Finding $frac{partial^2 u}{partial x partial y}$ of $u=f(x^2 z, z^2+x, y^2z)$.
$begingroup$
$$
A=x^2z,;B=z^2+x,;C=y^2z\
u'_x=f'_A A'_x+f'_B B'_x+f'_C C'_x=f'_Acdot 2xz+f'_B\
u''_{xy}=(f'_Acdot 2xz+f'_B)'_y=f''_{Ay}cdot 2xz+f''_{By}=2xzfrac{partial^2 f}{partial(x^2z)partial y}+frac{partial^2 f}{partial(z^2+x)partial y}=\
=2xzfrac{partial^2 f}{2xzpartial xpartial y+x^2partial ypartial z}+frac{partial^2 f}{2zpartial ypartial z+partial xpartial y}=\
=2zfrac{partial^2 f}{2zpartial xpartial y+xpartial ypartial z}+frac{partial^2 f}{2zpartial ypartial z+partial xpartial y}
$$
Am I right?
calculus partial-derivative
$endgroup$
add a comment |
$begingroup$
$$
A=x^2z,;B=z^2+x,;C=y^2z\
u'_x=f'_A A'_x+f'_B B'_x+f'_C C'_x=f'_Acdot 2xz+f'_B\
u''_{xy}=(f'_Acdot 2xz+f'_B)'_y=f''_{Ay}cdot 2xz+f''_{By}=2xzfrac{partial^2 f}{partial(x^2z)partial y}+frac{partial^2 f}{partial(z^2+x)partial y}=\
=2xzfrac{partial^2 f}{2xzpartial xpartial y+x^2partial ypartial z}+frac{partial^2 f}{2zpartial ypartial z+partial xpartial y}=\
=2zfrac{partial^2 f}{2zpartial xpartial y+xpartial ypartial z}+frac{partial^2 f}{2zpartial ypartial z+partial xpartial y}
$$
Am I right?
calculus partial-derivative
$endgroup$
$begingroup$
Leaving $partial$ x$^2$z is inadequate.
$endgroup$
– William Elliot
Dec 5 '18 at 3:19
add a comment |
$begingroup$
$$
A=x^2z,;B=z^2+x,;C=y^2z\
u'_x=f'_A A'_x+f'_B B'_x+f'_C C'_x=f'_Acdot 2xz+f'_B\
u''_{xy}=(f'_Acdot 2xz+f'_B)'_y=f''_{Ay}cdot 2xz+f''_{By}=2xzfrac{partial^2 f}{partial(x^2z)partial y}+frac{partial^2 f}{partial(z^2+x)partial y}=\
=2xzfrac{partial^2 f}{2xzpartial xpartial y+x^2partial ypartial z}+frac{partial^2 f}{2zpartial ypartial z+partial xpartial y}=\
=2zfrac{partial^2 f}{2zpartial xpartial y+xpartial ypartial z}+frac{partial^2 f}{2zpartial ypartial z+partial xpartial y}
$$
Am I right?
calculus partial-derivative
$endgroup$
$$
A=x^2z,;B=z^2+x,;C=y^2z\
u'_x=f'_A A'_x+f'_B B'_x+f'_C C'_x=f'_Acdot 2xz+f'_B\
u''_{xy}=(f'_Acdot 2xz+f'_B)'_y=f''_{Ay}cdot 2xz+f''_{By}=2xzfrac{partial^2 f}{partial(x^2z)partial y}+frac{partial^2 f}{partial(z^2+x)partial y}=\
=2xzfrac{partial^2 f}{2xzpartial xpartial y+x^2partial ypartial z}+frac{partial^2 f}{2zpartial ypartial z+partial xpartial y}=\
=2zfrac{partial^2 f}{2zpartial xpartial y+xpartial ypartial z}+frac{partial^2 f}{2zpartial ypartial z+partial xpartial y}
$$
Am I right?
calculus partial-derivative
calculus partial-derivative
edited Dec 5 '18 at 23:15
guarandoo
asked Dec 4 '18 at 19:54
guarandooguarandoo
133
133
$begingroup$
Leaving $partial$ x$^2$z is inadequate.
$endgroup$
– William Elliot
Dec 5 '18 at 3:19
add a comment |
$begingroup$
Leaving $partial$ x$^2$z is inadequate.
$endgroup$
– William Elliot
Dec 5 '18 at 3:19
$begingroup$
Leaving $partial$ x$^2$z is inadequate.
$endgroup$
– William Elliot
Dec 5 '18 at 3:19
$begingroup$
Leaving $partial$ x$^2$z is inadequate.
$endgroup$
– William Elliot
Dec 5 '18 at 3:19
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026075%2ffinding-frac-partial2-u-partial-x-partial-y-of-u-fx2-z-z2x-y2z%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026075%2ffinding-frac-partial2-u-partial-x-partial-y-of-u-fx2-z-z2x-y2z%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Leaving $partial$ x$^2$z is inadequate.
$endgroup$
– William Elliot
Dec 5 '18 at 3:19