$mathbb{F}_{p^d}subseteqmathbb{F}_{p^n}$ if and only if $d$ divides $n$ [duplicate]












1












$begingroup$



This question already has an answer here:




  • Proving that $GF(p^n)$ contains a unique subfield isomorphic to $GF(p^m)$ if and only if $m$ is a divisor of $n$.

    2 answers




I am trying to solve the following exercise of Dummit and Foote Book(page # 551).



Let $a>1$ be an integer. Prove for any positive integers $n,d$ that $d$ divides $n$ if and only if $a^d-1$ divides $a^n-1$. Conclude in particular that $mathbb{F}_{p^d}subseteqmathbb{F}_{p^n}$ if and only if $d$ divides $n$.



I did the first part and I know that for all $alphain mathbb{F}_{p^d}$, $alpha^{p^d}=alpha$. How can I apply the first part for the second? Any help is greatly appreciated. Thank you.










share|cite|improve this question









$endgroup$



marked as duplicate by Jyrki Lahtonen abstract-algebra
Users with the  abstract-algebra badge can single-handedly close abstract-algebra questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 6 '18 at 10:27


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















  • $begingroup$
    An alternative way of doing the last part is to note that if $mathbb{F}_{p^d}suseteq mathbb{F}_{p^n}$, then $mathbb{F}_{p^n}$ is a vector space over $mathbb{F}_{p^d}$. In particular, it must be of cardinality $(p^d)^k$, where $k$ is the dimension. So $p^n = (p^d)^k = p^{dk}$, so $n=dk$.
    $endgroup$
    – Arturo Magidin
    Dec 5 '18 at 23:07
















1












$begingroup$



This question already has an answer here:




  • Proving that $GF(p^n)$ contains a unique subfield isomorphic to $GF(p^m)$ if and only if $m$ is a divisor of $n$.

    2 answers




I am trying to solve the following exercise of Dummit and Foote Book(page # 551).



Let $a>1$ be an integer. Prove for any positive integers $n,d$ that $d$ divides $n$ if and only if $a^d-1$ divides $a^n-1$. Conclude in particular that $mathbb{F}_{p^d}subseteqmathbb{F}_{p^n}$ if and only if $d$ divides $n$.



I did the first part and I know that for all $alphain mathbb{F}_{p^d}$, $alpha^{p^d}=alpha$. How can I apply the first part for the second? Any help is greatly appreciated. Thank you.










share|cite|improve this question









$endgroup$



marked as duplicate by Jyrki Lahtonen abstract-algebra
Users with the  abstract-algebra badge can single-handedly close abstract-algebra questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 6 '18 at 10:27


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















  • $begingroup$
    An alternative way of doing the last part is to note that if $mathbb{F}_{p^d}suseteq mathbb{F}_{p^n}$, then $mathbb{F}_{p^n}$ is a vector space over $mathbb{F}_{p^d}$. In particular, it must be of cardinality $(p^d)^k$, where $k$ is the dimension. So $p^n = (p^d)^k = p^{dk}$, so $n=dk$.
    $endgroup$
    – Arturo Magidin
    Dec 5 '18 at 23:07














1












1








1





$begingroup$



This question already has an answer here:




  • Proving that $GF(p^n)$ contains a unique subfield isomorphic to $GF(p^m)$ if and only if $m$ is a divisor of $n$.

    2 answers




I am trying to solve the following exercise of Dummit and Foote Book(page # 551).



Let $a>1$ be an integer. Prove for any positive integers $n,d$ that $d$ divides $n$ if and only if $a^d-1$ divides $a^n-1$. Conclude in particular that $mathbb{F}_{p^d}subseteqmathbb{F}_{p^n}$ if and only if $d$ divides $n$.



I did the first part and I know that for all $alphain mathbb{F}_{p^d}$, $alpha^{p^d}=alpha$. How can I apply the first part for the second? Any help is greatly appreciated. Thank you.










share|cite|improve this question









$endgroup$





This question already has an answer here:




  • Proving that $GF(p^n)$ contains a unique subfield isomorphic to $GF(p^m)$ if and only if $m$ is a divisor of $n$.

    2 answers




I am trying to solve the following exercise of Dummit and Foote Book(page # 551).



Let $a>1$ be an integer. Prove for any positive integers $n,d$ that $d$ divides $n$ if and only if $a^d-1$ divides $a^n-1$. Conclude in particular that $mathbb{F}_{p^d}subseteqmathbb{F}_{p^n}$ if and only if $d$ divides $n$.



I did the first part and I know that for all $alphain mathbb{F}_{p^d}$, $alpha^{p^d}=alpha$. How can I apply the first part for the second? Any help is greatly appreciated. Thank you.





This question already has an answer here:




  • Proving that $GF(p^n)$ contains a unique subfield isomorphic to $GF(p^m)$ if and only if $m$ is a divisor of $n$.

    2 answers








abstract-algebra field-theory finite-fields






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 5 '18 at 20:26









usmndjusmndj

484




484




marked as duplicate by Jyrki Lahtonen abstract-algebra
Users with the  abstract-algebra badge can single-handedly close abstract-algebra questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 6 '18 at 10:27


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Jyrki Lahtonen abstract-algebra
Users with the  abstract-algebra badge can single-handedly close abstract-algebra questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 6 '18 at 10:27


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • $begingroup$
    An alternative way of doing the last part is to note that if $mathbb{F}_{p^d}suseteq mathbb{F}_{p^n}$, then $mathbb{F}_{p^n}$ is a vector space over $mathbb{F}_{p^d}$. In particular, it must be of cardinality $(p^d)^k$, where $k$ is the dimension. So $p^n = (p^d)^k = p^{dk}$, so $n=dk$.
    $endgroup$
    – Arturo Magidin
    Dec 5 '18 at 23:07


















  • $begingroup$
    An alternative way of doing the last part is to note that if $mathbb{F}_{p^d}suseteq mathbb{F}_{p^n}$, then $mathbb{F}_{p^n}$ is a vector space over $mathbb{F}_{p^d}$. In particular, it must be of cardinality $(p^d)^k$, where $k$ is the dimension. So $p^n = (p^d)^k = p^{dk}$, so $n=dk$.
    $endgroup$
    – Arturo Magidin
    Dec 5 '18 at 23:07
















$begingroup$
An alternative way of doing the last part is to note that if $mathbb{F}_{p^d}suseteq mathbb{F}_{p^n}$, then $mathbb{F}_{p^n}$ is a vector space over $mathbb{F}_{p^d}$. In particular, it must be of cardinality $(p^d)^k$, where $k$ is the dimension. So $p^n = (p^d)^k = p^{dk}$, so $n=dk$.
$endgroup$
– Arturo Magidin
Dec 5 '18 at 23:07




$begingroup$
An alternative way of doing the last part is to note that if $mathbb{F}_{p^d}suseteq mathbb{F}_{p^n}$, then $mathbb{F}_{p^n}$ is a vector space over $mathbb{F}_{p^d}$. In particular, it must be of cardinality $(p^d)^k$, where $k$ is the dimension. So $p^n = (p^d)^k = p^{dk}$, so $n=dk$.
$endgroup$
– Arturo Magidin
Dec 5 '18 at 23:07










2 Answers
2






active

oldest

votes


















2












$begingroup$

$mathbb F_{p^n}$ is the splitting field of $x^{p^n}-x$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks, I got it.
    $endgroup$
    – usmndj
    Dec 5 '18 at 21:32



















0












$begingroup$

If $mathbb{F}_{p^d}subseteqmathbb{F}_{p^n}$, then $n=[mathbb{F}_{p^n}:mathbb{F_p}]=[mathbb{F}_{p^n}:mathbb{F}_{p^d}][mathbb{F}_{p^d}:mathbb{F_p}]=[mathbb{F}_{p^n}:mathbb{F}_{p^d}]d$, and so $d$ divides $n$.



If $d$ divides $n$, then $mathbb{F}_{p^d}^times$ is a subgroup of $mathbb{F}_{p^n}^times$ and so $mathbb{F}_{p^d}subseteqmathbb{F}_{p^n}$. Here we use that $mathbb{F}_{p^n}^times$ is cyclic and that there is at most one finite field of a given size.






share|cite|improve this answer









$endgroup$




















    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    $mathbb F_{p^n}$ is the splitting field of $x^{p^n}-x$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thanks, I got it.
      $endgroup$
      – usmndj
      Dec 5 '18 at 21:32
















    2












    $begingroup$

    $mathbb F_{p^n}$ is the splitting field of $x^{p^n}-x$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thanks, I got it.
      $endgroup$
      – usmndj
      Dec 5 '18 at 21:32














    2












    2








    2





    $begingroup$

    $mathbb F_{p^n}$ is the splitting field of $x^{p^n}-x$.






    share|cite|improve this answer









    $endgroup$



    $mathbb F_{p^n}$ is the splitting field of $x^{p^n}-x$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 5 '18 at 20:34









    Chris CusterChris Custer

    11.6k3824




    11.6k3824












    • $begingroup$
      Thanks, I got it.
      $endgroup$
      – usmndj
      Dec 5 '18 at 21:32


















    • $begingroup$
      Thanks, I got it.
      $endgroup$
      – usmndj
      Dec 5 '18 at 21:32
















    $begingroup$
    Thanks, I got it.
    $endgroup$
    – usmndj
    Dec 5 '18 at 21:32




    $begingroup$
    Thanks, I got it.
    $endgroup$
    – usmndj
    Dec 5 '18 at 21:32











    0












    $begingroup$

    If $mathbb{F}_{p^d}subseteqmathbb{F}_{p^n}$, then $n=[mathbb{F}_{p^n}:mathbb{F_p}]=[mathbb{F}_{p^n}:mathbb{F}_{p^d}][mathbb{F}_{p^d}:mathbb{F_p}]=[mathbb{F}_{p^n}:mathbb{F}_{p^d}]d$, and so $d$ divides $n$.



    If $d$ divides $n$, then $mathbb{F}_{p^d}^times$ is a subgroup of $mathbb{F}_{p^n}^times$ and so $mathbb{F}_{p^d}subseteqmathbb{F}_{p^n}$. Here we use that $mathbb{F}_{p^n}^times$ is cyclic and that there is at most one finite field of a given size.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      If $mathbb{F}_{p^d}subseteqmathbb{F}_{p^n}$, then $n=[mathbb{F}_{p^n}:mathbb{F_p}]=[mathbb{F}_{p^n}:mathbb{F}_{p^d}][mathbb{F}_{p^d}:mathbb{F_p}]=[mathbb{F}_{p^n}:mathbb{F}_{p^d}]d$, and so $d$ divides $n$.



      If $d$ divides $n$, then $mathbb{F}_{p^d}^times$ is a subgroup of $mathbb{F}_{p^n}^times$ and so $mathbb{F}_{p^d}subseteqmathbb{F}_{p^n}$. Here we use that $mathbb{F}_{p^n}^times$ is cyclic and that there is at most one finite field of a given size.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        If $mathbb{F}_{p^d}subseteqmathbb{F}_{p^n}$, then $n=[mathbb{F}_{p^n}:mathbb{F_p}]=[mathbb{F}_{p^n}:mathbb{F}_{p^d}][mathbb{F}_{p^d}:mathbb{F_p}]=[mathbb{F}_{p^n}:mathbb{F}_{p^d}]d$, and so $d$ divides $n$.



        If $d$ divides $n$, then $mathbb{F}_{p^d}^times$ is a subgroup of $mathbb{F}_{p^n}^times$ and so $mathbb{F}_{p^d}subseteqmathbb{F}_{p^n}$. Here we use that $mathbb{F}_{p^n}^times$ is cyclic and that there is at most one finite field of a given size.






        share|cite|improve this answer









        $endgroup$



        If $mathbb{F}_{p^d}subseteqmathbb{F}_{p^n}$, then $n=[mathbb{F}_{p^n}:mathbb{F_p}]=[mathbb{F}_{p^n}:mathbb{F}_{p^d}][mathbb{F}_{p^d}:mathbb{F_p}]=[mathbb{F}_{p^n}:mathbb{F}_{p^d}]d$, and so $d$ divides $n$.



        If $d$ divides $n$, then $mathbb{F}_{p^d}^times$ is a subgroup of $mathbb{F}_{p^n}^times$ and so $mathbb{F}_{p^d}subseteqmathbb{F}_{p^n}$. Here we use that $mathbb{F}_{p^n}^times$ is cyclic and that there is at most one finite field of a given size.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 5 '18 at 23:02









        lhflhf

        164k10170395




        164k10170395















            Popular posts from this blog

            Probability when a professor distributes a quiz and homework assignment to a class of n students.

            Aardman Animations

            Are they similar matrix