How to prove that $lim_{nrightarrowinfty}left[frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}right] = e$...












2












$begingroup$



This question already has an answer here:




  • Find $lim_{n to infty} left[frac{(n+1)^{n + 1}}{n^n} - frac{n^{n}}{(n-1)^{n-1}} right]$ (a question asked at trivia)

    4 answers




I learnt on Wolfram MathWorld that
$$lim_{nrightarrowinfty}left[frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}right] = e$$



How should I prove this?



Attempt:
$$begin{align}
lim_{nrightarrowinfty}left[frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}right] &= lim_{nrightarrowinfty}left[left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right]\
&=lim_{nrightarrowinfty}e(n+1)-e(n-1)\
&= 2e
end{align}$$

Why did I get a $2e$? Where did I do wrong? Isn't
$$lim_{nrightarrowinfty}left(1+frac{1}{n-1}right)^n=e?$$










share|cite|improve this question











$endgroup$



marked as duplicate by Paramanand Singh limits
Users with the  limits badge can single-handedly close limits questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 8 '18 at 2:05


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • 1




    $begingroup$
    $$ left(1+frac{1}{n-1} right )^{n} = left(1+frac{1}{n-1} right )^{n-1} cdot left(1+frac{1}{n-1} right ) $$
    $endgroup$
    – Vladislav Kharlamov
    Dec 8 '18 at 1:05








  • 1




    $begingroup$
    those $$ e(n+1)-e cdot left (1+frac{1}{n-1} right )(n-1) = e(n+1)-e(n-1+1) = e(n+1)-en = e $$
    $endgroup$
    – Vladislav Kharlamov
    Dec 8 '18 at 1:08








  • 1




    $begingroup$
    The exponent on the second term must match the denominator (you have an exponent of $n$, when the denominator is $n-1$).
    $endgroup$
    – Michael Burr
    Dec 8 '18 at 1:12






  • 1




    $begingroup$
    The step $$lim_{nrightarrowinfty}left(left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right)=lim_{nrightarrowinfty}(e(n+1)-e(n-1))$$ is erroneous.
    $endgroup$
    – Abraham Zhang
    Dec 8 '18 at 1:33






  • 1




    $begingroup$
    Your attempt has a flaw which is very common. See this answer for details: math.stackexchange.com/a/1783818/72031
    $endgroup$
    – Paramanand Singh
    Dec 8 '18 at 2:09
















2












$begingroup$



This question already has an answer here:




  • Find $lim_{n to infty} left[frac{(n+1)^{n + 1}}{n^n} - frac{n^{n}}{(n-1)^{n-1}} right]$ (a question asked at trivia)

    4 answers




I learnt on Wolfram MathWorld that
$$lim_{nrightarrowinfty}left[frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}right] = e$$



How should I prove this?



Attempt:
$$begin{align}
lim_{nrightarrowinfty}left[frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}right] &= lim_{nrightarrowinfty}left[left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right]\
&=lim_{nrightarrowinfty}e(n+1)-e(n-1)\
&= 2e
end{align}$$

Why did I get a $2e$? Where did I do wrong? Isn't
$$lim_{nrightarrowinfty}left(1+frac{1}{n-1}right)^n=e?$$










share|cite|improve this question











$endgroup$



marked as duplicate by Paramanand Singh limits
Users with the  limits badge can single-handedly close limits questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 8 '18 at 2:05


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • 1




    $begingroup$
    $$ left(1+frac{1}{n-1} right )^{n} = left(1+frac{1}{n-1} right )^{n-1} cdot left(1+frac{1}{n-1} right ) $$
    $endgroup$
    – Vladislav Kharlamov
    Dec 8 '18 at 1:05








  • 1




    $begingroup$
    those $$ e(n+1)-e cdot left (1+frac{1}{n-1} right )(n-1) = e(n+1)-e(n-1+1) = e(n+1)-en = e $$
    $endgroup$
    – Vladislav Kharlamov
    Dec 8 '18 at 1:08








  • 1




    $begingroup$
    The exponent on the second term must match the denominator (you have an exponent of $n$, when the denominator is $n-1$).
    $endgroup$
    – Michael Burr
    Dec 8 '18 at 1:12






  • 1




    $begingroup$
    The step $$lim_{nrightarrowinfty}left(left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right)=lim_{nrightarrowinfty}(e(n+1)-e(n-1))$$ is erroneous.
    $endgroup$
    – Abraham Zhang
    Dec 8 '18 at 1:33






  • 1




    $begingroup$
    Your attempt has a flaw which is very common. See this answer for details: math.stackexchange.com/a/1783818/72031
    $endgroup$
    – Paramanand Singh
    Dec 8 '18 at 2:09














2












2








2


1



$begingroup$



This question already has an answer here:




  • Find $lim_{n to infty} left[frac{(n+1)^{n + 1}}{n^n} - frac{n^{n}}{(n-1)^{n-1}} right]$ (a question asked at trivia)

    4 answers




I learnt on Wolfram MathWorld that
$$lim_{nrightarrowinfty}left[frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}right] = e$$



How should I prove this?



Attempt:
$$begin{align}
lim_{nrightarrowinfty}left[frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}right] &= lim_{nrightarrowinfty}left[left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right]\
&=lim_{nrightarrowinfty}e(n+1)-e(n-1)\
&= 2e
end{align}$$

Why did I get a $2e$? Where did I do wrong? Isn't
$$lim_{nrightarrowinfty}left(1+frac{1}{n-1}right)^n=e?$$










share|cite|improve this question











$endgroup$





This question already has an answer here:




  • Find $lim_{n to infty} left[frac{(n+1)^{n + 1}}{n^n} - frac{n^{n}}{(n-1)^{n-1}} right]$ (a question asked at trivia)

    4 answers




I learnt on Wolfram MathWorld that
$$lim_{nrightarrowinfty}left[frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}right] = e$$



How should I prove this?



Attempt:
$$begin{align}
lim_{nrightarrowinfty}left[frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}right] &= lim_{nrightarrowinfty}left[left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right]\
&=lim_{nrightarrowinfty}e(n+1)-e(n-1)\
&= 2e
end{align}$$

Why did I get a $2e$? Where did I do wrong? Isn't
$$lim_{nrightarrowinfty}left(1+frac{1}{n-1}right)^n=e?$$





This question already has an answer here:




  • Find $lim_{n to infty} left[frac{(n+1)^{n + 1}}{n^n} - frac{n^{n}}{(n-1)^{n-1}} right]$ (a question asked at trivia)

    4 answers








limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 8 '18 at 2:07









Paramanand Singh

49.8k556163




49.8k556163










asked Dec 8 '18 at 1:00









LarryLarry

2,37131029




2,37131029




marked as duplicate by Paramanand Singh limits
Users with the  limits badge can single-handedly close limits questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 8 '18 at 2:05


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Paramanand Singh limits
Users with the  limits badge can single-handedly close limits questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 8 '18 at 2:05


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.










  • 1




    $begingroup$
    $$ left(1+frac{1}{n-1} right )^{n} = left(1+frac{1}{n-1} right )^{n-1} cdot left(1+frac{1}{n-1} right ) $$
    $endgroup$
    – Vladislav Kharlamov
    Dec 8 '18 at 1:05








  • 1




    $begingroup$
    those $$ e(n+1)-e cdot left (1+frac{1}{n-1} right )(n-1) = e(n+1)-e(n-1+1) = e(n+1)-en = e $$
    $endgroup$
    – Vladislav Kharlamov
    Dec 8 '18 at 1:08








  • 1




    $begingroup$
    The exponent on the second term must match the denominator (you have an exponent of $n$, when the denominator is $n-1$).
    $endgroup$
    – Michael Burr
    Dec 8 '18 at 1:12






  • 1




    $begingroup$
    The step $$lim_{nrightarrowinfty}left(left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right)=lim_{nrightarrowinfty}(e(n+1)-e(n-1))$$ is erroneous.
    $endgroup$
    – Abraham Zhang
    Dec 8 '18 at 1:33






  • 1




    $begingroup$
    Your attempt has a flaw which is very common. See this answer for details: math.stackexchange.com/a/1783818/72031
    $endgroup$
    – Paramanand Singh
    Dec 8 '18 at 2:09














  • 1




    $begingroup$
    $$ left(1+frac{1}{n-1} right )^{n} = left(1+frac{1}{n-1} right )^{n-1} cdot left(1+frac{1}{n-1} right ) $$
    $endgroup$
    – Vladislav Kharlamov
    Dec 8 '18 at 1:05








  • 1




    $begingroup$
    those $$ e(n+1)-e cdot left (1+frac{1}{n-1} right )(n-1) = e(n+1)-e(n-1+1) = e(n+1)-en = e $$
    $endgroup$
    – Vladislav Kharlamov
    Dec 8 '18 at 1:08








  • 1




    $begingroup$
    The exponent on the second term must match the denominator (you have an exponent of $n$, when the denominator is $n-1$).
    $endgroup$
    – Michael Burr
    Dec 8 '18 at 1:12






  • 1




    $begingroup$
    The step $$lim_{nrightarrowinfty}left(left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right)=lim_{nrightarrowinfty}(e(n+1)-e(n-1))$$ is erroneous.
    $endgroup$
    – Abraham Zhang
    Dec 8 '18 at 1:33






  • 1




    $begingroup$
    Your attempt has a flaw which is very common. See this answer for details: math.stackexchange.com/a/1783818/72031
    $endgroup$
    – Paramanand Singh
    Dec 8 '18 at 2:09








1




1




$begingroup$
$$ left(1+frac{1}{n-1} right )^{n} = left(1+frac{1}{n-1} right )^{n-1} cdot left(1+frac{1}{n-1} right ) $$
$endgroup$
– Vladislav Kharlamov
Dec 8 '18 at 1:05






$begingroup$
$$ left(1+frac{1}{n-1} right )^{n} = left(1+frac{1}{n-1} right )^{n-1} cdot left(1+frac{1}{n-1} right ) $$
$endgroup$
– Vladislav Kharlamov
Dec 8 '18 at 1:05






1




1




$begingroup$
those $$ e(n+1)-e cdot left (1+frac{1}{n-1} right )(n-1) = e(n+1)-e(n-1+1) = e(n+1)-en = e $$
$endgroup$
– Vladislav Kharlamov
Dec 8 '18 at 1:08






$begingroup$
those $$ e(n+1)-e cdot left (1+frac{1}{n-1} right )(n-1) = e(n+1)-e(n-1+1) = e(n+1)-en = e $$
$endgroup$
– Vladislav Kharlamov
Dec 8 '18 at 1:08






1




1




$begingroup$
The exponent on the second term must match the denominator (you have an exponent of $n$, when the denominator is $n-1$).
$endgroup$
– Michael Burr
Dec 8 '18 at 1:12




$begingroup$
The exponent on the second term must match the denominator (you have an exponent of $n$, when the denominator is $n-1$).
$endgroup$
– Michael Burr
Dec 8 '18 at 1:12




1




1




$begingroup$
The step $$lim_{nrightarrowinfty}left(left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right)=lim_{nrightarrowinfty}(e(n+1)-e(n-1))$$ is erroneous.
$endgroup$
– Abraham Zhang
Dec 8 '18 at 1:33




$begingroup$
The step $$lim_{nrightarrowinfty}left(left(1+frac{1}{n}right)^n(n+1)-left(1+frac{1}{n-1}right)^n(n-1)right)=lim_{nrightarrowinfty}(e(n+1)-e(n-1))$$ is erroneous.
$endgroup$
– Abraham Zhang
Dec 8 '18 at 1:33




1




1




$begingroup$
Your attempt has a flaw which is very common. See this answer for details: math.stackexchange.com/a/1783818/72031
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:09




$begingroup$
Your attempt has a flaw which is very common. See this answer for details: math.stackexchange.com/a/1783818/72031
$endgroup$
– Paramanand Singh
Dec 8 '18 at 2:09










3 Answers
3






active

oldest

votes


















4












$begingroup$

The step where you go from $lim_{ntoinfty}left(1+frac{1}{n}right)^n(n+1)- left(1+frac{1}{n-1}right)^n(n-1)$ to $lim_{ntoinfty} e(n+1)-e(n-1)$ is invalid. You can't evaluate just some pieces of the limit in terms of $n$. Formally, you're starting with an indeterminate form of type $infty - infty$.



As a simpler example as to why your reasoning doesn't work, consider the indeterminate form $(n+1)-n$, which is identically equal to $1$. But it can be rewritten to be of the form
$$
nleft(frac{n+1}{n}right) - (n+1)left(frac{n}{n+1}right)
$$

Now both $left(frac{n+1}{n}right)$ and $left(frac{n}{n+1}right)$ converge to $1$, but the limit of $n(1) - (n+1)(1)$ is now $-1$ instead of $1$.



As to how to derive the identity, the Mathworld link suggests that a reasonable approach would be to start with the expression
$$
left(1 + frac{1}{x}right)^x
= eleft[1 - frac{1}{2x} + frac{11}{24x^2} - frac{7}{16x^3} + frac{2447}{5760x^4} - dotsright], ,
$$

which is derived by using a composition of the identity
$$
xlnleft(1 + frac{1}{x}right)
= 1 - frac{1}{2x} + frac{1}{3x^2} - frac{1}{4x^3} + dots
$$

with the power series expansion of $e^x$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    +1 for pointing out the mistake and explaining via a simple example.
    $endgroup$
    – Paramanand Singh
    Dec 8 '18 at 2:33



















3












$begingroup$

By Taylor's espansion as $x to 0$




  • $log(1+x)=x-frac12x^2+o(x^2)$

  • $e^x=1+x+o(x)$


we have that



$$frac{(n+1)^{n+1}}{n^n}=(n+1)left(1+frac1nright)^n=(n+1)e^{nlogleft(1+frac1nright)}=$$$$=(n+1)e^{nleft(frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n+1)e^{1-frac1{2n}+oleft(frac1{n}right)}=e(n+1)left(1-frac1{2n}+oleft(frac1{n}right)right)$$



$$frac{n^n}{(n-1)^{n-1}}=(n-1)left(1-frac1nright)^{-n}=(n-1)e^{-nlogleft(1-frac1nright)}=$$$$=(n-1)e^{-nleft(-frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n-1)e^{1+frac1{2n}+oleft(frac1{n}right)}=e(n-1)left(1+frac1{2n}+oleft(frac1{n}right)right)$$



and then



$$frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}=en+e-frac e 2-(en-e+frac e 2)+o(1)=e+o(1)to e$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    +1 and you may look at this answer math.stackexchange.com/a/2210052/72031 where I use standard limits.
    $endgroup$
    – Paramanand Singh
    Dec 8 '18 at 2:13










  • $begingroup$
    @ParamanandSingh I was just looking at the duplicate! Thanks
    $endgroup$
    – gimusi
    Dec 8 '18 at 2:13










  • $begingroup$
    @ParamanandSingh Do you think we could make rigorous the short way by SC in some simple way?
    $endgroup$
    – gimusi
    Dec 8 '18 at 2:22










  • $begingroup$
    There is an answer by user RRL regarding reverse of Cesaro-Stolz, but you need to search and see if that helps here.
    $endgroup$
    – Paramanand Singh
    Dec 8 '18 at 2:25










  • $begingroup$
    Thanks! I’ll take a look to that, Bye
    $endgroup$
    – gimusi
    Dec 8 '18 at 2:29



















-1












$begingroup$

Assuming that the limit exists (which should be proved) we can easily see that it needs to be equal to $e$, indeed by Stolz-Cesaro with $a_n=frac{n^n}{(n-1)^{n-1}}$ we have



$$a_{n+1}-a_n=frac{a_{n+1}-a_n}{(n+1)-n} to L implies frac{a_n}{n}=frac{n^{n-1}}{(n-1)^{n-1}}=frac{1}{left(1-frac1nright)^{n-1}}to L=e$$






share|cite|improve this answer









$endgroup$




















    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    The step where you go from $lim_{ntoinfty}left(1+frac{1}{n}right)^n(n+1)- left(1+frac{1}{n-1}right)^n(n-1)$ to $lim_{ntoinfty} e(n+1)-e(n-1)$ is invalid. You can't evaluate just some pieces of the limit in terms of $n$. Formally, you're starting with an indeterminate form of type $infty - infty$.



    As a simpler example as to why your reasoning doesn't work, consider the indeterminate form $(n+1)-n$, which is identically equal to $1$. But it can be rewritten to be of the form
    $$
    nleft(frac{n+1}{n}right) - (n+1)left(frac{n}{n+1}right)
    $$

    Now both $left(frac{n+1}{n}right)$ and $left(frac{n}{n+1}right)$ converge to $1$, but the limit of $n(1) - (n+1)(1)$ is now $-1$ instead of $1$.



    As to how to derive the identity, the Mathworld link suggests that a reasonable approach would be to start with the expression
    $$
    left(1 + frac{1}{x}right)^x
    = eleft[1 - frac{1}{2x} + frac{11}{24x^2} - frac{7}{16x^3} + frac{2447}{5760x^4} - dotsright], ,
    $$

    which is derived by using a composition of the identity
    $$
    xlnleft(1 + frac{1}{x}right)
    = 1 - frac{1}{2x} + frac{1}{3x^2} - frac{1}{4x^3} + dots
    $$

    with the power series expansion of $e^x$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      +1 for pointing out the mistake and explaining via a simple example.
      $endgroup$
      – Paramanand Singh
      Dec 8 '18 at 2:33
















    4












    $begingroup$

    The step where you go from $lim_{ntoinfty}left(1+frac{1}{n}right)^n(n+1)- left(1+frac{1}{n-1}right)^n(n-1)$ to $lim_{ntoinfty} e(n+1)-e(n-1)$ is invalid. You can't evaluate just some pieces of the limit in terms of $n$. Formally, you're starting with an indeterminate form of type $infty - infty$.



    As a simpler example as to why your reasoning doesn't work, consider the indeterminate form $(n+1)-n$, which is identically equal to $1$. But it can be rewritten to be of the form
    $$
    nleft(frac{n+1}{n}right) - (n+1)left(frac{n}{n+1}right)
    $$

    Now both $left(frac{n+1}{n}right)$ and $left(frac{n}{n+1}right)$ converge to $1$, but the limit of $n(1) - (n+1)(1)$ is now $-1$ instead of $1$.



    As to how to derive the identity, the Mathworld link suggests that a reasonable approach would be to start with the expression
    $$
    left(1 + frac{1}{x}right)^x
    = eleft[1 - frac{1}{2x} + frac{11}{24x^2} - frac{7}{16x^3} + frac{2447}{5760x^4} - dotsright], ,
    $$

    which is derived by using a composition of the identity
    $$
    xlnleft(1 + frac{1}{x}right)
    = 1 - frac{1}{2x} + frac{1}{3x^2} - frac{1}{4x^3} + dots
    $$

    with the power series expansion of $e^x$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      +1 for pointing out the mistake and explaining via a simple example.
      $endgroup$
      – Paramanand Singh
      Dec 8 '18 at 2:33














    4












    4








    4





    $begingroup$

    The step where you go from $lim_{ntoinfty}left(1+frac{1}{n}right)^n(n+1)- left(1+frac{1}{n-1}right)^n(n-1)$ to $lim_{ntoinfty} e(n+1)-e(n-1)$ is invalid. You can't evaluate just some pieces of the limit in terms of $n$. Formally, you're starting with an indeterminate form of type $infty - infty$.



    As a simpler example as to why your reasoning doesn't work, consider the indeterminate form $(n+1)-n$, which is identically equal to $1$. But it can be rewritten to be of the form
    $$
    nleft(frac{n+1}{n}right) - (n+1)left(frac{n}{n+1}right)
    $$

    Now both $left(frac{n+1}{n}right)$ and $left(frac{n}{n+1}right)$ converge to $1$, but the limit of $n(1) - (n+1)(1)$ is now $-1$ instead of $1$.



    As to how to derive the identity, the Mathworld link suggests that a reasonable approach would be to start with the expression
    $$
    left(1 + frac{1}{x}right)^x
    = eleft[1 - frac{1}{2x} + frac{11}{24x^2} - frac{7}{16x^3} + frac{2447}{5760x^4} - dotsright], ,
    $$

    which is derived by using a composition of the identity
    $$
    xlnleft(1 + frac{1}{x}right)
    = 1 - frac{1}{2x} + frac{1}{3x^2} - frac{1}{4x^3} + dots
    $$

    with the power series expansion of $e^x$.






    share|cite|improve this answer









    $endgroup$



    The step where you go from $lim_{ntoinfty}left(1+frac{1}{n}right)^n(n+1)- left(1+frac{1}{n-1}right)^n(n-1)$ to $lim_{ntoinfty} e(n+1)-e(n-1)$ is invalid. You can't evaluate just some pieces of the limit in terms of $n$. Formally, you're starting with an indeterminate form of type $infty - infty$.



    As a simpler example as to why your reasoning doesn't work, consider the indeterminate form $(n+1)-n$, which is identically equal to $1$. But it can be rewritten to be of the form
    $$
    nleft(frac{n+1}{n}right) - (n+1)left(frac{n}{n+1}right)
    $$

    Now both $left(frac{n+1}{n}right)$ and $left(frac{n}{n+1}right)$ converge to $1$, but the limit of $n(1) - (n+1)(1)$ is now $-1$ instead of $1$.



    As to how to derive the identity, the Mathworld link suggests that a reasonable approach would be to start with the expression
    $$
    left(1 + frac{1}{x}right)^x
    = eleft[1 - frac{1}{2x} + frac{11}{24x^2} - frac{7}{16x^3} + frac{2447}{5760x^4} - dotsright], ,
    $$

    which is derived by using a composition of the identity
    $$
    xlnleft(1 + frac{1}{x}right)
    = 1 - frac{1}{2x} + frac{1}{3x^2} - frac{1}{4x^3} + dots
    $$

    with the power series expansion of $e^x$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 8 '18 at 1:39









    Rolf HoyerRolf Hoyer

    11.2k31629




    11.2k31629












    • $begingroup$
      +1 for pointing out the mistake and explaining via a simple example.
      $endgroup$
      – Paramanand Singh
      Dec 8 '18 at 2:33


















    • $begingroup$
      +1 for pointing out the mistake and explaining via a simple example.
      $endgroup$
      – Paramanand Singh
      Dec 8 '18 at 2:33
















    $begingroup$
    +1 for pointing out the mistake and explaining via a simple example.
    $endgroup$
    – Paramanand Singh
    Dec 8 '18 at 2:33




    $begingroup$
    +1 for pointing out the mistake and explaining via a simple example.
    $endgroup$
    – Paramanand Singh
    Dec 8 '18 at 2:33











    3












    $begingroup$

    By Taylor's espansion as $x to 0$




    • $log(1+x)=x-frac12x^2+o(x^2)$

    • $e^x=1+x+o(x)$


    we have that



    $$frac{(n+1)^{n+1}}{n^n}=(n+1)left(1+frac1nright)^n=(n+1)e^{nlogleft(1+frac1nright)}=$$$$=(n+1)e^{nleft(frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n+1)e^{1-frac1{2n}+oleft(frac1{n}right)}=e(n+1)left(1-frac1{2n}+oleft(frac1{n}right)right)$$



    $$frac{n^n}{(n-1)^{n-1}}=(n-1)left(1-frac1nright)^{-n}=(n-1)e^{-nlogleft(1-frac1nright)}=$$$$=(n-1)e^{-nleft(-frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n-1)e^{1+frac1{2n}+oleft(frac1{n}right)}=e(n-1)left(1+frac1{2n}+oleft(frac1{n}right)right)$$



    and then



    $$frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}=en+e-frac e 2-(en-e+frac e 2)+o(1)=e+o(1)to e$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      +1 and you may look at this answer math.stackexchange.com/a/2210052/72031 where I use standard limits.
      $endgroup$
      – Paramanand Singh
      Dec 8 '18 at 2:13










    • $begingroup$
      @ParamanandSingh I was just looking at the duplicate! Thanks
      $endgroup$
      – gimusi
      Dec 8 '18 at 2:13










    • $begingroup$
      @ParamanandSingh Do you think we could make rigorous the short way by SC in some simple way?
      $endgroup$
      – gimusi
      Dec 8 '18 at 2:22










    • $begingroup$
      There is an answer by user RRL regarding reverse of Cesaro-Stolz, but you need to search and see if that helps here.
      $endgroup$
      – Paramanand Singh
      Dec 8 '18 at 2:25










    • $begingroup$
      Thanks! I’ll take a look to that, Bye
      $endgroup$
      – gimusi
      Dec 8 '18 at 2:29
















    3












    $begingroup$

    By Taylor's espansion as $x to 0$




    • $log(1+x)=x-frac12x^2+o(x^2)$

    • $e^x=1+x+o(x)$


    we have that



    $$frac{(n+1)^{n+1}}{n^n}=(n+1)left(1+frac1nright)^n=(n+1)e^{nlogleft(1+frac1nright)}=$$$$=(n+1)e^{nleft(frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n+1)e^{1-frac1{2n}+oleft(frac1{n}right)}=e(n+1)left(1-frac1{2n}+oleft(frac1{n}right)right)$$



    $$frac{n^n}{(n-1)^{n-1}}=(n-1)left(1-frac1nright)^{-n}=(n-1)e^{-nlogleft(1-frac1nright)}=$$$$=(n-1)e^{-nleft(-frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n-1)e^{1+frac1{2n}+oleft(frac1{n}right)}=e(n-1)left(1+frac1{2n}+oleft(frac1{n}right)right)$$



    and then



    $$frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}=en+e-frac e 2-(en-e+frac e 2)+o(1)=e+o(1)to e$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      +1 and you may look at this answer math.stackexchange.com/a/2210052/72031 where I use standard limits.
      $endgroup$
      – Paramanand Singh
      Dec 8 '18 at 2:13










    • $begingroup$
      @ParamanandSingh I was just looking at the duplicate! Thanks
      $endgroup$
      – gimusi
      Dec 8 '18 at 2:13










    • $begingroup$
      @ParamanandSingh Do you think we could make rigorous the short way by SC in some simple way?
      $endgroup$
      – gimusi
      Dec 8 '18 at 2:22










    • $begingroup$
      There is an answer by user RRL regarding reverse of Cesaro-Stolz, but you need to search and see if that helps here.
      $endgroup$
      – Paramanand Singh
      Dec 8 '18 at 2:25










    • $begingroup$
      Thanks! I’ll take a look to that, Bye
      $endgroup$
      – gimusi
      Dec 8 '18 at 2:29














    3












    3








    3





    $begingroup$

    By Taylor's espansion as $x to 0$




    • $log(1+x)=x-frac12x^2+o(x^2)$

    • $e^x=1+x+o(x)$


    we have that



    $$frac{(n+1)^{n+1}}{n^n}=(n+1)left(1+frac1nright)^n=(n+1)e^{nlogleft(1+frac1nright)}=$$$$=(n+1)e^{nleft(frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n+1)e^{1-frac1{2n}+oleft(frac1{n}right)}=e(n+1)left(1-frac1{2n}+oleft(frac1{n}right)right)$$



    $$frac{n^n}{(n-1)^{n-1}}=(n-1)left(1-frac1nright)^{-n}=(n-1)e^{-nlogleft(1-frac1nright)}=$$$$=(n-1)e^{-nleft(-frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n-1)e^{1+frac1{2n}+oleft(frac1{n}right)}=e(n-1)left(1+frac1{2n}+oleft(frac1{n}right)right)$$



    and then



    $$frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}=en+e-frac e 2-(en-e+frac e 2)+o(1)=e+o(1)to e$$






    share|cite|improve this answer











    $endgroup$



    By Taylor's espansion as $x to 0$




    • $log(1+x)=x-frac12x^2+o(x^2)$

    • $e^x=1+x+o(x)$


    we have that



    $$frac{(n+1)^{n+1}}{n^n}=(n+1)left(1+frac1nright)^n=(n+1)e^{nlogleft(1+frac1nright)}=$$$$=(n+1)e^{nleft(frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n+1)e^{1-frac1{2n}+oleft(frac1{n}right)}=e(n+1)left(1-frac1{2n}+oleft(frac1{n}right)right)$$



    $$frac{n^n}{(n-1)^{n-1}}=(n-1)left(1-frac1nright)^{-n}=(n-1)e^{-nlogleft(1-frac1nright)}=$$$$=(n-1)e^{-nleft(-frac1n-frac1{2n^2}+oleft(frac1{n^2}right)right)}=(n-1)e^{1+frac1{2n}+oleft(frac1{n}right)}=e(n-1)left(1+frac1{2n}+oleft(frac1{n}right)right)$$



    and then



    $$frac{(n+1)^{n+1}}{n^n}-frac{n^n}{(n-1)^{n-1}}=en+e-frac e 2-(en-e+frac e 2)+o(1)=e+o(1)to e$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 8 '18 at 1:47

























    answered Dec 8 '18 at 1:42









    gimusigimusi

    92.8k84494




    92.8k84494












    • $begingroup$
      +1 and you may look at this answer math.stackexchange.com/a/2210052/72031 where I use standard limits.
      $endgroup$
      – Paramanand Singh
      Dec 8 '18 at 2:13










    • $begingroup$
      @ParamanandSingh I was just looking at the duplicate! Thanks
      $endgroup$
      – gimusi
      Dec 8 '18 at 2:13










    • $begingroup$
      @ParamanandSingh Do you think we could make rigorous the short way by SC in some simple way?
      $endgroup$
      – gimusi
      Dec 8 '18 at 2:22










    • $begingroup$
      There is an answer by user RRL regarding reverse of Cesaro-Stolz, but you need to search and see if that helps here.
      $endgroup$
      – Paramanand Singh
      Dec 8 '18 at 2:25










    • $begingroup$
      Thanks! I’ll take a look to that, Bye
      $endgroup$
      – gimusi
      Dec 8 '18 at 2:29


















    • $begingroup$
      +1 and you may look at this answer math.stackexchange.com/a/2210052/72031 where I use standard limits.
      $endgroup$
      – Paramanand Singh
      Dec 8 '18 at 2:13










    • $begingroup$
      @ParamanandSingh I was just looking at the duplicate! Thanks
      $endgroup$
      – gimusi
      Dec 8 '18 at 2:13










    • $begingroup$
      @ParamanandSingh Do you think we could make rigorous the short way by SC in some simple way?
      $endgroup$
      – gimusi
      Dec 8 '18 at 2:22










    • $begingroup$
      There is an answer by user RRL regarding reverse of Cesaro-Stolz, but you need to search and see if that helps here.
      $endgroup$
      – Paramanand Singh
      Dec 8 '18 at 2:25










    • $begingroup$
      Thanks! I’ll take a look to that, Bye
      $endgroup$
      – gimusi
      Dec 8 '18 at 2:29
















    $begingroup$
    +1 and you may look at this answer math.stackexchange.com/a/2210052/72031 where I use standard limits.
    $endgroup$
    – Paramanand Singh
    Dec 8 '18 at 2:13




    $begingroup$
    +1 and you may look at this answer math.stackexchange.com/a/2210052/72031 where I use standard limits.
    $endgroup$
    – Paramanand Singh
    Dec 8 '18 at 2:13












    $begingroup$
    @ParamanandSingh I was just looking at the duplicate! Thanks
    $endgroup$
    – gimusi
    Dec 8 '18 at 2:13




    $begingroup$
    @ParamanandSingh I was just looking at the duplicate! Thanks
    $endgroup$
    – gimusi
    Dec 8 '18 at 2:13












    $begingroup$
    @ParamanandSingh Do you think we could make rigorous the short way by SC in some simple way?
    $endgroup$
    – gimusi
    Dec 8 '18 at 2:22




    $begingroup$
    @ParamanandSingh Do you think we could make rigorous the short way by SC in some simple way?
    $endgroup$
    – gimusi
    Dec 8 '18 at 2:22












    $begingroup$
    There is an answer by user RRL regarding reverse of Cesaro-Stolz, but you need to search and see if that helps here.
    $endgroup$
    – Paramanand Singh
    Dec 8 '18 at 2:25




    $begingroup$
    There is an answer by user RRL regarding reverse of Cesaro-Stolz, but you need to search and see if that helps here.
    $endgroup$
    – Paramanand Singh
    Dec 8 '18 at 2:25












    $begingroup$
    Thanks! I’ll take a look to that, Bye
    $endgroup$
    – gimusi
    Dec 8 '18 at 2:29




    $begingroup$
    Thanks! I’ll take a look to that, Bye
    $endgroup$
    – gimusi
    Dec 8 '18 at 2:29











    -1












    $begingroup$

    Assuming that the limit exists (which should be proved) we can easily see that it needs to be equal to $e$, indeed by Stolz-Cesaro with $a_n=frac{n^n}{(n-1)^{n-1}}$ we have



    $$a_{n+1}-a_n=frac{a_{n+1}-a_n}{(n+1)-n} to L implies frac{a_n}{n}=frac{n^{n-1}}{(n-1)^{n-1}}=frac{1}{left(1-frac1nright)^{n-1}}to L=e$$






    share|cite|improve this answer









    $endgroup$


















      -1












      $begingroup$

      Assuming that the limit exists (which should be proved) we can easily see that it needs to be equal to $e$, indeed by Stolz-Cesaro with $a_n=frac{n^n}{(n-1)^{n-1}}$ we have



      $$a_{n+1}-a_n=frac{a_{n+1}-a_n}{(n+1)-n} to L implies frac{a_n}{n}=frac{n^{n-1}}{(n-1)^{n-1}}=frac{1}{left(1-frac1nright)^{n-1}}to L=e$$






      share|cite|improve this answer









      $endgroup$
















        -1












        -1








        -1





        $begingroup$

        Assuming that the limit exists (which should be proved) we can easily see that it needs to be equal to $e$, indeed by Stolz-Cesaro with $a_n=frac{n^n}{(n-1)^{n-1}}$ we have



        $$a_{n+1}-a_n=frac{a_{n+1}-a_n}{(n+1)-n} to L implies frac{a_n}{n}=frac{n^{n-1}}{(n-1)^{n-1}}=frac{1}{left(1-frac1nright)^{n-1}}to L=e$$






        share|cite|improve this answer









        $endgroup$



        Assuming that the limit exists (which should be proved) we can easily see that it needs to be equal to $e$, indeed by Stolz-Cesaro with $a_n=frac{n^n}{(n-1)^{n-1}}$ we have



        $$a_{n+1}-a_n=frac{a_{n+1}-a_n}{(n+1)-n} to L implies frac{a_n}{n}=frac{n^{n-1}}{(n-1)^{n-1}}=frac{1}{left(1-frac1nright)^{n-1}}to L=e$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 8 '18 at 2:02









        gimusigimusi

        92.8k84494




        92.8k84494















            Popular posts from this blog

            How do I know what Microsoft account the skydrive app is syncing to?

            When does type information flow backwards in C++?

            Grease: Live!