$A_i=S_itimesOmega ,S_isubseteq{0,1}^{n_i} ,n_ige1$, $i=1,2$; show $A_1cup A_2$ and $A_1cap A_2$ are of the...












0












$begingroup$


[Random walk with the actual infinite sample space, $Omega={0,1}^{mathbb{N}}$]




If $A_1=S_1timesOmega$ and $A_2=S_2timesOmega$ where $S_isubseteq{0,1}^{n_i}$ for some $n_ige1$, $i=1,2$, then show that $A_1cup A_2$ and $A_1cap A_2$ are again of the same form $(S_0timesOmega)$.




My approach:


To prove: $(A_1cap A_2)=S_3timesOmega$ for some $S_3subseteq{0,1}^{n_3}$, $n_3ge1$


Without loss of generality assume $n_1>n_2$

$S_2subseteq{0,1}^{n_2}$

Then, we get some $S_3$ such that-
$S_3=S_2times{0,1}^{(n_1-n_2)}subseteq{0,1}^{(n_2)+(n_1-n_2)}={0,1}^{n_1}$
$A_2=S_2timesOmega$ where $S_2subseteq{0,1}^{n_2}$

Also, $A_2=S_3timesOmega$ where $S_3subseteq{0,1}^{n_1}$ $_{...(1)}$

$A_1=S_1timesOmega$ where $S_1subseteq{0,1}^{n_1}$ $_{...(2)}$


From $(1)$ and $(2)$, we get that-
$A_1cap A_2=(S_1cap S_3)timesOmega=S_0timesOmega$ where $S_0subseteq{0,1}^{n_1}$

[since, $S_1,S_3subseteq{0,1}^{n_1}$]




Is my approach correct? Can I prove the same for $A_1cup A_2$ similarly?











share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    [Random walk with the actual infinite sample space, $Omega={0,1}^{mathbb{N}}$]




    If $A_1=S_1timesOmega$ and $A_2=S_2timesOmega$ where $S_isubseteq{0,1}^{n_i}$ for some $n_ige1$, $i=1,2$, then show that $A_1cup A_2$ and $A_1cap A_2$ are again of the same form $(S_0timesOmega)$.




    My approach:


    To prove: $(A_1cap A_2)=S_3timesOmega$ for some $S_3subseteq{0,1}^{n_3}$, $n_3ge1$


    Without loss of generality assume $n_1>n_2$

    $S_2subseteq{0,1}^{n_2}$

    Then, we get some $S_3$ such that-
    $S_3=S_2times{0,1}^{(n_1-n_2)}subseteq{0,1}^{(n_2)+(n_1-n_2)}={0,1}^{n_1}$
    $A_2=S_2timesOmega$ where $S_2subseteq{0,1}^{n_2}$

    Also, $A_2=S_3timesOmega$ where $S_3subseteq{0,1}^{n_1}$ $_{...(1)}$

    $A_1=S_1timesOmega$ where $S_1subseteq{0,1}^{n_1}$ $_{...(2)}$


    From $(1)$ and $(2)$, we get that-
    $A_1cap A_2=(S_1cap S_3)timesOmega=S_0timesOmega$ where $S_0subseteq{0,1}^{n_1}$

    [since, $S_1,S_3subseteq{0,1}^{n_1}$]




    Is my approach correct? Can I prove the same for $A_1cup A_2$ similarly?











    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      [Random walk with the actual infinite sample space, $Omega={0,1}^{mathbb{N}}$]




      If $A_1=S_1timesOmega$ and $A_2=S_2timesOmega$ where $S_isubseteq{0,1}^{n_i}$ for some $n_ige1$, $i=1,2$, then show that $A_1cup A_2$ and $A_1cap A_2$ are again of the same form $(S_0timesOmega)$.




      My approach:


      To prove: $(A_1cap A_2)=S_3timesOmega$ for some $S_3subseteq{0,1}^{n_3}$, $n_3ge1$


      Without loss of generality assume $n_1>n_2$

      $S_2subseteq{0,1}^{n_2}$

      Then, we get some $S_3$ such that-
      $S_3=S_2times{0,1}^{(n_1-n_2)}subseteq{0,1}^{(n_2)+(n_1-n_2)}={0,1}^{n_1}$
      $A_2=S_2timesOmega$ where $S_2subseteq{0,1}^{n_2}$

      Also, $A_2=S_3timesOmega$ where $S_3subseteq{0,1}^{n_1}$ $_{...(1)}$

      $A_1=S_1timesOmega$ where $S_1subseteq{0,1}^{n_1}$ $_{...(2)}$


      From $(1)$ and $(2)$, we get that-
      $A_1cap A_2=(S_1cap S_3)timesOmega=S_0timesOmega$ where $S_0subseteq{0,1}^{n_1}$

      [since, $S_1,S_3subseteq{0,1}^{n_1}$]




      Is my approach correct? Can I prove the same for $A_1cup A_2$ similarly?











      share|cite|improve this question











      $endgroup$




      [Random walk with the actual infinite sample space, $Omega={0,1}^{mathbb{N}}$]




      If $A_1=S_1timesOmega$ and $A_2=S_2timesOmega$ where $S_isubseteq{0,1}^{n_i}$ for some $n_ige1$, $i=1,2$, then show that $A_1cup A_2$ and $A_1cap A_2$ are again of the same form $(S_0timesOmega)$.




      My approach:


      To prove: $(A_1cap A_2)=S_3timesOmega$ for some $S_3subseteq{0,1}^{n_3}$, $n_3ge1$


      Without loss of generality assume $n_1>n_2$

      $S_2subseteq{0,1}^{n_2}$

      Then, we get some $S_3$ such that-
      $S_3=S_2times{0,1}^{(n_1-n_2)}subseteq{0,1}^{(n_2)+(n_1-n_2)}={0,1}^{n_1}$
      $A_2=S_2timesOmega$ where $S_2subseteq{0,1}^{n_2}$

      Also, $A_2=S_3timesOmega$ where $S_3subseteq{0,1}^{n_1}$ $_{...(1)}$

      $A_1=S_1timesOmega$ where $S_1subseteq{0,1}^{n_1}$ $_{...(2)}$


      From $(1)$ and $(2)$, we get that-
      $A_1cap A_2=(S_1cap S_3)timesOmega=S_0timesOmega$ where $S_0subseteq{0,1}^{n_1}$

      [since, $S_1,S_3subseteq{0,1}^{n_1}$]




      Is my approach correct? Can I prove the same for $A_1cup A_2$ similarly?








      probability probability-theory random-walk






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 16 at 7:01







      Za Ira

















      asked Jan 4 at 3:44









      Za IraZa Ira

      161115




      161115






















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061299%2fa-i-s-i-times-omega-s-i-subseteq-0-1-n-i-n-i-ge1-i-1-2-show-a-1-cu%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061299%2fa-i-s-i-times-omega-s-i-subseteq-0-1-n-i-n-i-ge1-i-1-2-show-a-1-cu%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Probability when a professor distributes a quiz and homework assignment to a class of n students.

          Aardman Animations

          Are they similar matrix