2cdot b(x_1)-dfrac{1}{sigma_2^2}cdot2cdot b(x_2)-cdots-dfrac{1}{sigma_N^2}cdot2cdot b(x_N)\
&= -Bigg[dfrac{2}{sigma_1^2}cdot b(x_1)+dfrac{2}{sigma_2^2}cdot b(x_2)+cdots+dfrac{2}{sigma_N^2}cdot b(x_N)Bigg]\
&= -sum_{i=1}^Ndfrac{2b(x_i)}{sigma_1^2}
end{align*}



Is this correct?



EDIT: I previously asked this question. But the fact that $b$ is a function and changes with each different $x_i$ confuses me.










share|cite|improve this question















marked as duplicate by callculus, KReiser, max_zorn, Cyclohexanol., José Carlos Santos Nov 27 at 7:11


This question was marked as an exact duplicate of an existing question.











  • 1




    Does "$b(x)^2$" mean "$(b)cdot (x^2)$", or is $b$ a function so that it means "$(b(x))^2$"? If $b$ is a constant, then by linearity the derivative is just $-sum_i x_i^2/sigma_i^2$.
    – MPW
    Nov 26 at 17:54












  • @MPW $b(x_i)$ is a function.
    – kaisa
    Nov 26 at 17:57
















0















This question is an exact duplicate of:




  • How to find $partialchi^2/partial a$ where $chi^2=sum_{i=1}^Ndfrac{D(x_i)-a-b(x_i)^2}{sigma_i^2}$?

    1 answer




How do I find How to find $partialchi^2/partial b$ when $chi^2=sum_{i=1}^Ndfrac{D(x_i)-a-b(x_i)^2}{sigma_i^2} $?



My attempt:
begin{align*}
dfrac{partial}{partial b}sum_{i=1}^Ndfrac{D(x_i)-a-b(x_i)^2}{sigma_i^2} &= dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{D(x_i)-a}{sigma_i^2}-sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
&= dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{D(x_i)-a}{sigma_i^2}Bigg]-dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
&= 0-dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
&= -dfrac{partial}{partial b}Bigg[dfrac{b(x_1)^2}{sigma_1^2}+dfrac{b(x_2)^2}{sigma_2^2}+cdots+dfrac{b(x_N)^2}{sigma_N^2}Bigg]\
&= -dfrac{partial}{partial b}Bigg[dfrac{b(x_1)^2}{sigma_1^2}Bigg]+dfrac{partial}{partial b}Bigg[dfrac{b(x_2)^2}{sigma_2^2}Bigg]+cdots+dfrac{partial}{partial b}Bigg[dfrac{b(x_N)^2}{sigma_N^2}Bigg]\
&= -dfrac{1}{sigma_1^2}dfrac{partial}{partial b}Bigg[b(x_1)^2Bigg]-dfrac{1}{sigma_2^2}dfrac{partial}{partial b}Bigg[b(x_2)^2Bigg]-cdots-dfrac{1}{sigma_N^2}dfrac{partial}{partial b}Bigg[b(x_N)^2Bigg]\
&= -dfrac{1}{sigma_1^2}cdot2cdot b(x_1)-dfrac{1}{sigma_2^2}cdot2cdot b(x_2)-cdots-dfrac{1}{sigma_N^2}cdot2cdot b(x_N)\
&= -Bigg[dfrac{2}{sigma_1^2}cdot b(x_1)+dfrac{2}{sigma_2^2}cdot b(x_2)+cdots+dfrac{2}{sigma_N^2}cdot b(x_N)Bigg]\
&= -sum_{i=1}^Ndfrac{2b(x_i)}{sigma_1^2}
end{align*}



Is this correct?



EDIT: I previously asked this question. But the fact that $b$ is a function and changes with each different $x_i$ confuses me.










share|cite|improve this question















marked as duplicate by callculus, KReiser, max_zorn, Cyclohexanol., José Carlos Santos Nov 27 at 7:11


This question was marked as an exact duplicate of an existing question.











  • 1




    Does "$b(x)^2$" mean "$(b)cdot (x^2)$", or is $b$ a function so that it means "$(b(x))^2$"? If $b$ is a constant, then by linearity the derivative is just $-sum_i x_i^2/sigma_i^2$.
    – MPW
    Nov 26 at 17:54












  • @MPW $b(x_i)$ is a function.
    – kaisa
    Nov 26 at 17:57














0












0








0








This question is an exact duplicate of:




  • How to find $partialchi^2/partial a$ where $chi^2=sum_{i=1}^Ndfrac{D(x_i)-a-b(x_i)^2}{sigma_i^2}$?

    1 answer




How do I find How to find $partialchi^2/partial b$ when $chi^2=sum_{i=1}^Ndfrac{D(x_i)-a-b(x_i)^2}{sigma_i^2} $?



My attempt:
begin{align*}
dfrac{partial}{partial b}sum_{i=1}^Ndfrac{D(x_i)-a-b(x_i)^2}{sigma_i^2} &= dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{D(x_i)-a}{sigma_i^2}-sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
&= dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{D(x_i)-a}{sigma_i^2}Bigg]-dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
&= 0-dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
&= -dfrac{partial}{partial b}Bigg[dfrac{b(x_1)^2}{sigma_1^2}+dfrac{b(x_2)^2}{sigma_2^2}+cdots+dfrac{b(x_N)^2}{sigma_N^2}Bigg]\
&= -dfrac{partial}{partial b}Bigg[dfrac{b(x_1)^2}{sigma_1^2}Bigg]+dfrac{partial}{partial b}Bigg[dfrac{b(x_2)^2}{sigma_2^2}Bigg]+cdots+dfrac{partial}{partial b}Bigg[dfrac{b(x_N)^2}{sigma_N^2}Bigg]\
&= -dfrac{1}{sigma_1^2}dfrac{partial}{partial b}Bigg[b(x_1)^2Bigg]-dfrac{1}{sigma_2^2}dfrac{partial}{partial b}Bigg[b(x_2)^2Bigg]-cdots-dfrac{1}{sigma_N^2}dfrac{partial}{partial b}Bigg[b(x_N)^2Bigg]\
&= -dfrac{1}{sigma_1^2}cdot2cdot b(x_1)-dfrac{1}{sigma_2^2}cdot2cdot b(x_2)-cdots-dfrac{1}{sigma_N^2}cdot2cdot b(x_N)\
&= -Bigg[dfrac{2}{sigma_1^2}cdot b(x_1)+dfrac{2}{sigma_2^2}cdot b(x_2)+cdots+dfrac{2}{sigma_N^2}cdot b(x_N)Bigg]\
&= -sum_{i=1}^Ndfrac{2b(x_i)}{sigma_1^2}
end{align*}



Is this correct?



EDIT: I previously asked this question. But the fact that $b$ is a function and changes with each different $x_i$ confuses me.










share|cite|improve this question
















This question is an exact duplicate of:




  • How to find $partialchi^2/partial a$ where $chi^2=sum_{i=1}^Ndfrac{D(x_i)-a-b(x_i)^2}{sigma_i^2}$?

    1 answer




How do I find How to find $partialchi^2/partial b$ when $chi^2=sum_{i=1}^Ndfrac{D(x_i)-a-b(x_i)^2}{sigma_i^2} $?



My attempt:
begin{align*}
dfrac{partial}{partial b}sum_{i=1}^Ndfrac{D(x_i)-a-b(x_i)^2}{sigma_i^2} &= dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{D(x_i)-a}{sigma_i^2}-sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
&= dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{D(x_i)-a}{sigma_i^2}Bigg]-dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
&= 0-dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
&= -dfrac{partial}{partial b}Bigg[dfrac{b(x_1)^2}{sigma_1^2}+dfrac{b(x_2)^2}{sigma_2^2}+cdots+dfrac{b(x_N)^2}{sigma_N^2}Bigg]\
&= -dfrac{partial}{partial b}Bigg[dfrac{b(x_1)^2}{sigma_1^2}Bigg]+dfrac{partial}{partial b}Bigg[dfrac{b(x_2)^2}{sigma_2^2}Bigg]+cdots+dfrac{partial}{partial b}Bigg[dfrac{b(x_N)^2}{sigma_N^2}Bigg]\
&= -dfrac{1}{sigma_1^2}dfrac{partial}{partial b}Bigg[b(x_1)^2Bigg]-dfrac{1}{sigma_2^2}dfrac{partial}{partial b}Bigg[b(x_2)^2Bigg]-cdots-dfrac{1}{sigma_N^2}dfrac{partial}{partial b}Bigg[b(x_N)^2Bigg]\
&= -dfrac{1}{sigma_1^2}cdot2cdot b(x_1)-dfrac{1}{sigma_2^2}cdot2cdot b(x_2)-cdots-dfrac{1}{sigma_N^2}cdot2cdot b(x_N)\
&= -Bigg[dfrac{2}{sigma_1^2}cdot b(x_1)+dfrac{2}{sigma_2^2}cdot b(x_2)+cdots+dfrac{2}{sigma_N^2}cdot b(x_N)Bigg]\
&= -sum_{i=1}^Ndfrac{2b(x_i)}{sigma_1^2}
end{align*}



Is this correct?



EDIT: I previously asked this question. But the fact that $b$ is a function and changes with each different $x_i$ confuses me.





This question is an exact duplicate of:




  • How to find $partialchi^2/partial a$ where $chi^2=sum_{i=1}^Ndfrac{D(x_i)-a-b(x_i)^2}{sigma_i^2}$?

    1 answer








partial-derivative






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 26 at 17:56

























asked Nov 26 at 17:50









kaisa

1019




1019




marked as duplicate by callculus, KReiser, max_zorn, Cyclohexanol., José Carlos Santos Nov 27 at 7:11


This question was marked as an exact duplicate of an existing question.






marked as duplicate by callculus, KReiser, max_zorn, Cyclohexanol., José Carlos Santos Nov 27 at 7:11


This question was marked as an exact duplicate of an existing question.










  • 1




    Does "$b(x)^2$" mean "$(b)cdot (x^2)$", or is $b$ a function so that it means "$(b(x))^2$"? If $b$ is a constant, then by linearity the derivative is just $-sum_i x_i^2/sigma_i^2$.
    – MPW
    Nov 26 at 17:54












  • @MPW $b(x_i)$ is a function.
    – kaisa
    Nov 26 at 17:57














  • 1




    Does "$b(x)^2$" mean "$(b)cdot (x^2)$", or is $b$ a function so that it means "$(b(x))^2$"? If $b$ is a constant, then by linearity the derivative is just $-sum_i x_i^2/sigma_i^2$.
    – MPW
    Nov 26 at 17:54












  • @MPW $b(x_i)$ is a function.
    – kaisa
    Nov 26 at 17:57








1




1




Does "$b(x)^2$" mean "$(b)cdot (x^2)$", or is $b$ a function so that it means "$(b(x))^2$"? If $b$ is a constant, then by linearity the derivative is just $-sum_i x_i^2/sigma_i^2$.
– MPW
Nov 26 at 17:54






Does "$b(x)^2$" mean "$(b)cdot (x^2)$", or is $b$ a function so that it means "$(b(x))^2$"? If $b$ is a constant, then by linearity the derivative is just $-sum_i x_i^2/sigma_i^2$.
– MPW
Nov 26 at 17:54














@MPW $b(x_i)$ is a function.
– kaisa
Nov 26 at 17:57




@MPW $b(x_i)$ is a function.
– kaisa
Nov 26 at 17:57










1 Answer
1






active

oldest

votes


















0














I figured out the answer thanks to @MPW 's comment.



begin{align*}
dfrac{partial}{partial b}sum_{i=1}^Ndfrac{D(x_i)-a-b(x_i)^2}{sigma_i^2} &= dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{D(x_i)-a}{sigma_i^2}-sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
&= dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{D(x_i)-a}{sigma_i^2}Bigg]-dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
&= 0-dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
&= -dfrac{partial}{partial b}Bigg[dfrac{b(x_1)^2}{sigma_1^2}+dfrac{b(x_2)^2}{sigma_2^2}+cdots+dfrac{b(x_N)^2}{sigma_N^2}Bigg]\
&= -dfrac{partial}{partial b}Bigg[dfrac{b(x_1)^2}{sigma_1^2}Bigg]-dfrac{partial}{partial b}Bigg[dfrac{b(x_2)^2}{sigma_2^2}Bigg]-cdots-dfrac{partial}{partial b}Bigg[dfrac{b(x_N)^2}{sigma_N^2}Bigg]\
&= -dfrac{1}{sigma_1^2}dfrac{partial}{partial b}Bigg[b(x_1)^2Bigg]-dfrac{1}{sigma_2^2}dfrac{partial}{partial b}Bigg[b(x_2)^2Bigg]-cdots-dfrac{1}{sigma_N^2}dfrac{partial}{partial b}Bigg[b(x_N)^2Bigg]\
&= -dfrac{(x_1)^2}{sigma_1^2}dfrac{partial}{partial b}[b]-dfrac{(x_2)^2}{sigma_2^2}dfrac{partial}{partial b}[b]-cdots-dfrac{(x_N)^2}{sigma_N^2}dfrac{partial}{partial b}[b]\
&= -dfrac{(x_1)^2}{sigma_1^2}cdot1-dfrac{(x_2)^2}{sigma_2^2}cdot1-cdots-dfrac{(x_N)^2}{sigma_N^2}cdot1\
&= -Bigg[dfrac{(x_1)^2}{sigma_1^2}+dfrac{(x_2)^2}{sigma_2^2}+cdots+dfrac{(x_N)^2}{sigma_N^2}Bigg]\
&= -sum_{i=1}^Ndfrac{(x_i)^2}{sigma_i^2}
end{align*}






share|cite|improve this answer




























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    I figured out the answer thanks to @MPW 's comment.



    begin{align*}
    dfrac{partial}{partial b}sum_{i=1}^Ndfrac{D(x_i)-a-b(x_i)^2}{sigma_i^2} &= dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{D(x_i)-a}{sigma_i^2}-sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
    &= dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{D(x_i)-a}{sigma_i^2}Bigg]-dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
    &= 0-dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
    &= -dfrac{partial}{partial b}Bigg[dfrac{b(x_1)^2}{sigma_1^2}+dfrac{b(x_2)^2}{sigma_2^2}+cdots+dfrac{b(x_N)^2}{sigma_N^2}Bigg]\
    &= -dfrac{partial}{partial b}Bigg[dfrac{b(x_1)^2}{sigma_1^2}Bigg]-dfrac{partial}{partial b}Bigg[dfrac{b(x_2)^2}{sigma_2^2}Bigg]-cdots-dfrac{partial}{partial b}Bigg[dfrac{b(x_N)^2}{sigma_N^2}Bigg]\
    &= -dfrac{1}{sigma_1^2}dfrac{partial}{partial b}Bigg[b(x_1)^2Bigg]-dfrac{1}{sigma_2^2}dfrac{partial}{partial b}Bigg[b(x_2)^2Bigg]-cdots-dfrac{1}{sigma_N^2}dfrac{partial}{partial b}Bigg[b(x_N)^2Bigg]\
    &= -dfrac{(x_1)^2}{sigma_1^2}dfrac{partial}{partial b}[b]-dfrac{(x_2)^2}{sigma_2^2}dfrac{partial}{partial b}[b]-cdots-dfrac{(x_N)^2}{sigma_N^2}dfrac{partial}{partial b}[b]\
    &= -dfrac{(x_1)^2}{sigma_1^2}cdot1-dfrac{(x_2)^2}{sigma_2^2}cdot1-cdots-dfrac{(x_N)^2}{sigma_N^2}cdot1\
    &= -Bigg[dfrac{(x_1)^2}{sigma_1^2}+dfrac{(x_2)^2}{sigma_2^2}+cdots+dfrac{(x_N)^2}{sigma_N^2}Bigg]\
    &= -sum_{i=1}^Ndfrac{(x_i)^2}{sigma_i^2}
    end{align*}






    share|cite|improve this answer


























      0














      I figured out the answer thanks to @MPW 's comment.



      begin{align*}
      dfrac{partial}{partial b}sum_{i=1}^Ndfrac{D(x_i)-a-b(x_i)^2}{sigma_i^2} &= dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{D(x_i)-a}{sigma_i^2}-sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
      &= dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{D(x_i)-a}{sigma_i^2}Bigg]-dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
      &= 0-dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
      &= -dfrac{partial}{partial b}Bigg[dfrac{b(x_1)^2}{sigma_1^2}+dfrac{b(x_2)^2}{sigma_2^2}+cdots+dfrac{b(x_N)^2}{sigma_N^2}Bigg]\
      &= -dfrac{partial}{partial b}Bigg[dfrac{b(x_1)^2}{sigma_1^2}Bigg]-dfrac{partial}{partial b}Bigg[dfrac{b(x_2)^2}{sigma_2^2}Bigg]-cdots-dfrac{partial}{partial b}Bigg[dfrac{b(x_N)^2}{sigma_N^2}Bigg]\
      &= -dfrac{1}{sigma_1^2}dfrac{partial}{partial b}Bigg[b(x_1)^2Bigg]-dfrac{1}{sigma_2^2}dfrac{partial}{partial b}Bigg[b(x_2)^2Bigg]-cdots-dfrac{1}{sigma_N^2}dfrac{partial}{partial b}Bigg[b(x_N)^2Bigg]\
      &= -dfrac{(x_1)^2}{sigma_1^2}dfrac{partial}{partial b}[b]-dfrac{(x_2)^2}{sigma_2^2}dfrac{partial}{partial b}[b]-cdots-dfrac{(x_N)^2}{sigma_N^2}dfrac{partial}{partial b}[b]\
      &= -dfrac{(x_1)^2}{sigma_1^2}cdot1-dfrac{(x_2)^2}{sigma_2^2}cdot1-cdots-dfrac{(x_N)^2}{sigma_N^2}cdot1\
      &= -Bigg[dfrac{(x_1)^2}{sigma_1^2}+dfrac{(x_2)^2}{sigma_2^2}+cdots+dfrac{(x_N)^2}{sigma_N^2}Bigg]\
      &= -sum_{i=1}^Ndfrac{(x_i)^2}{sigma_i^2}
      end{align*}






      share|cite|improve this answer
























        0












        0








        0






        I figured out the answer thanks to @MPW 's comment.



        begin{align*}
        dfrac{partial}{partial b}sum_{i=1}^Ndfrac{D(x_i)-a-b(x_i)^2}{sigma_i^2} &= dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{D(x_i)-a}{sigma_i^2}-sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
        &= dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{D(x_i)-a}{sigma_i^2}Bigg]-dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
        &= 0-dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
        &= -dfrac{partial}{partial b}Bigg[dfrac{b(x_1)^2}{sigma_1^2}+dfrac{b(x_2)^2}{sigma_2^2}+cdots+dfrac{b(x_N)^2}{sigma_N^2}Bigg]\
        &= -dfrac{partial}{partial b}Bigg[dfrac{b(x_1)^2}{sigma_1^2}Bigg]-dfrac{partial}{partial b}Bigg[dfrac{b(x_2)^2}{sigma_2^2}Bigg]-cdots-dfrac{partial}{partial b}Bigg[dfrac{b(x_N)^2}{sigma_N^2}Bigg]\
        &= -dfrac{1}{sigma_1^2}dfrac{partial}{partial b}Bigg[b(x_1)^2Bigg]-dfrac{1}{sigma_2^2}dfrac{partial}{partial b}Bigg[b(x_2)^2Bigg]-cdots-dfrac{1}{sigma_N^2}dfrac{partial}{partial b}Bigg[b(x_N)^2Bigg]\
        &= -dfrac{(x_1)^2}{sigma_1^2}dfrac{partial}{partial b}[b]-dfrac{(x_2)^2}{sigma_2^2}dfrac{partial}{partial b}[b]-cdots-dfrac{(x_N)^2}{sigma_N^2}dfrac{partial}{partial b}[b]\
        &= -dfrac{(x_1)^2}{sigma_1^2}cdot1-dfrac{(x_2)^2}{sigma_2^2}cdot1-cdots-dfrac{(x_N)^2}{sigma_N^2}cdot1\
        &= -Bigg[dfrac{(x_1)^2}{sigma_1^2}+dfrac{(x_2)^2}{sigma_2^2}+cdots+dfrac{(x_N)^2}{sigma_N^2}Bigg]\
        &= -sum_{i=1}^Ndfrac{(x_i)^2}{sigma_i^2}
        end{align*}






        share|cite|improve this answer












        I figured out the answer thanks to @MPW 's comment.



        begin{align*}
        dfrac{partial}{partial b}sum_{i=1}^Ndfrac{D(x_i)-a-b(x_i)^2}{sigma_i^2} &= dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{D(x_i)-a}{sigma_i^2}-sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
        &= dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{D(x_i)-a}{sigma_i^2}Bigg]-dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
        &= 0-dfrac{partial}{partial b}Bigg[sum_{i=1}^Ndfrac{b(x_i)^2}{sigma_i^2}Bigg]\
        &= -dfrac{partial}{partial b}Bigg[dfrac{b(x_1)^2}{sigma_1^2}+dfrac{b(x_2)^2}{sigma_2^2}+cdots+dfrac{b(x_N)^2}{sigma_N^2}Bigg]\
        &= -dfrac{partial}{partial b}Bigg[dfrac{b(x_1)^2}{sigma_1^2}Bigg]-dfrac{partial}{partial b}Bigg[dfrac{b(x_2)^2}{sigma_2^2}Bigg]-cdots-dfrac{partial}{partial b}Bigg[dfrac{b(x_N)^2}{sigma_N^2}Bigg]\
        &= -dfrac{1}{sigma_1^2}dfrac{partial}{partial b}Bigg[b(x_1)^2Bigg]-dfrac{1}{sigma_2^2}dfrac{partial}{partial b}Bigg[b(x_2)^2Bigg]-cdots-dfrac{1}{sigma_N^2}dfrac{partial}{partial b}Bigg[b(x_N)^2Bigg]\
        &= -dfrac{(x_1)^2}{sigma_1^2}dfrac{partial}{partial b}[b]-dfrac{(x_2)^2}{sigma_2^2}dfrac{partial}{partial b}[b]-cdots-dfrac{(x_N)^2}{sigma_N^2}dfrac{partial}{partial b}[b]\
        &= -dfrac{(x_1)^2}{sigma_1^2}cdot1-dfrac{(x_2)^2}{sigma_2^2}cdot1-cdots-dfrac{(x_N)^2}{sigma_N^2}cdot1\
        &= -Bigg[dfrac{(x_1)^2}{sigma_1^2}+dfrac{(x_2)^2}{sigma_2^2}+cdots+dfrac{(x_N)^2}{sigma_N^2}Bigg]\
        &= -sum_{i=1}^Ndfrac{(x_i)^2}{sigma_i^2}
        end{align*}







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 26 at 18:05









        kaisa

        1019




        1019















            Popular posts from this blog

            How do I know what Microsoft account the skydrive app is syncing to?

            When does type information flow backwards in C++?

            Grease: Live!