An inequality involving multi-index
$begingroup$
I came across these inequalities while learning about Schwartz functions (Classical Fourier Analysis, Grafakos) and I have no idea how to prove this:
For $x in mathbb{R}^{n}$ and $alpha = (alpha_{1}, ldots, alpha_{n}) in mathbb{N}^{n}$, we set
$$ x^{alpha} = x_{1}^{alpha_{1}}cdots x_{n}^{alpha_{n}}.$$
Then prove that there exists a constant $c_{n,alpha}$ such that
$$left| x^{alpha}right| leq c_{n,alpha}|x|^{|alpha|}$$
where $|alpha| = alpha_{1} + cdots + alpha_{n}$.
Conversely, for every $k in mathbb{N}$, there exists a $C_{n,k}$ such that
$$|x|^{k} leq C_{n,k}sumlimits_{|beta| = k}|x^{beta}|$$
Any help would be appreciated.
real-analysis multivariable-calculus inequality
$endgroup$
add a comment |
$begingroup$
I came across these inequalities while learning about Schwartz functions (Classical Fourier Analysis, Grafakos) and I have no idea how to prove this:
For $x in mathbb{R}^{n}$ and $alpha = (alpha_{1}, ldots, alpha_{n}) in mathbb{N}^{n}$, we set
$$ x^{alpha} = x_{1}^{alpha_{1}}cdots x_{n}^{alpha_{n}}.$$
Then prove that there exists a constant $c_{n,alpha}$ such that
$$left| x^{alpha}right| leq c_{n,alpha}|x|^{|alpha|}$$
where $|alpha| = alpha_{1} + cdots + alpha_{n}$.
Conversely, for every $k in mathbb{N}$, there exists a $C_{n,k}$ such that
$$|x|^{k} leq C_{n,k}sumlimits_{|beta| = k}|x^{beta}|$$
Any help would be appreciated.
real-analysis multivariable-calculus inequality
$endgroup$
add a comment |
$begingroup$
I came across these inequalities while learning about Schwartz functions (Classical Fourier Analysis, Grafakos) and I have no idea how to prove this:
For $x in mathbb{R}^{n}$ and $alpha = (alpha_{1}, ldots, alpha_{n}) in mathbb{N}^{n}$, we set
$$ x^{alpha} = x_{1}^{alpha_{1}}cdots x_{n}^{alpha_{n}}.$$
Then prove that there exists a constant $c_{n,alpha}$ such that
$$left| x^{alpha}right| leq c_{n,alpha}|x|^{|alpha|}$$
where $|alpha| = alpha_{1} + cdots + alpha_{n}$.
Conversely, for every $k in mathbb{N}$, there exists a $C_{n,k}$ such that
$$|x|^{k} leq C_{n,k}sumlimits_{|beta| = k}|x^{beta}|$$
Any help would be appreciated.
real-analysis multivariable-calculus inequality
$endgroup$
I came across these inequalities while learning about Schwartz functions (Classical Fourier Analysis, Grafakos) and I have no idea how to prove this:
For $x in mathbb{R}^{n}$ and $alpha = (alpha_{1}, ldots, alpha_{n}) in mathbb{N}^{n}$, we set
$$ x^{alpha} = x_{1}^{alpha_{1}}cdots x_{n}^{alpha_{n}}.$$
Then prove that there exists a constant $c_{n,alpha}$ such that
$$left| x^{alpha}right| leq c_{n,alpha}|x|^{|alpha|}$$
where $|alpha| = alpha_{1} + cdots + alpha_{n}$.
Conversely, for every $k in mathbb{N}$, there exists a $C_{n,k}$ such that
$$|x|^{k} leq C_{n,k}sumlimits_{|beta| = k}|x^{beta}|$$
Any help would be appreciated.
real-analysis multivariable-calculus inequality
real-analysis multivariable-calculus inequality
asked Jul 26 '13 at 6:24
Vishal GuptaVishal Gupta
4,64521843
4,64521843
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The first inequality is clear at $x=0$ with any constant . Now note that it suffices to prove it for $|x|=1$. This is because if it is true on the unit sphere then since $xneq0$ then $y=(frac{x_{1}}{|x|},frac{x_{2}}{|x|},...,frac{x_{n}}{|x|})=frac{x}{|x|}in S^{n-1}$ and then we have
$$begin{align} frac{|x^{alpha}|}{|x|^{|alpha|}}
& = frac{ sqrt{ x_1^{2alpha_1} + dots + x_n^{2alpha_n} } }{|x|^{|alpha|} } \
& = bigg( frac{ x_1^{2alpha_1} + dots + x_n^{2alpha_n} }{|x|^{2|alpha|}} bigg)^{frac{1}{2}}
\
& = bigg( frac{x_1^{2alpha_1}}{|x|^{2|alpha|}} + dots + frac{x_n^{2alpha_n}}{|x|^{2|alpha|}} bigg)^{frac{1}{2}}
\
& leq bigg[ bigg(frac{x_1}{|x|}bigg)^{2alpha_1} + dots + bigg(frac{x_n}{|x|}bigg)^{2alpha_n}bigg]^{frac{1}{2}}
\
& = bigg| bigg( frac{x_1^{alpha_1}}{|x|^{alpha_1}}, dots, frac{x_n^{alpha_n}}{|x|^{alpha_n}} bigg) bigg|
\
& = | y^{alpha} |
\
& leq c_{n,alpha} |y|^{|alpha|}
\
& = c_{n,alpha}bigg|bigg(frac{x_{1}}{|x|},frac{x_{2}}{|x|},...frac{x_{n}}{|x|}bigg)bigg|^{|alpha|}
\
& = c_{n,alpha}frac{1}{|x|^{|alpha|}}|(x_{1},x_{2},...x_{n})|^{|alpha|}
\
& = c_{n,alpha}frac{|x|^{|alpha|}}{|x|^{|alpha|}}
= c_{n,alpha}
end{align}$$
So $|x^{alpha}|le c_{n,alpha}|x|^{|alpha|}$.
Now we prove this inequality on the unit sphere.
$vert x^{alpha}vert=|x_1^{alpha_1}||x_2^{alpha_{2}}|...|x_n^{alpha_n}|lefrac{1}{n}sum_{k=1}^{n}|x_{k}|^{nalpha_{k}}lefrac{1}{n}big(sum_{k=1}^{n}|x_{k}|^{alpha_{k}}big)^{n}$
$lefrac{1}{n}big(sum_{k=1}^{n}(1+|x_{k}|)^{alpha_{k}}big)^{n}lefrac{1}{n}big(sum_{k=1}^{n}(1+|x|)^{alpha_k}big)^{n}lefrac{1}{n}big(n(1+|x|)^{|alpha|})^{n}=n^{n-1}2^{n|alpha|}$.
Note that I have used the Arithmetic Geometric Inequality to get the first inequality in the above proof. The second inequality follows from the inequality: $(x_{1}+x_{2}+...+x_{n})^{k}=sum_{alpha_{1}+...+alpha_{n}=k}binom{k}{alpha_{1}, alpha_{2},...,alpha_{n}}x^{alpha_{1}}...x^{alpha_{n}}ge x_{1}^{k}+...+x_{n}^{k}$ which is true when $x_{1},...x_{n}$ are all non-negative. Also note that $|x_{k}|le1+|x_{k}|$ and $|x_{k}|le sqrt{x_{1}^{2}+...+x_{n}^{2}}=|x|$ for all $k=1,2,...,n$.
For the second inequality we attack as follows:
$|x|^{k}=big(sum_{k=1}^{n}|x_{k}|^{2}big)^{frac{k}{2}}lebig(sum_{k=1}^{n}|x_{k}|big)^{frac{2k}{2}}=big(sum_{k=1}^{n}|x_{k}|big)^{k}=sum_{|beta|=k}frac{k!}{beta!}|x^{beta}|lebig(sum_{|beta|=k}big(frac{k!}{beta!}big)big)big(sum_{|beta|=k}|x^{beta}|big)=n^{k}big(sum_{|beta|=k}|x^{beta}|big)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f452524%2fan-inequality-involving-multi-index%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The first inequality is clear at $x=0$ with any constant . Now note that it suffices to prove it for $|x|=1$. This is because if it is true on the unit sphere then since $xneq0$ then $y=(frac{x_{1}}{|x|},frac{x_{2}}{|x|},...,frac{x_{n}}{|x|})=frac{x}{|x|}in S^{n-1}$ and then we have
$$begin{align} frac{|x^{alpha}|}{|x|^{|alpha|}}
& = frac{ sqrt{ x_1^{2alpha_1} + dots + x_n^{2alpha_n} } }{|x|^{|alpha|} } \
& = bigg( frac{ x_1^{2alpha_1} + dots + x_n^{2alpha_n} }{|x|^{2|alpha|}} bigg)^{frac{1}{2}}
\
& = bigg( frac{x_1^{2alpha_1}}{|x|^{2|alpha|}} + dots + frac{x_n^{2alpha_n}}{|x|^{2|alpha|}} bigg)^{frac{1}{2}}
\
& leq bigg[ bigg(frac{x_1}{|x|}bigg)^{2alpha_1} + dots + bigg(frac{x_n}{|x|}bigg)^{2alpha_n}bigg]^{frac{1}{2}}
\
& = bigg| bigg( frac{x_1^{alpha_1}}{|x|^{alpha_1}}, dots, frac{x_n^{alpha_n}}{|x|^{alpha_n}} bigg) bigg|
\
& = | y^{alpha} |
\
& leq c_{n,alpha} |y|^{|alpha|}
\
& = c_{n,alpha}bigg|bigg(frac{x_{1}}{|x|},frac{x_{2}}{|x|},...frac{x_{n}}{|x|}bigg)bigg|^{|alpha|}
\
& = c_{n,alpha}frac{1}{|x|^{|alpha|}}|(x_{1},x_{2},...x_{n})|^{|alpha|}
\
& = c_{n,alpha}frac{|x|^{|alpha|}}{|x|^{|alpha|}}
= c_{n,alpha}
end{align}$$
So $|x^{alpha}|le c_{n,alpha}|x|^{|alpha|}$.
Now we prove this inequality on the unit sphere.
$vert x^{alpha}vert=|x_1^{alpha_1}||x_2^{alpha_{2}}|...|x_n^{alpha_n}|lefrac{1}{n}sum_{k=1}^{n}|x_{k}|^{nalpha_{k}}lefrac{1}{n}big(sum_{k=1}^{n}|x_{k}|^{alpha_{k}}big)^{n}$
$lefrac{1}{n}big(sum_{k=1}^{n}(1+|x_{k}|)^{alpha_{k}}big)^{n}lefrac{1}{n}big(sum_{k=1}^{n}(1+|x|)^{alpha_k}big)^{n}lefrac{1}{n}big(n(1+|x|)^{|alpha|})^{n}=n^{n-1}2^{n|alpha|}$.
Note that I have used the Arithmetic Geometric Inequality to get the first inequality in the above proof. The second inequality follows from the inequality: $(x_{1}+x_{2}+...+x_{n})^{k}=sum_{alpha_{1}+...+alpha_{n}=k}binom{k}{alpha_{1}, alpha_{2},...,alpha_{n}}x^{alpha_{1}}...x^{alpha_{n}}ge x_{1}^{k}+...+x_{n}^{k}$ which is true when $x_{1},...x_{n}$ are all non-negative. Also note that $|x_{k}|le1+|x_{k}|$ and $|x_{k}|le sqrt{x_{1}^{2}+...+x_{n}^{2}}=|x|$ for all $k=1,2,...,n$.
For the second inequality we attack as follows:
$|x|^{k}=big(sum_{k=1}^{n}|x_{k}|^{2}big)^{frac{k}{2}}lebig(sum_{k=1}^{n}|x_{k}|big)^{frac{2k}{2}}=big(sum_{k=1}^{n}|x_{k}|big)^{k}=sum_{|beta|=k}frac{k!}{beta!}|x^{beta}|lebig(sum_{|beta|=k}big(frac{k!}{beta!}big)big)big(sum_{|beta|=k}|x^{beta}|big)=n^{k}big(sum_{|beta|=k}|x^{beta}|big)$.
$endgroup$
add a comment |
$begingroup$
The first inequality is clear at $x=0$ with any constant . Now note that it suffices to prove it for $|x|=1$. This is because if it is true on the unit sphere then since $xneq0$ then $y=(frac{x_{1}}{|x|},frac{x_{2}}{|x|},...,frac{x_{n}}{|x|})=frac{x}{|x|}in S^{n-1}$ and then we have
$$begin{align} frac{|x^{alpha}|}{|x|^{|alpha|}}
& = frac{ sqrt{ x_1^{2alpha_1} + dots + x_n^{2alpha_n} } }{|x|^{|alpha|} } \
& = bigg( frac{ x_1^{2alpha_1} + dots + x_n^{2alpha_n} }{|x|^{2|alpha|}} bigg)^{frac{1}{2}}
\
& = bigg( frac{x_1^{2alpha_1}}{|x|^{2|alpha|}} + dots + frac{x_n^{2alpha_n}}{|x|^{2|alpha|}} bigg)^{frac{1}{2}}
\
& leq bigg[ bigg(frac{x_1}{|x|}bigg)^{2alpha_1} + dots + bigg(frac{x_n}{|x|}bigg)^{2alpha_n}bigg]^{frac{1}{2}}
\
& = bigg| bigg( frac{x_1^{alpha_1}}{|x|^{alpha_1}}, dots, frac{x_n^{alpha_n}}{|x|^{alpha_n}} bigg) bigg|
\
& = | y^{alpha} |
\
& leq c_{n,alpha} |y|^{|alpha|}
\
& = c_{n,alpha}bigg|bigg(frac{x_{1}}{|x|},frac{x_{2}}{|x|},...frac{x_{n}}{|x|}bigg)bigg|^{|alpha|}
\
& = c_{n,alpha}frac{1}{|x|^{|alpha|}}|(x_{1},x_{2},...x_{n})|^{|alpha|}
\
& = c_{n,alpha}frac{|x|^{|alpha|}}{|x|^{|alpha|}}
= c_{n,alpha}
end{align}$$
So $|x^{alpha}|le c_{n,alpha}|x|^{|alpha|}$.
Now we prove this inequality on the unit sphere.
$vert x^{alpha}vert=|x_1^{alpha_1}||x_2^{alpha_{2}}|...|x_n^{alpha_n}|lefrac{1}{n}sum_{k=1}^{n}|x_{k}|^{nalpha_{k}}lefrac{1}{n}big(sum_{k=1}^{n}|x_{k}|^{alpha_{k}}big)^{n}$
$lefrac{1}{n}big(sum_{k=1}^{n}(1+|x_{k}|)^{alpha_{k}}big)^{n}lefrac{1}{n}big(sum_{k=1}^{n}(1+|x|)^{alpha_k}big)^{n}lefrac{1}{n}big(n(1+|x|)^{|alpha|})^{n}=n^{n-1}2^{n|alpha|}$.
Note that I have used the Arithmetic Geometric Inequality to get the first inequality in the above proof. The second inequality follows from the inequality: $(x_{1}+x_{2}+...+x_{n})^{k}=sum_{alpha_{1}+...+alpha_{n}=k}binom{k}{alpha_{1}, alpha_{2},...,alpha_{n}}x^{alpha_{1}}...x^{alpha_{n}}ge x_{1}^{k}+...+x_{n}^{k}$ which is true when $x_{1},...x_{n}$ are all non-negative. Also note that $|x_{k}|le1+|x_{k}|$ and $|x_{k}|le sqrt{x_{1}^{2}+...+x_{n}^{2}}=|x|$ for all $k=1,2,...,n$.
For the second inequality we attack as follows:
$|x|^{k}=big(sum_{k=1}^{n}|x_{k}|^{2}big)^{frac{k}{2}}lebig(sum_{k=1}^{n}|x_{k}|big)^{frac{2k}{2}}=big(sum_{k=1}^{n}|x_{k}|big)^{k}=sum_{|beta|=k}frac{k!}{beta!}|x^{beta}|lebig(sum_{|beta|=k}big(frac{k!}{beta!}big)big)big(sum_{|beta|=k}|x^{beta}|big)=n^{k}big(sum_{|beta|=k}|x^{beta}|big)$.
$endgroup$
add a comment |
$begingroup$
The first inequality is clear at $x=0$ with any constant . Now note that it suffices to prove it for $|x|=1$. This is because if it is true on the unit sphere then since $xneq0$ then $y=(frac{x_{1}}{|x|},frac{x_{2}}{|x|},...,frac{x_{n}}{|x|})=frac{x}{|x|}in S^{n-1}$ and then we have
$$begin{align} frac{|x^{alpha}|}{|x|^{|alpha|}}
& = frac{ sqrt{ x_1^{2alpha_1} + dots + x_n^{2alpha_n} } }{|x|^{|alpha|} } \
& = bigg( frac{ x_1^{2alpha_1} + dots + x_n^{2alpha_n} }{|x|^{2|alpha|}} bigg)^{frac{1}{2}}
\
& = bigg( frac{x_1^{2alpha_1}}{|x|^{2|alpha|}} + dots + frac{x_n^{2alpha_n}}{|x|^{2|alpha|}} bigg)^{frac{1}{2}}
\
& leq bigg[ bigg(frac{x_1}{|x|}bigg)^{2alpha_1} + dots + bigg(frac{x_n}{|x|}bigg)^{2alpha_n}bigg]^{frac{1}{2}}
\
& = bigg| bigg( frac{x_1^{alpha_1}}{|x|^{alpha_1}}, dots, frac{x_n^{alpha_n}}{|x|^{alpha_n}} bigg) bigg|
\
& = | y^{alpha} |
\
& leq c_{n,alpha} |y|^{|alpha|}
\
& = c_{n,alpha}bigg|bigg(frac{x_{1}}{|x|},frac{x_{2}}{|x|},...frac{x_{n}}{|x|}bigg)bigg|^{|alpha|}
\
& = c_{n,alpha}frac{1}{|x|^{|alpha|}}|(x_{1},x_{2},...x_{n})|^{|alpha|}
\
& = c_{n,alpha}frac{|x|^{|alpha|}}{|x|^{|alpha|}}
= c_{n,alpha}
end{align}$$
So $|x^{alpha}|le c_{n,alpha}|x|^{|alpha|}$.
Now we prove this inequality on the unit sphere.
$vert x^{alpha}vert=|x_1^{alpha_1}||x_2^{alpha_{2}}|...|x_n^{alpha_n}|lefrac{1}{n}sum_{k=1}^{n}|x_{k}|^{nalpha_{k}}lefrac{1}{n}big(sum_{k=1}^{n}|x_{k}|^{alpha_{k}}big)^{n}$
$lefrac{1}{n}big(sum_{k=1}^{n}(1+|x_{k}|)^{alpha_{k}}big)^{n}lefrac{1}{n}big(sum_{k=1}^{n}(1+|x|)^{alpha_k}big)^{n}lefrac{1}{n}big(n(1+|x|)^{|alpha|})^{n}=n^{n-1}2^{n|alpha|}$.
Note that I have used the Arithmetic Geometric Inequality to get the first inequality in the above proof. The second inequality follows from the inequality: $(x_{1}+x_{2}+...+x_{n})^{k}=sum_{alpha_{1}+...+alpha_{n}=k}binom{k}{alpha_{1}, alpha_{2},...,alpha_{n}}x^{alpha_{1}}...x^{alpha_{n}}ge x_{1}^{k}+...+x_{n}^{k}$ which is true when $x_{1},...x_{n}$ are all non-negative. Also note that $|x_{k}|le1+|x_{k}|$ and $|x_{k}|le sqrt{x_{1}^{2}+...+x_{n}^{2}}=|x|$ for all $k=1,2,...,n$.
For the second inequality we attack as follows:
$|x|^{k}=big(sum_{k=1}^{n}|x_{k}|^{2}big)^{frac{k}{2}}lebig(sum_{k=1}^{n}|x_{k}|big)^{frac{2k}{2}}=big(sum_{k=1}^{n}|x_{k}|big)^{k}=sum_{|beta|=k}frac{k!}{beta!}|x^{beta}|lebig(sum_{|beta|=k}big(frac{k!}{beta!}big)big)big(sum_{|beta|=k}|x^{beta}|big)=n^{k}big(sum_{|beta|=k}|x^{beta}|big)$.
$endgroup$
The first inequality is clear at $x=0$ with any constant . Now note that it suffices to prove it for $|x|=1$. This is because if it is true on the unit sphere then since $xneq0$ then $y=(frac{x_{1}}{|x|},frac{x_{2}}{|x|},...,frac{x_{n}}{|x|})=frac{x}{|x|}in S^{n-1}$ and then we have
$$begin{align} frac{|x^{alpha}|}{|x|^{|alpha|}}
& = frac{ sqrt{ x_1^{2alpha_1} + dots + x_n^{2alpha_n} } }{|x|^{|alpha|} } \
& = bigg( frac{ x_1^{2alpha_1} + dots + x_n^{2alpha_n} }{|x|^{2|alpha|}} bigg)^{frac{1}{2}}
\
& = bigg( frac{x_1^{2alpha_1}}{|x|^{2|alpha|}} + dots + frac{x_n^{2alpha_n}}{|x|^{2|alpha|}} bigg)^{frac{1}{2}}
\
& leq bigg[ bigg(frac{x_1}{|x|}bigg)^{2alpha_1} + dots + bigg(frac{x_n}{|x|}bigg)^{2alpha_n}bigg]^{frac{1}{2}}
\
& = bigg| bigg( frac{x_1^{alpha_1}}{|x|^{alpha_1}}, dots, frac{x_n^{alpha_n}}{|x|^{alpha_n}} bigg) bigg|
\
& = | y^{alpha} |
\
& leq c_{n,alpha} |y|^{|alpha|}
\
& = c_{n,alpha}bigg|bigg(frac{x_{1}}{|x|},frac{x_{2}}{|x|},...frac{x_{n}}{|x|}bigg)bigg|^{|alpha|}
\
& = c_{n,alpha}frac{1}{|x|^{|alpha|}}|(x_{1},x_{2},...x_{n})|^{|alpha|}
\
& = c_{n,alpha}frac{|x|^{|alpha|}}{|x|^{|alpha|}}
= c_{n,alpha}
end{align}$$
So $|x^{alpha}|le c_{n,alpha}|x|^{|alpha|}$.
Now we prove this inequality on the unit sphere.
$vert x^{alpha}vert=|x_1^{alpha_1}||x_2^{alpha_{2}}|...|x_n^{alpha_n}|lefrac{1}{n}sum_{k=1}^{n}|x_{k}|^{nalpha_{k}}lefrac{1}{n}big(sum_{k=1}^{n}|x_{k}|^{alpha_{k}}big)^{n}$
$lefrac{1}{n}big(sum_{k=1}^{n}(1+|x_{k}|)^{alpha_{k}}big)^{n}lefrac{1}{n}big(sum_{k=1}^{n}(1+|x|)^{alpha_k}big)^{n}lefrac{1}{n}big(n(1+|x|)^{|alpha|})^{n}=n^{n-1}2^{n|alpha|}$.
Note that I have used the Arithmetic Geometric Inequality to get the first inequality in the above proof. The second inequality follows from the inequality: $(x_{1}+x_{2}+...+x_{n})^{k}=sum_{alpha_{1}+...+alpha_{n}=k}binom{k}{alpha_{1}, alpha_{2},...,alpha_{n}}x^{alpha_{1}}...x^{alpha_{n}}ge x_{1}^{k}+...+x_{n}^{k}$ which is true when $x_{1},...x_{n}$ are all non-negative. Also note that $|x_{k}|le1+|x_{k}|$ and $|x_{k}|le sqrt{x_{1}^{2}+...+x_{n}^{2}}=|x|$ for all $k=1,2,...,n$.
For the second inequality we attack as follows:
$|x|^{k}=big(sum_{k=1}^{n}|x_{k}|^{2}big)^{frac{k}{2}}lebig(sum_{k=1}^{n}|x_{k}|big)^{frac{2k}{2}}=big(sum_{k=1}^{n}|x_{k}|big)^{k}=sum_{|beta|=k}frac{k!}{beta!}|x^{beta}|lebig(sum_{|beta|=k}big(frac{k!}{beta!}big)big)big(sum_{|beta|=k}|x^{beta}|big)=n^{k}big(sum_{|beta|=k}|x^{beta}|big)$.
edited Dec 26 '18 at 16:30
Namaste
1
1
answered Jul 29 '13 at 19:54
user71352user71352
11.4k21025
11.4k21025
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f452524%2fan-inequality-involving-multi-index%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown