Convergence of discrete-time Markov chain to Feller processes












2














Let





  • $(Omega,mathcal A,operatorname P)$ be a probability space


  • $(X_t)_{tge0}$ be a Feller process on $(Omega,mathcal A,operatorname P)$


  • $(h_d)_{dinmathbb N}subseteq(0,infty)$ with $$h_dxrightarrow{ntoinfty}0$$


  • $left(Y^{(d)}_nright)_{ninmathbb N_0}$ be a time-homogeneous Markov chain on $(Omega,mathcal A,operatorname P)$ and $$X^{(d)}_t:=Y^{(d)}_{lfloorfrac t{h_d}rfloor};;;text{for }tge0$$ for $dinmathbb N$


  • $N$ be a Poisson process on $(Omega,mathcal A,operatorname P)$ with parameter $1$ independent of $Y^{(d)}$ for all $dinmathbb N$ and $$N^{(d)}_t:=N_{frac t{h_d}};;;text{for }tge0$$ as well as $$tilde X^{(d)}_t:=Y^{(d)}_{N^{(d)}_t};;;text{for }tge0$$ for $dinmathbb N$


Note that $N^{(d)}$ is a Poisson process with parameter $h_d^{-1}$ for all $dinmathbb N$.




How can we show that (in probability with respect to the Skorohod topology) $X^{(d)}xrightarrow{dtoinfty}X$ iff $tilde X^{(d)}xrightarrow{dtoinfty}X$?




In the book of Kallenberg, the author is mentioning that the claim follows from the following two theorems:



kallenberg



I don't get how we need to apply them. Clearly, for fixed $tge0$, we can consider $$frac1dsum_{i=1}^dleft(N^{(i)}_t-N^{(i-1)}_tright)$$ with $N^{(0)}_t:=0$. However, while independent, the $N^{(i)}_t-N^{(i-1)}$ are not identically distributed ...





If it's hard to prove in the general setting, it's okay for me to assume $h_d^{-1}=d$ for all $dinmathbb N$. In that case, the strong law of large numbers yields $$sup_{tin[0,:T]}left|frac1d N^{(d)}_t-tright|xrightarrow{dtoinfty}0;;;text{almost surely for all }T>0tag1.$$ Now, let $tau^{(d)}_0:=0$, $$tau_n^{(d)}:=infleft{t>tau^{(d)}_{n-1}:N^{(d)}_t-N^{(d)}_{tau^{(d)}_{n-1}}>0right};;;text{for }dinmathbb N$$ and $$lambda^{(d)}_t:=sum_{n=0}^infty1_{left[frac nd,:frac{n+1}dright)}(t)left(tau^{(d)}_n+(dt-n)left(tau^{(d)}_{n+1}-tau^{(d)}_nright)right);;;text{for }tge0$$ for $dinmathbb N$. Moreoverr, let $T>0$ and $rho_T$ denote the metric inducing the Skorohod $J_1$-topology on the space of càdlàg functions $[0,T]tomathbb R$. We should obtain $$rho_Tleft(X^{(d)},tilde X^{(d)}right)lesup_{tin[0,:T]}left|lambda^{(d)}_t-tright|+sup_{tin[0,:T]}left|X^{(d)}_t-tilde X^{(d)}_{lambda^{(d)}_t}right|tag2,$$ where the last term should be $0$. So, if we could show that the first term converges in probability to $0$ as $dtoinfty$, we should be able to conclude (since $T$ was arbitrary).










share|cite|improve this question





























    2














    Let





    • $(Omega,mathcal A,operatorname P)$ be a probability space


    • $(X_t)_{tge0}$ be a Feller process on $(Omega,mathcal A,operatorname P)$


    • $(h_d)_{dinmathbb N}subseteq(0,infty)$ with $$h_dxrightarrow{ntoinfty}0$$


    • $left(Y^{(d)}_nright)_{ninmathbb N_0}$ be a time-homogeneous Markov chain on $(Omega,mathcal A,operatorname P)$ and $$X^{(d)}_t:=Y^{(d)}_{lfloorfrac t{h_d}rfloor};;;text{for }tge0$$ for $dinmathbb N$


    • $N$ be a Poisson process on $(Omega,mathcal A,operatorname P)$ with parameter $1$ independent of $Y^{(d)}$ for all $dinmathbb N$ and $$N^{(d)}_t:=N_{frac t{h_d}};;;text{for }tge0$$ as well as $$tilde X^{(d)}_t:=Y^{(d)}_{N^{(d)}_t};;;text{for }tge0$$ for $dinmathbb N$


    Note that $N^{(d)}$ is a Poisson process with parameter $h_d^{-1}$ for all $dinmathbb N$.




    How can we show that (in probability with respect to the Skorohod topology) $X^{(d)}xrightarrow{dtoinfty}X$ iff $tilde X^{(d)}xrightarrow{dtoinfty}X$?




    In the book of Kallenberg, the author is mentioning that the claim follows from the following two theorems:



    kallenberg



    I don't get how we need to apply them. Clearly, for fixed $tge0$, we can consider $$frac1dsum_{i=1}^dleft(N^{(i)}_t-N^{(i-1)}_tright)$$ with $N^{(0)}_t:=0$. However, while independent, the $N^{(i)}_t-N^{(i-1)}$ are not identically distributed ...





    If it's hard to prove in the general setting, it's okay for me to assume $h_d^{-1}=d$ for all $dinmathbb N$. In that case, the strong law of large numbers yields $$sup_{tin[0,:T]}left|frac1d N^{(d)}_t-tright|xrightarrow{dtoinfty}0;;;text{almost surely for all }T>0tag1.$$ Now, let $tau^{(d)}_0:=0$, $$tau_n^{(d)}:=infleft{t>tau^{(d)}_{n-1}:N^{(d)}_t-N^{(d)}_{tau^{(d)}_{n-1}}>0right};;;text{for }dinmathbb N$$ and $$lambda^{(d)}_t:=sum_{n=0}^infty1_{left[frac nd,:frac{n+1}dright)}(t)left(tau^{(d)}_n+(dt-n)left(tau^{(d)}_{n+1}-tau^{(d)}_nright)right);;;text{for }tge0$$ for $dinmathbb N$. Moreoverr, let $T>0$ and $rho_T$ denote the metric inducing the Skorohod $J_1$-topology on the space of càdlàg functions $[0,T]tomathbb R$. We should obtain $$rho_Tleft(X^{(d)},tilde X^{(d)}right)lesup_{tin[0,:T]}left|lambda^{(d)}_t-tright|+sup_{tin[0,:T]}left|X^{(d)}_t-tilde X^{(d)}_{lambda^{(d)}_t}right|tag2,$$ where the last term should be $0$. So, if we could show that the first term converges in probability to $0$ as $dtoinfty$, we should be able to conclude (since $T$ was arbitrary).










    share|cite|improve this question



























      2












      2








      2


      1





      Let





      • $(Omega,mathcal A,operatorname P)$ be a probability space


      • $(X_t)_{tge0}$ be a Feller process on $(Omega,mathcal A,operatorname P)$


      • $(h_d)_{dinmathbb N}subseteq(0,infty)$ with $$h_dxrightarrow{ntoinfty}0$$


      • $left(Y^{(d)}_nright)_{ninmathbb N_0}$ be a time-homogeneous Markov chain on $(Omega,mathcal A,operatorname P)$ and $$X^{(d)}_t:=Y^{(d)}_{lfloorfrac t{h_d}rfloor};;;text{for }tge0$$ for $dinmathbb N$


      • $N$ be a Poisson process on $(Omega,mathcal A,operatorname P)$ with parameter $1$ independent of $Y^{(d)}$ for all $dinmathbb N$ and $$N^{(d)}_t:=N_{frac t{h_d}};;;text{for }tge0$$ as well as $$tilde X^{(d)}_t:=Y^{(d)}_{N^{(d)}_t};;;text{for }tge0$$ for $dinmathbb N$


      Note that $N^{(d)}$ is a Poisson process with parameter $h_d^{-1}$ for all $dinmathbb N$.




      How can we show that (in probability with respect to the Skorohod topology) $X^{(d)}xrightarrow{dtoinfty}X$ iff $tilde X^{(d)}xrightarrow{dtoinfty}X$?




      In the book of Kallenberg, the author is mentioning that the claim follows from the following two theorems:



      kallenberg



      I don't get how we need to apply them. Clearly, for fixed $tge0$, we can consider $$frac1dsum_{i=1}^dleft(N^{(i)}_t-N^{(i-1)}_tright)$$ with $N^{(0)}_t:=0$. However, while independent, the $N^{(i)}_t-N^{(i-1)}$ are not identically distributed ...





      If it's hard to prove in the general setting, it's okay for me to assume $h_d^{-1}=d$ for all $dinmathbb N$. In that case, the strong law of large numbers yields $$sup_{tin[0,:T]}left|frac1d N^{(d)}_t-tright|xrightarrow{dtoinfty}0;;;text{almost surely for all }T>0tag1.$$ Now, let $tau^{(d)}_0:=0$, $$tau_n^{(d)}:=infleft{t>tau^{(d)}_{n-1}:N^{(d)}_t-N^{(d)}_{tau^{(d)}_{n-1}}>0right};;;text{for }dinmathbb N$$ and $$lambda^{(d)}_t:=sum_{n=0}^infty1_{left[frac nd,:frac{n+1}dright)}(t)left(tau^{(d)}_n+(dt-n)left(tau^{(d)}_{n+1}-tau^{(d)}_nright)right);;;text{for }tge0$$ for $dinmathbb N$. Moreoverr, let $T>0$ and $rho_T$ denote the metric inducing the Skorohod $J_1$-topology on the space of càdlàg functions $[0,T]tomathbb R$. We should obtain $$rho_Tleft(X^{(d)},tilde X^{(d)}right)lesup_{tin[0,:T]}left|lambda^{(d)}_t-tright|+sup_{tin[0,:T]}left|X^{(d)}_t-tilde X^{(d)}_{lambda^{(d)}_t}right|tag2,$$ where the last term should be $0$. So, if we could show that the first term converges in probability to $0$ as $dtoinfty$, we should be able to conclude (since $T$ was arbitrary).










      share|cite|improve this question















      Let





      • $(Omega,mathcal A,operatorname P)$ be a probability space


      • $(X_t)_{tge0}$ be a Feller process on $(Omega,mathcal A,operatorname P)$


      • $(h_d)_{dinmathbb N}subseteq(0,infty)$ with $$h_dxrightarrow{ntoinfty}0$$


      • $left(Y^{(d)}_nright)_{ninmathbb N_0}$ be a time-homogeneous Markov chain on $(Omega,mathcal A,operatorname P)$ and $$X^{(d)}_t:=Y^{(d)}_{lfloorfrac t{h_d}rfloor};;;text{for }tge0$$ for $dinmathbb N$


      • $N$ be a Poisson process on $(Omega,mathcal A,operatorname P)$ with parameter $1$ independent of $Y^{(d)}$ for all $dinmathbb N$ and $$N^{(d)}_t:=N_{frac t{h_d}};;;text{for }tge0$$ as well as $$tilde X^{(d)}_t:=Y^{(d)}_{N^{(d)}_t};;;text{for }tge0$$ for $dinmathbb N$


      Note that $N^{(d)}$ is a Poisson process with parameter $h_d^{-1}$ for all $dinmathbb N$.




      How can we show that (in probability with respect to the Skorohod topology) $X^{(d)}xrightarrow{dtoinfty}X$ iff $tilde X^{(d)}xrightarrow{dtoinfty}X$?




      In the book of Kallenberg, the author is mentioning that the claim follows from the following two theorems:



      kallenberg



      I don't get how we need to apply them. Clearly, for fixed $tge0$, we can consider $$frac1dsum_{i=1}^dleft(N^{(i)}_t-N^{(i-1)}_tright)$$ with $N^{(0)}_t:=0$. However, while independent, the $N^{(i)}_t-N^{(i-1)}$ are not identically distributed ...





      If it's hard to prove in the general setting, it's okay for me to assume $h_d^{-1}=d$ for all $dinmathbb N$. In that case, the strong law of large numbers yields $$sup_{tin[0,:T]}left|frac1d N^{(d)}_t-tright|xrightarrow{dtoinfty}0;;;text{almost surely for all }T>0tag1.$$ Now, let $tau^{(d)}_0:=0$, $$tau_n^{(d)}:=infleft{t>tau^{(d)}_{n-1}:N^{(d)}_t-N^{(d)}_{tau^{(d)}_{n-1}}>0right};;;text{for }dinmathbb N$$ and $$lambda^{(d)}_t:=sum_{n=0}^infty1_{left[frac nd,:frac{n+1}dright)}(t)left(tau^{(d)}_n+(dt-n)left(tau^{(d)}_{n+1}-tau^{(d)}_nright)right);;;text{for }tge0$$ for $dinmathbb N$. Moreoverr, let $T>0$ and $rho_T$ denote the metric inducing the Skorohod $J_1$-topology on the space of càdlàg functions $[0,T]tomathbb R$. We should obtain $$rho_Tleft(X^{(d)},tilde X^{(d)}right)lesup_{tin[0,:T]}left|lambda^{(d)}_t-tright|+sup_{tin[0,:T]}left|X^{(d)}_t-tilde X^{(d)}_{lambda^{(d)}_t}right|tag2,$$ where the last term should be $0$. So, if we could show that the first term converges in probability to $0$ as $dtoinfty$, we should be able to conclude (since $T$ was arbitrary).







      probability-theory stochastic-processes markov-chains markov-process stochastic-analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 4 '18 at 14:22

























      asked Nov 29 '18 at 18:46









      0xbadf00d

      1,75741430




      1,75741430






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019020%2fconvergence-of-discrete-time-markov-chain-to-feller-processes%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019020%2fconvergence-of-discrete-time-markov-chain-to-feller-processes%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How do I know what Microsoft account the skydrive app is syncing to?

          When does type information flow backwards in C++?

          Grease: Live!