Help in proving this statement (Analysis 2)
$begingroup$
Let $Omega$ be a limited domain of $mathbb{R}^n$.
Suppose $u$ to be measurable over $Omega$, and suppose that for every $p geq 1$
$$|u|^p in L^1(Omega)$$
Now, defined
$$phi_p(u) = left(frac{1}{text{measure}(Omega)}int_{Omega}|u|^p text{d}xright)^{1/p}$$
prove that for every $(p, q) geq 1$ with $p leq q$ we have
$$Phi_p(u) leq Phi_q(u)$$
Any hint? Thank you so much!
real-analysis calculus functional-analysis multivariable-calculus
$endgroup$
add a comment |
$begingroup$
Let $Omega$ be a limited domain of $mathbb{R}^n$.
Suppose $u$ to be measurable over $Omega$, and suppose that for every $p geq 1$
$$|u|^p in L^1(Omega)$$
Now, defined
$$phi_p(u) = left(frac{1}{text{measure}(Omega)}int_{Omega}|u|^p text{d}xright)^{1/p}$$
prove that for every $(p, q) geq 1$ with $p leq q$ we have
$$Phi_p(u) leq Phi_q(u)$$
Any hint? Thank you so much!
real-analysis calculus functional-analysis multivariable-calculus
$endgroup$
add a comment |
$begingroup$
Let $Omega$ be a limited domain of $mathbb{R}^n$.
Suppose $u$ to be measurable over $Omega$, and suppose that for every $p geq 1$
$$|u|^p in L^1(Omega)$$
Now, defined
$$phi_p(u) = left(frac{1}{text{measure}(Omega)}int_{Omega}|u|^p text{d}xright)^{1/p}$$
prove that for every $(p, q) geq 1$ with $p leq q$ we have
$$Phi_p(u) leq Phi_q(u)$$
Any hint? Thank you so much!
real-analysis calculus functional-analysis multivariable-calculus
$endgroup$
Let $Omega$ be a limited domain of $mathbb{R}^n$.
Suppose $u$ to be measurable over $Omega$, and suppose that for every $p geq 1$
$$|u|^p in L^1(Omega)$$
Now, defined
$$phi_p(u) = left(frac{1}{text{measure}(Omega)}int_{Omega}|u|^p text{d}xright)^{1/p}$$
prove that for every $(p, q) geq 1$ with $p leq q$ we have
$$Phi_p(u) leq Phi_q(u)$$
Any hint? Thank you so much!
real-analysis calculus functional-analysis multivariable-calculus
real-analysis calculus functional-analysis multivariable-calculus
asked Dec 26 '18 at 19:59
Von NeumannVon Neumann
16.5k72545
16.5k72545
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint:
If $p = q$, there is nothing to prove, so suppose $p < q$. Apply Hölder's inequality with conjugate exponents $q/p$ and $q/(q-p)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053262%2fhelp-in-proving-this-statement-analysis-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
If $p = q$, there is nothing to prove, so suppose $p < q$. Apply Hölder's inequality with conjugate exponents $q/p$ and $q/(q-p)$.
$endgroup$
add a comment |
$begingroup$
Hint:
If $p = q$, there is nothing to prove, so suppose $p < q$. Apply Hölder's inequality with conjugate exponents $q/p$ and $q/(q-p)$.
$endgroup$
add a comment |
$begingroup$
Hint:
If $p = q$, there is nothing to prove, so suppose $p < q$. Apply Hölder's inequality with conjugate exponents $q/p$ and $q/(q-p)$.
$endgroup$
Hint:
If $p = q$, there is nothing to prove, so suppose $p < q$. Apply Hölder's inequality with conjugate exponents $q/p$ and $q/(q-p)$.
edited Feb 8 at 10:24
Von Neumann
16.5k72545
16.5k72545
answered Dec 26 '18 at 20:10
kobekobe
35k22248
35k22248
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053262%2fhelp-in-proving-this-statement-analysis-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown