Mean of normal CDF












0












$begingroup$


Question-




Let $X$ follows $N(mu,sigma^2)$. Show that $mathbb{E}(Phi(X)) neq frac{1}{2}$ for any $mu neq 0$, where $Phi(X)$ is the cdf of $N(0,1)$ distribution.




But the theorem of Probability Integral transformation says that cdf of any random variable follows $Uniform (0,1)$ distribution. So the normal cdf should not depend on $mu$ and always follow $Uniform (0,1)$ distribution with mean $frac{1}{2}$.
Can you please point out what I am missing here?



Thanks in advance!










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    "cdf of any random variable follows Uniform(0,1) distribution" No, the result is that $F_Y(Y)$ is uniform on $(0,1)$ (if $Y$ is continuous). Here one is looking at $F_Y(X)$ for $X$ and $Y$ with different distributions.
    $endgroup$
    – Did
    Dec 9 '18 at 14:58






  • 2




    $begingroup$
    And it happens that $$E(Phi(X))=Phileft(-fracmu{sqrt{1+sigma^2}}right)$$ hence indeed, $E(Phi(X))=frac12$ iff $mu=0$.
    $endgroup$
    – Did
    Dec 9 '18 at 14:59












  • $begingroup$
    Can you show the calculation please?
    $endgroup$
    – user587126
    Dec 9 '18 at 15:28






  • 1




    $begingroup$
    Start from the fact that, for every $x$, $$Phi(x)=P(mu+sigma X_0leqslant x)$$ with $X_0$ standard normal, hence, assuming that $X_0$ is independent of $X$, $$Phi(X)=P(mu+sigma X_0leqslant Xmid X)$$ Integrating, one gets $$E(Phi(X))=P(mu+sigma X_0leqslant X)=P(sigma X_0-Xleqslant-mu)=cdots$$
    $endgroup$
    – Did
    Dec 9 '18 at 16:20












  • $begingroup$
    But why $Phi(X)=P(mu+sigma X_0leq X| X)$ but not $P(mu+sigma X_0leq X)$?
    $endgroup$
    – user587126
    Dec 9 '18 at 17:49
















0












$begingroup$


Question-




Let $X$ follows $N(mu,sigma^2)$. Show that $mathbb{E}(Phi(X)) neq frac{1}{2}$ for any $mu neq 0$, where $Phi(X)$ is the cdf of $N(0,1)$ distribution.




But the theorem of Probability Integral transformation says that cdf of any random variable follows $Uniform (0,1)$ distribution. So the normal cdf should not depend on $mu$ and always follow $Uniform (0,1)$ distribution with mean $frac{1}{2}$.
Can you please point out what I am missing here?



Thanks in advance!










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    "cdf of any random variable follows Uniform(0,1) distribution" No, the result is that $F_Y(Y)$ is uniform on $(0,1)$ (if $Y$ is continuous). Here one is looking at $F_Y(X)$ for $X$ and $Y$ with different distributions.
    $endgroup$
    – Did
    Dec 9 '18 at 14:58






  • 2




    $begingroup$
    And it happens that $$E(Phi(X))=Phileft(-fracmu{sqrt{1+sigma^2}}right)$$ hence indeed, $E(Phi(X))=frac12$ iff $mu=0$.
    $endgroup$
    – Did
    Dec 9 '18 at 14:59












  • $begingroup$
    Can you show the calculation please?
    $endgroup$
    – user587126
    Dec 9 '18 at 15:28






  • 1




    $begingroup$
    Start from the fact that, for every $x$, $$Phi(x)=P(mu+sigma X_0leqslant x)$$ with $X_0$ standard normal, hence, assuming that $X_0$ is independent of $X$, $$Phi(X)=P(mu+sigma X_0leqslant Xmid X)$$ Integrating, one gets $$E(Phi(X))=P(mu+sigma X_0leqslant X)=P(sigma X_0-Xleqslant-mu)=cdots$$
    $endgroup$
    – Did
    Dec 9 '18 at 16:20












  • $begingroup$
    But why $Phi(X)=P(mu+sigma X_0leq X| X)$ but not $P(mu+sigma X_0leq X)$?
    $endgroup$
    – user587126
    Dec 9 '18 at 17:49














0












0








0





$begingroup$


Question-




Let $X$ follows $N(mu,sigma^2)$. Show that $mathbb{E}(Phi(X)) neq frac{1}{2}$ for any $mu neq 0$, where $Phi(X)$ is the cdf of $N(0,1)$ distribution.




But the theorem of Probability Integral transformation says that cdf of any random variable follows $Uniform (0,1)$ distribution. So the normal cdf should not depend on $mu$ and always follow $Uniform (0,1)$ distribution with mean $frac{1}{2}$.
Can you please point out what I am missing here?



Thanks in advance!










share|cite|improve this question









$endgroup$




Question-




Let $X$ follows $N(mu,sigma^2)$. Show that $mathbb{E}(Phi(X)) neq frac{1}{2}$ for any $mu neq 0$, where $Phi(X)$ is the cdf of $N(0,1)$ distribution.




But the theorem of Probability Integral transformation says that cdf of any random variable follows $Uniform (0,1)$ distribution. So the normal cdf should not depend on $mu$ and always follow $Uniform (0,1)$ distribution with mean $frac{1}{2}$.
Can you please point out what I am missing here?



Thanks in advance!







probability-theory statistics normal-distribution






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 9 '18 at 14:54









user587126user587126

155




155








  • 1




    $begingroup$
    "cdf of any random variable follows Uniform(0,1) distribution" No, the result is that $F_Y(Y)$ is uniform on $(0,1)$ (if $Y$ is continuous). Here one is looking at $F_Y(X)$ for $X$ and $Y$ with different distributions.
    $endgroup$
    – Did
    Dec 9 '18 at 14:58






  • 2




    $begingroup$
    And it happens that $$E(Phi(X))=Phileft(-fracmu{sqrt{1+sigma^2}}right)$$ hence indeed, $E(Phi(X))=frac12$ iff $mu=0$.
    $endgroup$
    – Did
    Dec 9 '18 at 14:59












  • $begingroup$
    Can you show the calculation please?
    $endgroup$
    – user587126
    Dec 9 '18 at 15:28






  • 1




    $begingroup$
    Start from the fact that, for every $x$, $$Phi(x)=P(mu+sigma X_0leqslant x)$$ with $X_0$ standard normal, hence, assuming that $X_0$ is independent of $X$, $$Phi(X)=P(mu+sigma X_0leqslant Xmid X)$$ Integrating, one gets $$E(Phi(X))=P(mu+sigma X_0leqslant X)=P(sigma X_0-Xleqslant-mu)=cdots$$
    $endgroup$
    – Did
    Dec 9 '18 at 16:20












  • $begingroup$
    But why $Phi(X)=P(mu+sigma X_0leq X| X)$ but not $P(mu+sigma X_0leq X)$?
    $endgroup$
    – user587126
    Dec 9 '18 at 17:49














  • 1




    $begingroup$
    "cdf of any random variable follows Uniform(0,1) distribution" No, the result is that $F_Y(Y)$ is uniform on $(0,1)$ (if $Y$ is continuous). Here one is looking at $F_Y(X)$ for $X$ and $Y$ with different distributions.
    $endgroup$
    – Did
    Dec 9 '18 at 14:58






  • 2




    $begingroup$
    And it happens that $$E(Phi(X))=Phileft(-fracmu{sqrt{1+sigma^2}}right)$$ hence indeed, $E(Phi(X))=frac12$ iff $mu=0$.
    $endgroup$
    – Did
    Dec 9 '18 at 14:59












  • $begingroup$
    Can you show the calculation please?
    $endgroup$
    – user587126
    Dec 9 '18 at 15:28






  • 1




    $begingroup$
    Start from the fact that, for every $x$, $$Phi(x)=P(mu+sigma X_0leqslant x)$$ with $X_0$ standard normal, hence, assuming that $X_0$ is independent of $X$, $$Phi(X)=P(mu+sigma X_0leqslant Xmid X)$$ Integrating, one gets $$E(Phi(X))=P(mu+sigma X_0leqslant X)=P(sigma X_0-Xleqslant-mu)=cdots$$
    $endgroup$
    – Did
    Dec 9 '18 at 16:20












  • $begingroup$
    But why $Phi(X)=P(mu+sigma X_0leq X| X)$ but not $P(mu+sigma X_0leq X)$?
    $endgroup$
    – user587126
    Dec 9 '18 at 17:49








1




1




$begingroup$
"cdf of any random variable follows Uniform(0,1) distribution" No, the result is that $F_Y(Y)$ is uniform on $(0,1)$ (if $Y$ is continuous). Here one is looking at $F_Y(X)$ for $X$ and $Y$ with different distributions.
$endgroup$
– Did
Dec 9 '18 at 14:58




$begingroup$
"cdf of any random variable follows Uniform(0,1) distribution" No, the result is that $F_Y(Y)$ is uniform on $(0,1)$ (if $Y$ is continuous). Here one is looking at $F_Y(X)$ for $X$ and $Y$ with different distributions.
$endgroup$
– Did
Dec 9 '18 at 14:58




2




2




$begingroup$
And it happens that $$E(Phi(X))=Phileft(-fracmu{sqrt{1+sigma^2}}right)$$ hence indeed, $E(Phi(X))=frac12$ iff $mu=0$.
$endgroup$
– Did
Dec 9 '18 at 14:59






$begingroup$
And it happens that $$E(Phi(X))=Phileft(-fracmu{sqrt{1+sigma^2}}right)$$ hence indeed, $E(Phi(X))=frac12$ iff $mu=0$.
$endgroup$
– Did
Dec 9 '18 at 14:59














$begingroup$
Can you show the calculation please?
$endgroup$
– user587126
Dec 9 '18 at 15:28




$begingroup$
Can you show the calculation please?
$endgroup$
– user587126
Dec 9 '18 at 15:28




1




1




$begingroup$
Start from the fact that, for every $x$, $$Phi(x)=P(mu+sigma X_0leqslant x)$$ with $X_0$ standard normal, hence, assuming that $X_0$ is independent of $X$, $$Phi(X)=P(mu+sigma X_0leqslant Xmid X)$$ Integrating, one gets $$E(Phi(X))=P(mu+sigma X_0leqslant X)=P(sigma X_0-Xleqslant-mu)=cdots$$
$endgroup$
– Did
Dec 9 '18 at 16:20






$begingroup$
Start from the fact that, for every $x$, $$Phi(x)=P(mu+sigma X_0leqslant x)$$ with $X_0$ standard normal, hence, assuming that $X_0$ is independent of $X$, $$Phi(X)=P(mu+sigma X_0leqslant Xmid X)$$ Integrating, one gets $$E(Phi(X))=P(mu+sigma X_0leqslant X)=P(sigma X_0-Xleqslant-mu)=cdots$$
$endgroup$
– Did
Dec 9 '18 at 16:20














$begingroup$
But why $Phi(X)=P(mu+sigma X_0leq X| X)$ but not $P(mu+sigma X_0leq X)$?
$endgroup$
– user587126
Dec 9 '18 at 17:49




$begingroup$
But why $Phi(X)=P(mu+sigma X_0leq X| X)$ but not $P(mu+sigma X_0leq X)$?
$endgroup$
– user587126
Dec 9 '18 at 17:49










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032460%2fmean-of-normal-cdf%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032460%2fmean-of-normal-cdf%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Probability when a professor distributes a quiz and homework assignment to a class of n students.

Aardman Animations

Are they similar matrix