How to prove that $lim_{nrightarrowinfty}left[frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}right] = e$...
$begingroup$
This question already has an answer here:
Find $lim_{n to infty} left[frac{(n+1)^{n + 1}}{n^n} - frac{n^{n}}{(n-1)^{n-1}} right]$ (a question asked at trivia)
4 answers
I learnt on Wolfram MathWorld that
$$lim_{nrightarrowinfty}left[frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}right] = e$$
How should I prove this?
Attempt:
$$begin{align}
lim_{nrightarrowinfty}left[frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}right] &= lim_{nrightarrowinfty}left[left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right]\
&=lim_{nrightarrowinfty}e(n+1)-e(n-1)\
&= 2e
end{align}$$
Why did I get a $2e$? Where did I do wrong? Isn't
$$lim_{nrightarrowinfty}left(1+frac{1}{n-1}right)^n=e?$$
limits
$endgroup$
marked as duplicate by Paramanand Singh
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 8 '18 at 2:05
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
|
show 2 more comments
$begingroup$
This question already has an answer here:
Find $lim_{n to infty} left[frac{(n+1)^{n + 1}}{n^n} - frac{n^{n}}{(n-1)^{n-1}} right]$ (a question asked at trivia)
4 answers
I learnt on Wolfram MathWorld that
$$lim_{nrightarrowinfty}left[frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}right] = e$$
How should I prove this?
Attempt:
$$begin{align}
lim_{nrightarrowinfty}left[frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}right] &= lim_{nrightarrowinfty}left[left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right]\
&=lim_{nrightarrowinfty}e(n+1)-e(n-1)\
&= 2e
end{align}$$
Why did I get a $2e$? Where did I do wrong? Isn't
$$lim_{nrightarrowinfty}left(1+frac{1}{n-1}right)^n=e?$$
limits
$endgroup$
marked as duplicate by Paramanand Singh
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 8 '18 at 2:05
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
$$ left(1+frac{1}{n-1} right )^{n} = left(1+frac{1}{n-1} right )^{n-1} cdot left(1+frac{1}{n-1} right ) $$
$endgroup$
– Vladislav Kharlamov
Dec 8 '18 at 1:05
1
$begingroup$
those $$ e(n+1)-e cdot left (1+frac{1}{n-1} right )(n-1) = e(n+1)-e(n-1+1) = e(n+1)-en = e $$
$endgroup$
– Vladislav Kharlamov
Dec 8 '18 at 1:08
1
$begingroup$
The exponent on the second term must match the denominator (you have an exponent of $n$, when the denominator is $n-1$).
$endgroup$
– Michael Burr
Dec 8 '18 at 1:12
1
$begingroup$
The step $$lim_{nrightarrowinfty}left(left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right)=lim_{nrightarrowinfty}(e(n+1)-e(n-1))$$ is erroneous.
$endgroup$
– Abraham Zhang
Dec 8 '18 at 1:33
1
$begingroup$
Your attempt has a flaw which is very common. See this answer for details: math.stackexchange.com/a/1783818/72031
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:09
|
show 2 more comments
$begingroup$
This question already has an answer here:
Find $lim_{n to infty} left[frac{(n+1)^{n + 1}}{n^n} - frac{n^{n}}{(n-1)^{n-1}} right]$ (a question asked at trivia)
4 answers
I learnt on Wolfram MathWorld that
$$lim_{nrightarrowinfty}left[frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}right] = e$$
How should I prove this?
Attempt:
$$begin{align}
lim_{nrightarrowinfty}left[frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}right] &= lim_{nrightarrowinfty}left[left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right]\
&=lim_{nrightarrowinfty}e(n+1)-e(n-1)\
&= 2e
end{align}$$
Why did I get a $2e$? Where did I do wrong? Isn't
$$lim_{nrightarrowinfty}left(1+frac{1}{n-1}right)^n=e?$$
limits
$endgroup$
This question already has an answer here:
Find $lim_{n to infty} left[frac{(n+1)^{n + 1}}{n^n} - frac{n^{n}}{(n-1)^{n-1}} right]$ (a question asked at trivia)
4 answers
I learnt on Wolfram MathWorld that
$$lim_{nrightarrowinfty}left[frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}right] = e$$
How should I prove this?
Attempt:
$$begin{align}
lim_{nrightarrowinfty}left[frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}right] &= lim_{nrightarrowinfty}left[left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right]\
&=lim_{nrightarrowinfty}e(n+1)-e(n-1)\
&= 2e
end{align}$$
Why did I get a $2e$? Where did I do wrong? Isn't
$$lim_{nrightarrowinfty}left(1+frac{1}{n-1}right)^n=e?$$
This question already has an answer here:
Find $lim_{n to infty} left[frac{(n+1)^{n + 1}}{n^n} - frac{n^{n}}{(n-1)^{n-1}} right]$ (a question asked at trivia)
4 answers
limits
limits
edited Dec 8 '18 at 2:07
Paramanand Singh
49.8k556163
49.8k556163
asked Dec 8 '18 at 1:00
LarryLarry
2,37131029
2,37131029
marked as duplicate by Paramanand Singh
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 8 '18 at 2:05
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Paramanand Singh
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 8 '18 at 2:05
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
$$ left(1+frac{1}{n-1} right )^{n} = left(1+frac{1}{n-1} right )^{n-1} cdot left(1+frac{1}{n-1} right ) $$
$endgroup$
– Vladislav Kharlamov
Dec 8 '18 at 1:05
1
$begingroup$
those $$ e(n+1)-e cdot left (1+frac{1}{n-1} right )(n-1) = e(n+1)-e(n-1+1) = e(n+1)-en = e $$
$endgroup$
– Vladislav Kharlamov
Dec 8 '18 at 1:08
1
$begingroup$
The exponent on the second term must match the denominator (you have an exponent of $n$, when the denominator is $n-1$).
$endgroup$
– Michael Burr
Dec 8 '18 at 1:12
1
$begingroup$
The step $$lim_{nrightarrowinfty}left(left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right)=lim_{nrightarrowinfty}(e(n+1)-e(n-1))$$ is erroneous.
$endgroup$
– Abraham Zhang
Dec 8 '18 at 1:33
1
$begingroup$
Your attempt has a flaw which is very common. See this answer for details: math.stackexchange.com/a/1783818/72031
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:09
|
show 2 more comments
1
$begingroup$
$$ left(1+frac{1}{n-1} right )^{n} = left(1+frac{1}{n-1} right )^{n-1} cdot left(1+frac{1}{n-1} right ) $$
$endgroup$
– Vladislav Kharlamov
Dec 8 '18 at 1:05
1
$begingroup$
those $$ e(n+1)-e cdot left (1+frac{1}{n-1} right )(n-1) = e(n+1)-e(n-1+1) = e(n+1)-en = e $$
$endgroup$
– Vladislav Kharlamov
Dec 8 '18 at 1:08
1
$begingroup$
The exponent on the second term must match the denominator (you have an exponent of $n$, when the denominator is $n-1$).
$endgroup$
– Michael Burr
Dec 8 '18 at 1:12
1
$begingroup$
The step $$lim_{nrightarrowinfty}left(left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right)=lim_{nrightarrowinfty}(e(n+1)-e(n-1))$$ is erroneous.
$endgroup$
– Abraham Zhang
Dec 8 '18 at 1:33
1
$begingroup$
Your attempt has a flaw which is very common. See this answer for details: math.stackexchange.com/a/1783818/72031
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:09
1
1
$begingroup$
$$ left(1+frac{1}{n-1} right )^{n} = left(1+frac{1}{n-1} right )^{n-1} cdot left(1+frac{1}{n-1} right ) $$
$endgroup$
– Vladislav Kharlamov
Dec 8 '18 at 1:05
$begingroup$
$$ left(1+frac{1}{n-1} right )^{n} = left(1+frac{1}{n-1} right )^{n-1} cdot left(1+frac{1}{n-1} right ) $$
$endgroup$
– Vladislav Kharlamov
Dec 8 '18 at 1:05
1
1
$begingroup$
those $$ e(n+1)-e cdot left (1+frac{1}{n-1} right )(n-1) = e(n+1)-e(n-1+1) = e(n+1)-en = e $$
$endgroup$
– Vladislav Kharlamov
Dec 8 '18 at 1:08
$begingroup$
those $$ e(n+1)-e cdot left (1+frac{1}{n-1} right )(n-1) = e(n+1)-e(n-1+1) = e(n+1)-en = e $$
$endgroup$
– Vladislav Kharlamov
Dec 8 '18 at 1:08
1
1
$begingroup$
The exponent on the second term must match the denominator (you have an exponent of $n$, when the denominator is $n-1$).
$endgroup$
– Michael Burr
Dec 8 '18 at 1:12
$begingroup$
The exponent on the second term must match the denominator (you have an exponent of $n$, when the denominator is $n-1$).
$endgroup$
– Michael Burr
Dec 8 '18 at 1:12
1
1
$begingroup$
The step $$lim_{nrightarrowinfty}left(left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right)=lim_{nrightarrowinfty}(e(n+1)-e(n-1))$$ is erroneous.
$endgroup$
– Abraham Zhang
Dec 8 '18 at 1:33
$begingroup$
The step $$lim_{nrightarrowinfty}left(left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right)=lim_{nrightarrowinfty}(e(n+1)-e(n-1))$$ is erroneous.
$endgroup$
– Abraham Zhang
Dec 8 '18 at 1:33
1
1
$begingroup$
Your attempt has a flaw which is very common. See this answer for details: math.stackexchange.com/a/1783818/72031
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:09
$begingroup$
Your attempt has a flaw which is very common. See this answer for details: math.stackexchange.com/a/1783818/72031
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:09
|
show 2 more comments
3 Answers
3
active
oldest
votes
$begingroup$
The step where you go from $lim_{ntoinfty}left(1+frac{1}{n}right)^n(n+1)- left(1+frac{1}{n-1}right)^n(n-1)$ to $lim_{ntoinfty} e(n+1)-e(n-1)$ is invalid. You can't evaluate just some pieces of the limit in terms of $n$. Formally, you're starting with an indeterminate form of type $infty - infty$.
As a simpler example as to why your reasoning doesn't work, consider the indeterminate form $(n+1)-n$, which is identically equal to $1$. But it can be rewritten to be of the form
$$
nleft(frac{n+1}{n}right) - (n+1)left(frac{n}{n+1}right)
$$
Now both $left(frac{n+1}{n}right)$ and $left(frac{n}{n+1}right)$ converge to $1$, but the limit of $n(1) - (n+1)(1)$ is now $-1$ instead of $1$.
As to how to derive the identity, the Mathworld link suggests that a reasonable approach would be to start with the expression
$$
left(1 + frac{1}{x}right)^x
= eleft[1 - frac{1}{2x} + frac{11}{24x^2} - frac{7}{16x^3} + frac{2447}{5760x^4} - dotsright], ,
$$
which is derived by using a composition of the identity
$$
xlnleft(1 + frac{1}{x}right)
= 1 - frac{1}{2x} + frac{1}{3x^2} - frac{1}{4x^3} + dots
$$
with the power series expansion of $e^x$.
$endgroup$
$begingroup$
+1 for pointing out the mistake and explaining via a simple example.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:33
add a comment |
$begingroup$
By Taylor's espansion as $x to 0$
- $log(1+x)=x-frac12x^2+o(x^2)$
- $e^x=1+x+o(x)$
we have that
$$frac{(n+1)^{n+1}}{n^n}=(n+1)left(1+frac1nright)^n=(n+1)e^{nlogleft(1+frac1nright)}=$$$$=(n+1)e^{nleft(frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n+1)e^{1-frac1{2n}+oleft(frac1{n}right)}=e(n+1)left(1-frac1{2n}+oleft(frac1{n}right)right)$$
$$frac{n^n}{(n-1)^{n-1}}=(n-1)left(1-frac1nright)^{-n}=(n-1)e^{-nlogleft(1-frac1nright)}=$$$$=(n-1)e^{-nleft(-frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n-1)e^{1+frac1{2n}+oleft(frac1{n}right)}=e(n-1)left(1+frac1{2n}+oleft(frac1{n}right)right)$$
and then
$$frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}=en+e-frac e 2-(en-e+frac e 2)+o(1)=e+o(1)to e$$
$endgroup$
$begingroup$
+1 and you may look at this answer math.stackexchange.com/a/2210052/72031 where I use standard limits.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:13
$begingroup$
@ParamanandSingh I was just looking at the duplicate! Thanks
$endgroup$
– gimusi
Dec 8 '18 at 2:13
$begingroup$
@ParamanandSingh Do you think we could make rigorous the short way by SC in some simple way?
$endgroup$
– gimusi
Dec 8 '18 at 2:22
$begingroup$
There is an answer by user RRL regarding reverse of Cesaro-Stolz, but you need to search and see if that helps here.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:25
$begingroup$
Thanks! I’ll take a look to that, Bye
$endgroup$
– gimusi
Dec 8 '18 at 2:29
|
show 2 more comments
$begingroup$
Assuming that the limit exists (which should be proved) we can easily see that it needs to be equal to $e$, indeed by Stolz-Cesaro with $a_n=frac{n^n}{(n-1)^{n-1}}$ we have
$$a_{n+1}-a_n=frac{a_{n+1}-a_n}{(n+1)-n} to L implies frac{a_n}{n}=frac{n^{n-1}}{(n-1)^{n-1}}=frac{1}{left(1-frac1nright)^{n-1}}to L=e$$
$endgroup$
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The step where you go from $lim_{ntoinfty}left(1+frac{1}{n}right)^n(n+1)- left(1+frac{1}{n-1}right)^n(n-1)$ to $lim_{ntoinfty} e(n+1)-e(n-1)$ is invalid. You can't evaluate just some pieces of the limit in terms of $n$. Formally, you're starting with an indeterminate form of type $infty - infty$.
As a simpler example as to why your reasoning doesn't work, consider the indeterminate form $(n+1)-n$, which is identically equal to $1$. But it can be rewritten to be of the form
$$
nleft(frac{n+1}{n}right) - (n+1)left(frac{n}{n+1}right)
$$
Now both $left(frac{n+1}{n}right)$ and $left(frac{n}{n+1}right)$ converge to $1$, but the limit of $n(1) - (n+1)(1)$ is now $-1$ instead of $1$.
As to how to derive the identity, the Mathworld link suggests that a reasonable approach would be to start with the expression
$$
left(1 + frac{1}{x}right)^x
= eleft[1 - frac{1}{2x} + frac{11}{24x^2} - frac{7}{16x^3} + frac{2447}{5760x^4} - dotsright], ,
$$
which is derived by using a composition of the identity
$$
xlnleft(1 + frac{1}{x}right)
= 1 - frac{1}{2x} + frac{1}{3x^2} - frac{1}{4x^3} + dots
$$
with the power series expansion of $e^x$.
$endgroup$
$begingroup$
+1 for pointing out the mistake and explaining via a simple example.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:33
add a comment |
$begingroup$
The step where you go from $lim_{ntoinfty}left(1+frac{1}{n}right)^n(n+1)- left(1+frac{1}{n-1}right)^n(n-1)$ to $lim_{ntoinfty} e(n+1)-e(n-1)$ is invalid. You can't evaluate just some pieces of the limit in terms of $n$. Formally, you're starting with an indeterminate form of type $infty - infty$.
As a simpler example as to why your reasoning doesn't work, consider the indeterminate form $(n+1)-n$, which is identically equal to $1$. But it can be rewritten to be of the form
$$
nleft(frac{n+1}{n}right) - (n+1)left(frac{n}{n+1}right)
$$
Now both $left(frac{n+1}{n}right)$ and $left(frac{n}{n+1}right)$ converge to $1$, but the limit of $n(1) - (n+1)(1)$ is now $-1$ instead of $1$.
As to how to derive the identity, the Mathworld link suggests that a reasonable approach would be to start with the expression
$$
left(1 + frac{1}{x}right)^x
= eleft[1 - frac{1}{2x} + frac{11}{24x^2} - frac{7}{16x^3} + frac{2447}{5760x^4} - dotsright], ,
$$
which is derived by using a composition of the identity
$$
xlnleft(1 + frac{1}{x}right)
= 1 - frac{1}{2x} + frac{1}{3x^2} - frac{1}{4x^3} + dots
$$
with the power series expansion of $e^x$.
$endgroup$
$begingroup$
+1 for pointing out the mistake and explaining via a simple example.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:33
add a comment |
$begingroup$
The step where you go from $lim_{ntoinfty}left(1+frac{1}{n}right)^n(n+1)- left(1+frac{1}{n-1}right)^n(n-1)$ to $lim_{ntoinfty} e(n+1)-e(n-1)$ is invalid. You can't evaluate just some pieces of the limit in terms of $n$. Formally, you're starting with an indeterminate form of type $infty - infty$.
As a simpler example as to why your reasoning doesn't work, consider the indeterminate form $(n+1)-n$, which is identically equal to $1$. But it can be rewritten to be of the form
$$
nleft(frac{n+1}{n}right) - (n+1)left(frac{n}{n+1}right)
$$
Now both $left(frac{n+1}{n}right)$ and $left(frac{n}{n+1}right)$ converge to $1$, but the limit of $n(1) - (n+1)(1)$ is now $-1$ instead of $1$.
As to how to derive the identity, the Mathworld link suggests that a reasonable approach would be to start with the expression
$$
left(1 + frac{1}{x}right)^x
= eleft[1 - frac{1}{2x} + frac{11}{24x^2} - frac{7}{16x^3} + frac{2447}{5760x^4} - dotsright], ,
$$
which is derived by using a composition of the identity
$$
xlnleft(1 + frac{1}{x}right)
= 1 - frac{1}{2x} + frac{1}{3x^2} - frac{1}{4x^3} + dots
$$
with the power series expansion of $e^x$.
$endgroup$
The step where you go from $lim_{ntoinfty}left(1+frac{1}{n}right)^n(n+1)- left(1+frac{1}{n-1}right)^n(n-1)$ to $lim_{ntoinfty} e(n+1)-e(n-1)$ is invalid. You can't evaluate just some pieces of the limit in terms of $n$. Formally, you're starting with an indeterminate form of type $infty - infty$.
As a simpler example as to why your reasoning doesn't work, consider the indeterminate form $(n+1)-n$, which is identically equal to $1$. But it can be rewritten to be of the form
$$
nleft(frac{n+1}{n}right) - (n+1)left(frac{n}{n+1}right)
$$
Now both $left(frac{n+1}{n}right)$ and $left(frac{n}{n+1}right)$ converge to $1$, but the limit of $n(1) - (n+1)(1)$ is now $-1$ instead of $1$.
As to how to derive the identity, the Mathworld link suggests that a reasonable approach would be to start with the expression
$$
left(1 + frac{1}{x}right)^x
= eleft[1 - frac{1}{2x} + frac{11}{24x^2} - frac{7}{16x^3} + frac{2447}{5760x^4} - dotsright], ,
$$
which is derived by using a composition of the identity
$$
xlnleft(1 + frac{1}{x}right)
= 1 - frac{1}{2x} + frac{1}{3x^2} - frac{1}{4x^3} + dots
$$
with the power series expansion of $e^x$.
answered Dec 8 '18 at 1:39
Rolf HoyerRolf Hoyer
11.2k31629
11.2k31629
$begingroup$
+1 for pointing out the mistake and explaining via a simple example.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:33
add a comment |
$begingroup$
+1 for pointing out the mistake and explaining via a simple example.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:33
$begingroup$
+1 for pointing out the mistake and explaining via a simple example.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:33
$begingroup$
+1 for pointing out the mistake and explaining via a simple example.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:33
add a comment |
$begingroup$
By Taylor's espansion as $x to 0$
- $log(1+x)=x-frac12x^2+o(x^2)$
- $e^x=1+x+o(x)$
we have that
$$frac{(n+1)^{n+1}}{n^n}=(n+1)left(1+frac1nright)^n=(n+1)e^{nlogleft(1+frac1nright)}=$$$$=(n+1)e^{nleft(frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n+1)e^{1-frac1{2n}+oleft(frac1{n}right)}=e(n+1)left(1-frac1{2n}+oleft(frac1{n}right)right)$$
$$frac{n^n}{(n-1)^{n-1}}=(n-1)left(1-frac1nright)^{-n}=(n-1)e^{-nlogleft(1-frac1nright)}=$$$$=(n-1)e^{-nleft(-frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n-1)e^{1+frac1{2n}+oleft(frac1{n}right)}=e(n-1)left(1+frac1{2n}+oleft(frac1{n}right)right)$$
and then
$$frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}=en+e-frac e 2-(en-e+frac e 2)+o(1)=e+o(1)to e$$
$endgroup$
$begingroup$
+1 and you may look at this answer math.stackexchange.com/a/2210052/72031 where I use standard limits.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:13
$begingroup$
@ParamanandSingh I was just looking at the duplicate! Thanks
$endgroup$
– gimusi
Dec 8 '18 at 2:13
$begingroup$
@ParamanandSingh Do you think we could make rigorous the short way by SC in some simple way?
$endgroup$
– gimusi
Dec 8 '18 at 2:22
$begingroup$
There is an answer by user RRL regarding reverse of Cesaro-Stolz, but you need to search and see if that helps here.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:25
$begingroup$
Thanks! I’ll take a look to that, Bye
$endgroup$
– gimusi
Dec 8 '18 at 2:29
|
show 2 more comments
$begingroup$
By Taylor's espansion as $x to 0$
- $log(1+x)=x-frac12x^2+o(x^2)$
- $e^x=1+x+o(x)$
we have that
$$frac{(n+1)^{n+1}}{n^n}=(n+1)left(1+frac1nright)^n=(n+1)e^{nlogleft(1+frac1nright)}=$$$$=(n+1)e^{nleft(frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n+1)e^{1-frac1{2n}+oleft(frac1{n}right)}=e(n+1)left(1-frac1{2n}+oleft(frac1{n}right)right)$$
$$frac{n^n}{(n-1)^{n-1}}=(n-1)left(1-frac1nright)^{-n}=(n-1)e^{-nlogleft(1-frac1nright)}=$$$$=(n-1)e^{-nleft(-frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n-1)e^{1+frac1{2n}+oleft(frac1{n}right)}=e(n-1)left(1+frac1{2n}+oleft(frac1{n}right)right)$$
and then
$$frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}=en+e-frac e 2-(en-e+frac e 2)+o(1)=e+o(1)to e$$
$endgroup$
$begingroup$
+1 and you may look at this answer math.stackexchange.com/a/2210052/72031 where I use standard limits.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:13
$begingroup$
@ParamanandSingh I was just looking at the duplicate! Thanks
$endgroup$
– gimusi
Dec 8 '18 at 2:13
$begingroup$
@ParamanandSingh Do you think we could make rigorous the short way by SC in some simple way?
$endgroup$
– gimusi
Dec 8 '18 at 2:22
$begingroup$
There is an answer by user RRL regarding reverse of Cesaro-Stolz, but you need to search and see if that helps here.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:25
$begingroup$
Thanks! I’ll take a look to that, Bye
$endgroup$
– gimusi
Dec 8 '18 at 2:29
|
show 2 more comments
$begingroup$
By Taylor's espansion as $x to 0$
- $log(1+x)=x-frac12x^2+o(x^2)$
- $e^x=1+x+o(x)$
we have that
$$frac{(n+1)^{n+1}}{n^n}=(n+1)left(1+frac1nright)^n=(n+1)e^{nlogleft(1+frac1nright)}=$$$$=(n+1)e^{nleft(frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n+1)e^{1-frac1{2n}+oleft(frac1{n}right)}=e(n+1)left(1-frac1{2n}+oleft(frac1{n}right)right)$$
$$frac{n^n}{(n-1)^{n-1}}=(n-1)left(1-frac1nright)^{-n}=(n-1)e^{-nlogleft(1-frac1nright)}=$$$$=(n-1)e^{-nleft(-frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n-1)e^{1+frac1{2n}+oleft(frac1{n}right)}=e(n-1)left(1+frac1{2n}+oleft(frac1{n}right)right)$$
and then
$$frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}=en+e-frac e 2-(en-e+frac e 2)+o(1)=e+o(1)to e$$
$endgroup$
By Taylor's espansion as $x to 0$
- $log(1+x)=x-frac12x^2+o(x^2)$
- $e^x=1+x+o(x)$
we have that
$$frac{(n+1)^{n+1}}{n^n}=(n+1)left(1+frac1nright)^n=(n+1)e^{nlogleft(1+frac1nright)}=$$$$=(n+1)e^{nleft(frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n+1)e^{1-frac1{2n}+oleft(frac1{n}right)}=e(n+1)left(1-frac1{2n}+oleft(frac1{n}right)right)$$
$$frac{n^n}{(n-1)^{n-1}}=(n-1)left(1-frac1nright)^{-n}=(n-1)e^{-nlogleft(1-frac1nright)}=$$$$=(n-1)e^{-nleft(-frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n-1)e^{1+frac1{2n}+oleft(frac1{n}right)}=e(n-1)left(1+frac1{2n}+oleft(frac1{n}right)right)$$
and then
$$frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}=en+e-frac e 2-(en-e+frac e 2)+o(1)=e+o(1)to e$$
edited Dec 8 '18 at 1:47
answered Dec 8 '18 at 1:42
gimusigimusi
92.8k84494
92.8k84494
$begingroup$
+1 and you may look at this answer math.stackexchange.com/a/2210052/72031 where I use standard limits.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:13
$begingroup$
@ParamanandSingh I was just looking at the duplicate! Thanks
$endgroup$
– gimusi
Dec 8 '18 at 2:13
$begingroup$
@ParamanandSingh Do you think we could make rigorous the short way by SC in some simple way?
$endgroup$
– gimusi
Dec 8 '18 at 2:22
$begingroup$
There is an answer by user RRL regarding reverse of Cesaro-Stolz, but you need to search and see if that helps here.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:25
$begingroup$
Thanks! I’ll take a look to that, Bye
$endgroup$
– gimusi
Dec 8 '18 at 2:29
|
show 2 more comments
$begingroup$
+1 and you may look at this answer math.stackexchange.com/a/2210052/72031 where I use standard limits.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:13
$begingroup$
@ParamanandSingh I was just looking at the duplicate! Thanks
$endgroup$
– gimusi
Dec 8 '18 at 2:13
$begingroup$
@ParamanandSingh Do you think we could make rigorous the short way by SC in some simple way?
$endgroup$
– gimusi
Dec 8 '18 at 2:22
$begingroup$
There is an answer by user RRL regarding reverse of Cesaro-Stolz, but you need to search and see if that helps here.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:25
$begingroup$
Thanks! I’ll take a look to that, Bye
$endgroup$
– gimusi
Dec 8 '18 at 2:29
$begingroup$
+1 and you may look at this answer math.stackexchange.com/a/2210052/72031 where I use standard limits.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:13
$begingroup$
+1 and you may look at this answer math.stackexchange.com/a/2210052/72031 where I use standard limits.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:13
$begingroup$
@ParamanandSingh I was just looking at the duplicate! Thanks
$endgroup$
– gimusi
Dec 8 '18 at 2:13
$begingroup$
@ParamanandSingh I was just looking at the duplicate! Thanks
$endgroup$
– gimusi
Dec 8 '18 at 2:13
$begingroup$
@ParamanandSingh Do you think we could make rigorous the short way by SC in some simple way?
$endgroup$
– gimusi
Dec 8 '18 at 2:22
$begingroup$
@ParamanandSingh Do you think we could make rigorous the short way by SC in some simple way?
$endgroup$
– gimusi
Dec 8 '18 at 2:22
$begingroup$
There is an answer by user RRL regarding reverse of Cesaro-Stolz, but you need to search and see if that helps here.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:25
$begingroup$
There is an answer by user RRL regarding reverse of Cesaro-Stolz, but you need to search and see if that helps here.
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:25
$begingroup$
Thanks! I’ll take a look to that, Bye
$endgroup$
– gimusi
Dec 8 '18 at 2:29
$begingroup$
Thanks! I’ll take a look to that, Bye
$endgroup$
– gimusi
Dec 8 '18 at 2:29
|
show 2 more comments
$begingroup$
Assuming that the limit exists (which should be proved) we can easily see that it needs to be equal to $e$, indeed by Stolz-Cesaro with $a_n=frac{n^n}{(n-1)^{n-1}}$ we have
$$a_{n+1}-a_n=frac{a_{n+1}-a_n}{(n+1)-n} to L implies frac{a_n}{n}=frac{n^{n-1}}{(n-1)^{n-1}}=frac{1}{left(1-frac1nright)^{n-1}}to L=e$$
$endgroup$
add a comment |
$begingroup$
Assuming that the limit exists (which should be proved) we can easily see that it needs to be equal to $e$, indeed by Stolz-Cesaro with $a_n=frac{n^n}{(n-1)^{n-1}}$ we have
$$a_{n+1}-a_n=frac{a_{n+1}-a_n}{(n+1)-n} to L implies frac{a_n}{n}=frac{n^{n-1}}{(n-1)^{n-1}}=frac{1}{left(1-frac1nright)^{n-1}}to L=e$$
$endgroup$
add a comment |
$begingroup$
Assuming that the limit exists (which should be proved) we can easily see that it needs to be equal to $e$, indeed by Stolz-Cesaro with $a_n=frac{n^n}{(n-1)^{n-1}}$ we have
$$a_{n+1}-a_n=frac{a_{n+1}-a_n}{(n+1)-n} to L implies frac{a_n}{n}=frac{n^{n-1}}{(n-1)^{n-1}}=frac{1}{left(1-frac1nright)^{n-1}}to L=e$$
$endgroup$
Assuming that the limit exists (which should be proved) we can easily see that it needs to be equal to $e$, indeed by Stolz-Cesaro with $a_n=frac{n^n}{(n-1)^{n-1}}$ we have
$$a_{n+1}-a_n=frac{a_{n+1}-a_n}{(n+1)-n} to L implies frac{a_n}{n}=frac{n^{n-1}}{(n-1)^{n-1}}=frac{1}{left(1-frac1nright)^{n-1}}to L=e$$
answered Dec 8 '18 at 2:02
gimusigimusi
92.8k84494
92.8k84494
add a comment |
add a comment |
1
$begingroup$
$$ left(1+frac{1}{n-1} right )^{n} = left(1+frac{1}{n-1} right )^{n-1} cdot left(1+frac{1}{n-1} right ) $$
$endgroup$
– Vladislav Kharlamov
Dec 8 '18 at 1:05
1
$begingroup$
those $$ e(n+1)-e cdot left (1+frac{1}{n-1} right )(n-1) = e(n+1)-e(n-1+1) = e(n+1)-en = e $$
$endgroup$
– Vladislav Kharlamov
Dec 8 '18 at 1:08
1
$begingroup$
The exponent on the second term must match the denominator (you have an exponent of $n$, when the denominator is $n-1$).
$endgroup$
– Michael Burr
Dec 8 '18 at 1:12
1
$begingroup$
The step $$lim_{nrightarrowinfty}left(left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right)=lim_{nrightarrowinfty}(e(n+1)-e(n-1))$$ is erroneous.
$endgroup$
– Abraham Zhang
Dec 8 '18 at 1:33
1
$begingroup$
Your attempt has a flaw which is very common. See this answer for details: math.stackexchange.com/a/1783818/72031
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:09