$p_0^2 + q_0^2 = 1$ and $-sin(s) = -p_0sin(s) + q_0cos(s)$ $rightarrow $ $p_0 = -cos2s, q_0 = -sin(2s)$
$begingroup$
How does solving $p_0^2 + q_0^2 = 1$ and $-sin(s) = -p_0sin(s) + q_0cos(s)$ give $p_0 = -cos2s $ and $q_0 = -sin(2s)$?
I can clearly see one solution is $p_0=1,q_0=0$ but can't seem to understand the other.
trigonometry systems-of-equations
$endgroup$
add a comment |
$begingroup$
How does solving $p_0^2 + q_0^2 = 1$ and $-sin(s) = -p_0sin(s) + q_0cos(s)$ give $p_0 = -cos2s $ and $q_0 = -sin(2s)$?
I can clearly see one solution is $p_0=1,q_0=0$ but can't seem to understand the other.
trigonometry systems-of-equations
$endgroup$
add a comment |
$begingroup$
How does solving $p_0^2 + q_0^2 = 1$ and $-sin(s) = -p_0sin(s) + q_0cos(s)$ give $p_0 = -cos2s $ and $q_0 = -sin(2s)$?
I can clearly see one solution is $p_0=1,q_0=0$ but can't seem to understand the other.
trigonometry systems-of-equations
$endgroup$
How does solving $p_0^2 + q_0^2 = 1$ and $-sin(s) = -p_0sin(s) + q_0cos(s)$ give $p_0 = -cos2s $ and $q_0 = -sin(2s)$?
I can clearly see one solution is $p_0=1,q_0=0$ but can't seem to understand the other.
trigonometry systems-of-equations
trigonometry systems-of-equations
edited Dec 17 '18 at 12:24
Harry Peter
5,46911439
5,46911439
asked Dec 10 '18 at 14:41
pablo_mathscobarpablo_mathscobar
996
996
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
HINT : Let $p_0=cos x $ and $q_0=sin x$. Then the second equation becomes $$-sin s = -cos xsin s + sin xcos s.$$
That is
$$-sin s = sin(x-s).$$
Now solve for $x$.
$endgroup$
$begingroup$
I still cant seem to do it
$endgroup$
– pablo_mathscobar
Dec 10 '18 at 14:56
$begingroup$
Another hint:$sin A+sin B=0 iff 2sinfrac{A+B}2cosfrac{A-B}2=0$. This means either $sinfrac{A+B}2=0$ or $cosfrac{A-B}2=0$.
$endgroup$
– Thomas Shelby
Dec 10 '18 at 15:12
add a comment |
$begingroup$
Since $p_0^2 + q_0^2 = 1$, there is $theta$ such that $p_0 = cos(theta)$ and $q_0 = sin(theta)$. Thus your equation becomes
$$ sin(-s) = -sin(s) = - cos(theta) sin(s) + sin(theta) cos(s) = sin(theta - s)$$
Thus either $theta = 2 n pi$ or $theta = (2n+1)pi + 2 s$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033996%2fp-02-q-02-1-and-sins-p-0-sins-q-0-coss-rightarrow-p%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
HINT : Let $p_0=cos x $ and $q_0=sin x$. Then the second equation becomes $$-sin s = -cos xsin s + sin xcos s.$$
That is
$$-sin s = sin(x-s).$$
Now solve for $x$.
$endgroup$
$begingroup$
I still cant seem to do it
$endgroup$
– pablo_mathscobar
Dec 10 '18 at 14:56
$begingroup$
Another hint:$sin A+sin B=0 iff 2sinfrac{A+B}2cosfrac{A-B}2=0$. This means either $sinfrac{A+B}2=0$ or $cosfrac{A-B}2=0$.
$endgroup$
– Thomas Shelby
Dec 10 '18 at 15:12
add a comment |
$begingroup$
HINT : Let $p_0=cos x $ and $q_0=sin x$. Then the second equation becomes $$-sin s = -cos xsin s + sin xcos s.$$
That is
$$-sin s = sin(x-s).$$
Now solve for $x$.
$endgroup$
$begingroup$
I still cant seem to do it
$endgroup$
– pablo_mathscobar
Dec 10 '18 at 14:56
$begingroup$
Another hint:$sin A+sin B=0 iff 2sinfrac{A+B}2cosfrac{A-B}2=0$. This means either $sinfrac{A+B}2=0$ or $cosfrac{A-B}2=0$.
$endgroup$
– Thomas Shelby
Dec 10 '18 at 15:12
add a comment |
$begingroup$
HINT : Let $p_0=cos x $ and $q_0=sin x$. Then the second equation becomes $$-sin s = -cos xsin s + sin xcos s.$$
That is
$$-sin s = sin(x-s).$$
Now solve for $x$.
$endgroup$
HINT : Let $p_0=cos x $ and $q_0=sin x$. Then the second equation becomes $$-sin s = -cos xsin s + sin xcos s.$$
That is
$$-sin s = sin(x-s).$$
Now solve for $x$.
answered Dec 10 '18 at 14:50
Thomas ShelbyThomas Shelby
2,877421
2,877421
$begingroup$
I still cant seem to do it
$endgroup$
– pablo_mathscobar
Dec 10 '18 at 14:56
$begingroup$
Another hint:$sin A+sin B=0 iff 2sinfrac{A+B}2cosfrac{A-B}2=0$. This means either $sinfrac{A+B}2=0$ or $cosfrac{A-B}2=0$.
$endgroup$
– Thomas Shelby
Dec 10 '18 at 15:12
add a comment |
$begingroup$
I still cant seem to do it
$endgroup$
– pablo_mathscobar
Dec 10 '18 at 14:56
$begingroup$
Another hint:$sin A+sin B=0 iff 2sinfrac{A+B}2cosfrac{A-B}2=0$. This means either $sinfrac{A+B}2=0$ or $cosfrac{A-B}2=0$.
$endgroup$
– Thomas Shelby
Dec 10 '18 at 15:12
$begingroup$
I still cant seem to do it
$endgroup$
– pablo_mathscobar
Dec 10 '18 at 14:56
$begingroup$
I still cant seem to do it
$endgroup$
– pablo_mathscobar
Dec 10 '18 at 14:56
$begingroup$
Another hint:$sin A+sin B=0 iff 2sinfrac{A+B}2cosfrac{A-B}2=0$. This means either $sinfrac{A+B}2=0$ or $cosfrac{A-B}2=0$.
$endgroup$
– Thomas Shelby
Dec 10 '18 at 15:12
$begingroup$
Another hint:$sin A+sin B=0 iff 2sinfrac{A+B}2cosfrac{A-B}2=0$. This means either $sinfrac{A+B}2=0$ or $cosfrac{A-B}2=0$.
$endgroup$
– Thomas Shelby
Dec 10 '18 at 15:12
add a comment |
$begingroup$
Since $p_0^2 + q_0^2 = 1$, there is $theta$ such that $p_0 = cos(theta)$ and $q_0 = sin(theta)$. Thus your equation becomes
$$ sin(-s) = -sin(s) = - cos(theta) sin(s) + sin(theta) cos(s) = sin(theta - s)$$
Thus either $theta = 2 n pi$ or $theta = (2n+1)pi + 2 s$.
$endgroup$
add a comment |
$begingroup$
Since $p_0^2 + q_0^2 = 1$, there is $theta$ such that $p_0 = cos(theta)$ and $q_0 = sin(theta)$. Thus your equation becomes
$$ sin(-s) = -sin(s) = - cos(theta) sin(s) + sin(theta) cos(s) = sin(theta - s)$$
Thus either $theta = 2 n pi$ or $theta = (2n+1)pi + 2 s$.
$endgroup$
add a comment |
$begingroup$
Since $p_0^2 + q_0^2 = 1$, there is $theta$ such that $p_0 = cos(theta)$ and $q_0 = sin(theta)$. Thus your equation becomes
$$ sin(-s) = -sin(s) = - cos(theta) sin(s) + sin(theta) cos(s) = sin(theta - s)$$
Thus either $theta = 2 n pi$ or $theta = (2n+1)pi + 2 s$.
$endgroup$
Since $p_0^2 + q_0^2 = 1$, there is $theta$ such that $p_0 = cos(theta)$ and $q_0 = sin(theta)$. Thus your equation becomes
$$ sin(-s) = -sin(s) = - cos(theta) sin(s) + sin(theta) cos(s) = sin(theta - s)$$
Thus either $theta = 2 n pi$ or $theta = (2n+1)pi + 2 s$.
answered Dec 10 '18 at 14:51
Robert IsraelRobert Israel
322k23212465
322k23212465
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033996%2fp-02-q-02-1-and-sins-p-0-sins-q-0-coss-rightarrow-p%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown