Evaluate: $int_{0}^{infty}left(x^2-3x+1right)e^{-x}ln^3(x) dx$
$begingroup$
$$I=large int_{0}^{infty}left(x^2-3x+1right)e^{-x}ln^3(x)mathrm dx$$
$$e^{-x}=sum_{n=0}^{infty}frac{(-x)^n}{n!}$$
$$I=large sum_{n=0}^{infty}frac{(-1)^n}{n!}int_{0}^{infty}left(x^2-3x+1right)x^nln^3(x)mathrm dx$$
$$J=int left(x^2-3x+1right)x^nln^3(x)mathrm dx$$
We can evaluate $J$ by integration by parts but problem, the limits does not work.
How to evaluate integral $I?$
calculus integration definite-integrals
$endgroup$
add a comment |
$begingroup$
$$I=large int_{0}^{infty}left(x^2-3x+1right)e^{-x}ln^3(x)mathrm dx$$
$$e^{-x}=sum_{n=0}^{infty}frac{(-x)^n}{n!}$$
$$I=large sum_{n=0}^{infty}frac{(-1)^n}{n!}int_{0}^{infty}left(x^2-3x+1right)x^nln^3(x)mathrm dx$$
$$J=int left(x^2-3x+1right)x^nln^3(x)mathrm dx$$
We can evaluate $J$ by integration by parts but problem, the limits does not work.
How to evaluate integral $I?$
calculus integration definite-integrals
$endgroup$
$begingroup$
Power series expansion of $e^{-x}$ is useless here - even the integrals you get don't converge. One of the right tools here is $Gamma$ function and its derivatives.
$endgroup$
– metamorphy
Aug 12 '18 at 12:43
$begingroup$
Here's my rather recent blog post I dealt dealing with the case when it was $ln x$: $$int_0^1frac{(x^2-3x+1)ln x}{e^x},dx=-frac1e$$. In a similar vein you can show that $$int_0^inftyfrac{(x^2-3x+1)ln x}{e^x},dx=0$$
$endgroup$
– TheSimpliFire
Aug 12 '18 at 12:48
$begingroup$
BTW, the answer I get is $6Gamma'(1) = -6gamma$.
$endgroup$
– metamorphy
Aug 12 '18 at 13:25
$begingroup$
How many solutions have you seen so far using differentiation under the integral sign / Feynman's trick? My guess is many.
$endgroup$
– Jack D'Aurizio
Aug 13 '18 at 5:03
add a comment |
$begingroup$
$$I=large int_{0}^{infty}left(x^2-3x+1right)e^{-x}ln^3(x)mathrm dx$$
$$e^{-x}=sum_{n=0}^{infty}frac{(-x)^n}{n!}$$
$$I=large sum_{n=0}^{infty}frac{(-1)^n}{n!}int_{0}^{infty}left(x^2-3x+1right)x^nln^3(x)mathrm dx$$
$$J=int left(x^2-3x+1right)x^nln^3(x)mathrm dx$$
We can evaluate $J$ by integration by parts but problem, the limits does not work.
How to evaluate integral $I?$
calculus integration definite-integrals
$endgroup$
$$I=large int_{0}^{infty}left(x^2-3x+1right)e^{-x}ln^3(x)mathrm dx$$
$$e^{-x}=sum_{n=0}^{infty}frac{(-x)^n}{n!}$$
$$I=large sum_{n=0}^{infty}frac{(-1)^n}{n!}int_{0}^{infty}left(x^2-3x+1right)x^nln^3(x)mathrm dx$$
$$J=int left(x^2-3x+1right)x^nln^3(x)mathrm dx$$
We can evaluate $J$ by integration by parts but problem, the limits does not work.
How to evaluate integral $I?$
calculus integration definite-integrals
calculus integration definite-integrals
asked Aug 12 '18 at 12:37
user565198
$begingroup$
Power series expansion of $e^{-x}$ is useless here - even the integrals you get don't converge. One of the right tools here is $Gamma$ function and its derivatives.
$endgroup$
– metamorphy
Aug 12 '18 at 12:43
$begingroup$
Here's my rather recent blog post I dealt dealing with the case when it was $ln x$: $$int_0^1frac{(x^2-3x+1)ln x}{e^x},dx=-frac1e$$. In a similar vein you can show that $$int_0^inftyfrac{(x^2-3x+1)ln x}{e^x},dx=0$$
$endgroup$
– TheSimpliFire
Aug 12 '18 at 12:48
$begingroup$
BTW, the answer I get is $6Gamma'(1) = -6gamma$.
$endgroup$
– metamorphy
Aug 12 '18 at 13:25
$begingroup$
How many solutions have you seen so far using differentiation under the integral sign / Feynman's trick? My guess is many.
$endgroup$
– Jack D'Aurizio
Aug 13 '18 at 5:03
add a comment |
$begingroup$
Power series expansion of $e^{-x}$ is useless here - even the integrals you get don't converge. One of the right tools here is $Gamma$ function and its derivatives.
$endgroup$
– metamorphy
Aug 12 '18 at 12:43
$begingroup$
Here's my rather recent blog post I dealt dealing with the case when it was $ln x$: $$int_0^1frac{(x^2-3x+1)ln x}{e^x},dx=-frac1e$$. In a similar vein you can show that $$int_0^inftyfrac{(x^2-3x+1)ln x}{e^x},dx=0$$
$endgroup$
– TheSimpliFire
Aug 12 '18 at 12:48
$begingroup$
BTW, the answer I get is $6Gamma'(1) = -6gamma$.
$endgroup$
– metamorphy
Aug 12 '18 at 13:25
$begingroup$
How many solutions have you seen so far using differentiation under the integral sign / Feynman's trick? My guess is many.
$endgroup$
– Jack D'Aurizio
Aug 13 '18 at 5:03
$begingroup$
Power series expansion of $e^{-x}$ is useless here - even the integrals you get don't converge. One of the right tools here is $Gamma$ function and its derivatives.
$endgroup$
– metamorphy
Aug 12 '18 at 12:43
$begingroup$
Power series expansion of $e^{-x}$ is useless here - even the integrals you get don't converge. One of the right tools here is $Gamma$ function and its derivatives.
$endgroup$
– metamorphy
Aug 12 '18 at 12:43
$begingroup$
Here's my rather recent blog post I dealt dealing with the case when it was $ln x$: $$int_0^1frac{(x^2-3x+1)ln x}{e^x},dx=-frac1e$$. In a similar vein you can show that $$int_0^inftyfrac{(x^2-3x+1)ln x}{e^x},dx=0$$
$endgroup$
– TheSimpliFire
Aug 12 '18 at 12:48
$begingroup$
Here's my rather recent blog post I dealt dealing with the case when it was $ln x$: $$int_0^1frac{(x^2-3x+1)ln x}{e^x},dx=-frac1e$$. In a similar vein you can show that $$int_0^inftyfrac{(x^2-3x+1)ln x}{e^x},dx=0$$
$endgroup$
– TheSimpliFire
Aug 12 '18 at 12:48
$begingroup$
BTW, the answer I get is $6Gamma'(1) = -6gamma$.
$endgroup$
– metamorphy
Aug 12 '18 at 13:25
$begingroup$
BTW, the answer I get is $6Gamma'(1) = -6gamma$.
$endgroup$
– metamorphy
Aug 12 '18 at 13:25
$begingroup$
How many solutions have you seen so far using differentiation under the integral sign / Feynman's trick? My guess is many.
$endgroup$
– Jack D'Aurizio
Aug 13 '18 at 5:03
$begingroup$
How many solutions have you seen so far using differentiation under the integral sign / Feynman's trick? My guess is many.
$endgroup$
– Jack D'Aurizio
Aug 13 '18 at 5:03
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Here's a way that only requires the identity $Gamma'(1) = - gamma$ , since all derivatives of higher order cancel:
begin{align}
I &=int limits_0^infty (x^2 - 3x+1) ln^3 (x) mathrm{e}^{-x} , mathrm{d} x \
&= left[frac{mathrm{d}^2}{mathrm{d} t^2} + 3 frac{mathrm{d}}{mathrm{d}t}+1 right] int limits_0^infty ln^3 (x) mathrm{e}^{- t x} , mathrm{d} x ~Biggvert_{t=1}\
&= left[frac{mathrm{d}^2}{mathrm{d} t^2} + 3 frac{mathrm{d}}{mathrm{d}t}+1 right] frac{1}{t} int limits_0^infty left[ln^3 (y) - 3 ln^2(y) ln(t) + 3 ln(y) ln^2(t) - ln^3 (t)right] mathrm{e}^{-y} , mathrm{d} y ~Biggvert_{t=1}\
&= left[frac{mathrm{d}^2}{mathrm{d} t^2} + 3 frac{mathrm{d}}{mathrm{d}t}+1 right] frac{1}{t} left[Gamma'''(1) - 3 Gamma''(1) ln(t) + 3 Gamma'(1) ln^2(t) - ln^3 (t)right] ~Biggvert_{t=1} \
&= 2 Gamma'''(1) + 6 Gamma''(1) + 3 Gamma''(1) + 6 Gamma'(1) - 3 Gamma'''(1) - 9 Gamma''(1) + Gamma'''(1) \
&= 6 Gamma'(1)\
&= - 6 gamma , .
end{align}
In fact, integration by parts yields the following generalisation:
begin{align}
gamma &= int limits_0^infty (-ln (x)) mathrm{e}^{-x} , mathrm{d} x
= int limits_0^infty frac{-ln (x)}{x} x mathrm{e}^{-x} , mathrm{d} x \
&= int limits_0^infty (-ln (x))^2 frac{1-x}{2} mathrm{e}^{-x} , mathrm{d} x \
&= int limits_0^infty (-ln (x))^3 frac{x^2 - 3x +1}{6} mathrm{e}^{-x} , mathrm{d} x \
&= dots , \
&= int limits_0^infty (-ln (x))^{n+1} frac{p_n (x)}{(n+1)!} mathrm{e}^{-x} , mathrm{d} x , .
end{align}
The polynomials $p_n$ are defined recursively by $p_0(x) = 1$ and
$$p_n (x) = mathrm{e}^{x} frac{mathrm{d}}{mathrm{d}x} left(x p_{n-1} (x) mathrm{e}^{-x}right) , , , n in mathbb{N} , ,$$
for $x in mathbb{R}$ . The exponential generating function
$$ sum limits_{n=0}^infty frac{p_n(x)}{n!} t^n = mathrm{e}^{t+x(1-mathrm{e}^t)}$$
can actually be computed from a PDE and it turns out that the polynomials are given by
$$p_n(x) = frac{B_{n+1}(-x)}{-x} , , , x in mathbb{R} , , , n in mathbb{N}_0 , , $$
where $(B_k)_{k in mathbb{N}_0}$ are the Bell or Touchard polynomials.
$endgroup$
1
$begingroup$
You are going to be the next integral wizard on Math SE...
$endgroup$
– Szeto
Aug 12 '18 at 15:35
$begingroup$
@Szeto That will probably still take a long time, but thanks ;)
$endgroup$
– ComplexYetTrivial
Aug 12 '18 at 16:12
add a comment |
$begingroup$
It is pretty straightforward to differentiate three times
$$ int_{0}^{+infty}(x^2-3x+1)x^s e^{-x},dx = s^2,Gamma(s+1)$$
then consider the limit as $sto 0^+$. The final outcome is $color{red}{-6,gamma}=6,Gamma'(1)$ since $s^2,Gamma(s+1)$ clearly has a zero of order $2$ at the origin.
$endgroup$
add a comment |
$begingroup$
Though it's not good practice, we will ignore any constants when evaluating indefinite integrals, as the end result is definite.
Step I:
Let's start with the integral $$G_1=intln x,dx=x(ln x-1).$$ Integration by parts gives $$G_2=intln^2x,dx=[xln x(ln x-1)]-int(ln x-1),dx=x(ln^2x-2ln x+2)$$ and similarly, $$G_3=intln^3x,dx=x(ln^3x-3ln^2x+6ln x-6)$$
Step II:
Consider the integral $$H_1=intfrac{ln x}{e^x},dx.$$ Integration by parts gives $$H_1=left[frac{G_1}{e^x}right]+intfrac{x(ln x-1)}{e^x},dximplies I_1=intfrac{xln x}{e^x},dx=H_1-frac{G_1}{e^x}+intfrac x{e^x},dx$$ Similarly, if we denote $I_n$ as the integral of $xe^{-x}ln^nx$ and $H_n$ as the integral of $e^{-x}ln^nx$, we get $$I_2=H_2-frac{G_2}{e^x}+2I_1-2intfrac x{e^x},dx$$ and $$I_3=H_3-frac{G_3}{e^x}+3I_2-6I_1+6intfrac x{e^x},dx$$ which can be written as $$I_3=H_3+3H_2-frac1{e^x}(G_3-3G_2)$$
Step III:
Now integrate by parts $I_3$. We will integrate the polynomial part of the integrand ($x$) and differentiate the rest ($e^{-x}ln^3x$). So $$I_3=left[frac{x^2ln^3x}{2e^x}right]-intfrac{xln^2x(3-xln x)}{2e^x},dx=frac{x^2ln^3x}{2e^x}-frac32I_2+frac12intfrac{x^2ln^3x}{e^x},dx$$ giving $$J_3=intfrac{x^2ln^3x}{e^x},dx=2I_3+3I_2-frac{x^2ln^3x}{e^x}$$ Hence your indefinite integral is $$K=intfrac{(x^2-3x+1)ln^3x}{e^x},dx=J_3-3I_3+H_3=frac1{e^x}(G_3-3G_2-x^2ln^3x)+3H_2$$
$endgroup$
add a comment |
$begingroup$
The form of the integral takes on the form of the product of a power function, $e^{-x}$, and an integer power of a logarithm. This allows us to consider the integral
$$ int_{0}^{infty}x^{s-1+epsilon},e^{-x},mathrm{d}x = int_{0}^{infty}x^{s-1}e^{epsilonln x},e^{-x},mathrm{d}x = sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{infty}x^{s-1},e^{-x},ln^{n}x,mathrm{d}x. $$
Using the gamma function, this integral is also
$$ int_{0}^{infty}x^{s-1+epsilon},e^{-x},mathrm{d}x = Gamma(s + epsilon). $$
Using the recursion relation, we may write this in terms of $Gamma(1+epsilon)$, which we have a Taylor series expansion for. For example, with $x^{2}$ in the integrand, $s = 3$, so we get $Gamma(3+epsilon) = (2+epsilon)(1+epsilon)Gamma(1+epsilon)$.
We have rewritten our integral as a coefficient in a series expansion. Our integral needs the coefficient of $epsilon^{3}$ to get the integral with $ln^{3}x$. We therefore have to obtain the corresponding $epsilon^{3}$ coefficient in the expansion of the gamma function $Gamma(1+epsilon)$.
The usual way of tackling this integral would be to consider the three terms separately and then keep the appropriate terms, but we can do better by evaluating the gamma function terms directly first, which contribute in the following manner:
$$begin{align} x^{2} - 3x + 1 &to Gamma(3 + epsilon) - 3Gamma(2+epsilon) + Gamma(1+epsilon) \
&to left((2+epsilon)(1+epsilon) - 3(1+epsilon) + 1right)Gamma(1+epsilon) \
&to epsilon^{2},Gamma(1 + epsilon). end{align}$$
Since all that is left is an $epsilon^{2}$ out in front, we only need keep terms up to first order in $epsilon$ in the expansion of the gamma function (where $gamma$ is the Euler-Mascheroni constant and $zeta(s)$ is the Riemann zeta function)
$$begin{align} lnGamma(1 + epsilon) &= -gammaepsilon + sum_{k=2}^{infty}frac{(-1)^{k}zeta(k)}{k}epsilon^{k} \
Gamma(1 + epsilon) &approx e^{-gammaepsilon} approx 1 - gammaepsilon. end{align}$$
Our coefficient is therefore $-gamma$. Remembering to multiply by $3! = 6$ to account for the factorial in the original series expansion, our answer is
$$ int_{0}^{infty}left(x^{2} - 3x + 1right)e^{-x}ln^{3}x,mathrm{d}x = -6gamma. $$
$endgroup$
$begingroup$
I see the technique you use above to evaluate the integral you have used elsewhere on this site to great affect. It is an interesting approach which I'd like to learn more about. Does the method go by some standard name in the literature and do you know of any good references that describe this approach you could point me towards?
$endgroup$
– omegadot
Jan 4 at 1:42
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2880293%2fevaluate-int-0-infty-leftx2-3x1-righte-x-ln3x-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here's a way that only requires the identity $Gamma'(1) = - gamma$ , since all derivatives of higher order cancel:
begin{align}
I &=int limits_0^infty (x^2 - 3x+1) ln^3 (x) mathrm{e}^{-x} , mathrm{d} x \
&= left[frac{mathrm{d}^2}{mathrm{d} t^2} + 3 frac{mathrm{d}}{mathrm{d}t}+1 right] int limits_0^infty ln^3 (x) mathrm{e}^{- t x} , mathrm{d} x ~Biggvert_{t=1}\
&= left[frac{mathrm{d}^2}{mathrm{d} t^2} + 3 frac{mathrm{d}}{mathrm{d}t}+1 right] frac{1}{t} int limits_0^infty left[ln^3 (y) - 3 ln^2(y) ln(t) + 3 ln(y) ln^2(t) - ln^3 (t)right] mathrm{e}^{-y} , mathrm{d} y ~Biggvert_{t=1}\
&= left[frac{mathrm{d}^2}{mathrm{d} t^2} + 3 frac{mathrm{d}}{mathrm{d}t}+1 right] frac{1}{t} left[Gamma'''(1) - 3 Gamma''(1) ln(t) + 3 Gamma'(1) ln^2(t) - ln^3 (t)right] ~Biggvert_{t=1} \
&= 2 Gamma'''(1) + 6 Gamma''(1) + 3 Gamma''(1) + 6 Gamma'(1) - 3 Gamma'''(1) - 9 Gamma''(1) + Gamma'''(1) \
&= 6 Gamma'(1)\
&= - 6 gamma , .
end{align}
In fact, integration by parts yields the following generalisation:
begin{align}
gamma &= int limits_0^infty (-ln (x)) mathrm{e}^{-x} , mathrm{d} x
= int limits_0^infty frac{-ln (x)}{x} x mathrm{e}^{-x} , mathrm{d} x \
&= int limits_0^infty (-ln (x))^2 frac{1-x}{2} mathrm{e}^{-x} , mathrm{d} x \
&= int limits_0^infty (-ln (x))^3 frac{x^2 - 3x +1}{6} mathrm{e}^{-x} , mathrm{d} x \
&= dots , \
&= int limits_0^infty (-ln (x))^{n+1} frac{p_n (x)}{(n+1)!} mathrm{e}^{-x} , mathrm{d} x , .
end{align}
The polynomials $p_n$ are defined recursively by $p_0(x) = 1$ and
$$p_n (x) = mathrm{e}^{x} frac{mathrm{d}}{mathrm{d}x} left(x p_{n-1} (x) mathrm{e}^{-x}right) , , , n in mathbb{N} , ,$$
for $x in mathbb{R}$ . The exponential generating function
$$ sum limits_{n=0}^infty frac{p_n(x)}{n!} t^n = mathrm{e}^{t+x(1-mathrm{e}^t)}$$
can actually be computed from a PDE and it turns out that the polynomials are given by
$$p_n(x) = frac{B_{n+1}(-x)}{-x} , , , x in mathbb{R} , , , n in mathbb{N}_0 , , $$
where $(B_k)_{k in mathbb{N}_0}$ are the Bell or Touchard polynomials.
$endgroup$
1
$begingroup$
You are going to be the next integral wizard on Math SE...
$endgroup$
– Szeto
Aug 12 '18 at 15:35
$begingroup$
@Szeto That will probably still take a long time, but thanks ;)
$endgroup$
– ComplexYetTrivial
Aug 12 '18 at 16:12
add a comment |
$begingroup$
Here's a way that only requires the identity $Gamma'(1) = - gamma$ , since all derivatives of higher order cancel:
begin{align}
I &=int limits_0^infty (x^2 - 3x+1) ln^3 (x) mathrm{e}^{-x} , mathrm{d} x \
&= left[frac{mathrm{d}^2}{mathrm{d} t^2} + 3 frac{mathrm{d}}{mathrm{d}t}+1 right] int limits_0^infty ln^3 (x) mathrm{e}^{- t x} , mathrm{d} x ~Biggvert_{t=1}\
&= left[frac{mathrm{d}^2}{mathrm{d} t^2} + 3 frac{mathrm{d}}{mathrm{d}t}+1 right] frac{1}{t} int limits_0^infty left[ln^3 (y) - 3 ln^2(y) ln(t) + 3 ln(y) ln^2(t) - ln^3 (t)right] mathrm{e}^{-y} , mathrm{d} y ~Biggvert_{t=1}\
&= left[frac{mathrm{d}^2}{mathrm{d} t^2} + 3 frac{mathrm{d}}{mathrm{d}t}+1 right] frac{1}{t} left[Gamma'''(1) - 3 Gamma''(1) ln(t) + 3 Gamma'(1) ln^2(t) - ln^3 (t)right] ~Biggvert_{t=1} \
&= 2 Gamma'''(1) + 6 Gamma''(1) + 3 Gamma''(1) + 6 Gamma'(1) - 3 Gamma'''(1) - 9 Gamma''(1) + Gamma'''(1) \
&= 6 Gamma'(1)\
&= - 6 gamma , .
end{align}
In fact, integration by parts yields the following generalisation:
begin{align}
gamma &= int limits_0^infty (-ln (x)) mathrm{e}^{-x} , mathrm{d} x
= int limits_0^infty frac{-ln (x)}{x} x mathrm{e}^{-x} , mathrm{d} x \
&= int limits_0^infty (-ln (x))^2 frac{1-x}{2} mathrm{e}^{-x} , mathrm{d} x \
&= int limits_0^infty (-ln (x))^3 frac{x^2 - 3x +1}{6} mathrm{e}^{-x} , mathrm{d} x \
&= dots , \
&= int limits_0^infty (-ln (x))^{n+1} frac{p_n (x)}{(n+1)!} mathrm{e}^{-x} , mathrm{d} x , .
end{align}
The polynomials $p_n$ are defined recursively by $p_0(x) = 1$ and
$$p_n (x) = mathrm{e}^{x} frac{mathrm{d}}{mathrm{d}x} left(x p_{n-1} (x) mathrm{e}^{-x}right) , , , n in mathbb{N} , ,$$
for $x in mathbb{R}$ . The exponential generating function
$$ sum limits_{n=0}^infty frac{p_n(x)}{n!} t^n = mathrm{e}^{t+x(1-mathrm{e}^t)}$$
can actually be computed from a PDE and it turns out that the polynomials are given by
$$p_n(x) = frac{B_{n+1}(-x)}{-x} , , , x in mathbb{R} , , , n in mathbb{N}_0 , , $$
where $(B_k)_{k in mathbb{N}_0}$ are the Bell or Touchard polynomials.
$endgroup$
1
$begingroup$
You are going to be the next integral wizard on Math SE...
$endgroup$
– Szeto
Aug 12 '18 at 15:35
$begingroup$
@Szeto That will probably still take a long time, but thanks ;)
$endgroup$
– ComplexYetTrivial
Aug 12 '18 at 16:12
add a comment |
$begingroup$
Here's a way that only requires the identity $Gamma'(1) = - gamma$ , since all derivatives of higher order cancel:
begin{align}
I &=int limits_0^infty (x^2 - 3x+1) ln^3 (x) mathrm{e}^{-x} , mathrm{d} x \
&= left[frac{mathrm{d}^2}{mathrm{d} t^2} + 3 frac{mathrm{d}}{mathrm{d}t}+1 right] int limits_0^infty ln^3 (x) mathrm{e}^{- t x} , mathrm{d} x ~Biggvert_{t=1}\
&= left[frac{mathrm{d}^2}{mathrm{d} t^2} + 3 frac{mathrm{d}}{mathrm{d}t}+1 right] frac{1}{t} int limits_0^infty left[ln^3 (y) - 3 ln^2(y) ln(t) + 3 ln(y) ln^2(t) - ln^3 (t)right] mathrm{e}^{-y} , mathrm{d} y ~Biggvert_{t=1}\
&= left[frac{mathrm{d}^2}{mathrm{d} t^2} + 3 frac{mathrm{d}}{mathrm{d}t}+1 right] frac{1}{t} left[Gamma'''(1) - 3 Gamma''(1) ln(t) + 3 Gamma'(1) ln^2(t) - ln^3 (t)right] ~Biggvert_{t=1} \
&= 2 Gamma'''(1) + 6 Gamma''(1) + 3 Gamma''(1) + 6 Gamma'(1) - 3 Gamma'''(1) - 9 Gamma''(1) + Gamma'''(1) \
&= 6 Gamma'(1)\
&= - 6 gamma , .
end{align}
In fact, integration by parts yields the following generalisation:
begin{align}
gamma &= int limits_0^infty (-ln (x)) mathrm{e}^{-x} , mathrm{d} x
= int limits_0^infty frac{-ln (x)}{x} x mathrm{e}^{-x} , mathrm{d} x \
&= int limits_0^infty (-ln (x))^2 frac{1-x}{2} mathrm{e}^{-x} , mathrm{d} x \
&= int limits_0^infty (-ln (x))^3 frac{x^2 - 3x +1}{6} mathrm{e}^{-x} , mathrm{d} x \
&= dots , \
&= int limits_0^infty (-ln (x))^{n+1} frac{p_n (x)}{(n+1)!} mathrm{e}^{-x} , mathrm{d} x , .
end{align}
The polynomials $p_n$ are defined recursively by $p_0(x) = 1$ and
$$p_n (x) = mathrm{e}^{x} frac{mathrm{d}}{mathrm{d}x} left(x p_{n-1} (x) mathrm{e}^{-x}right) , , , n in mathbb{N} , ,$$
for $x in mathbb{R}$ . The exponential generating function
$$ sum limits_{n=0}^infty frac{p_n(x)}{n!} t^n = mathrm{e}^{t+x(1-mathrm{e}^t)}$$
can actually be computed from a PDE and it turns out that the polynomials are given by
$$p_n(x) = frac{B_{n+1}(-x)}{-x} , , , x in mathbb{R} , , , n in mathbb{N}_0 , , $$
where $(B_k)_{k in mathbb{N}_0}$ are the Bell or Touchard polynomials.
$endgroup$
Here's a way that only requires the identity $Gamma'(1) = - gamma$ , since all derivatives of higher order cancel:
begin{align}
I &=int limits_0^infty (x^2 - 3x+1) ln^3 (x) mathrm{e}^{-x} , mathrm{d} x \
&= left[frac{mathrm{d}^2}{mathrm{d} t^2} + 3 frac{mathrm{d}}{mathrm{d}t}+1 right] int limits_0^infty ln^3 (x) mathrm{e}^{- t x} , mathrm{d} x ~Biggvert_{t=1}\
&= left[frac{mathrm{d}^2}{mathrm{d} t^2} + 3 frac{mathrm{d}}{mathrm{d}t}+1 right] frac{1}{t} int limits_0^infty left[ln^3 (y) - 3 ln^2(y) ln(t) + 3 ln(y) ln^2(t) - ln^3 (t)right] mathrm{e}^{-y} , mathrm{d} y ~Biggvert_{t=1}\
&= left[frac{mathrm{d}^2}{mathrm{d} t^2} + 3 frac{mathrm{d}}{mathrm{d}t}+1 right] frac{1}{t} left[Gamma'''(1) - 3 Gamma''(1) ln(t) + 3 Gamma'(1) ln^2(t) - ln^3 (t)right] ~Biggvert_{t=1} \
&= 2 Gamma'''(1) + 6 Gamma''(1) + 3 Gamma''(1) + 6 Gamma'(1) - 3 Gamma'''(1) - 9 Gamma''(1) + Gamma'''(1) \
&= 6 Gamma'(1)\
&= - 6 gamma , .
end{align}
In fact, integration by parts yields the following generalisation:
begin{align}
gamma &= int limits_0^infty (-ln (x)) mathrm{e}^{-x} , mathrm{d} x
= int limits_0^infty frac{-ln (x)}{x} x mathrm{e}^{-x} , mathrm{d} x \
&= int limits_0^infty (-ln (x))^2 frac{1-x}{2} mathrm{e}^{-x} , mathrm{d} x \
&= int limits_0^infty (-ln (x))^3 frac{x^2 - 3x +1}{6} mathrm{e}^{-x} , mathrm{d} x \
&= dots , \
&= int limits_0^infty (-ln (x))^{n+1} frac{p_n (x)}{(n+1)!} mathrm{e}^{-x} , mathrm{d} x , .
end{align}
The polynomials $p_n$ are defined recursively by $p_0(x) = 1$ and
$$p_n (x) = mathrm{e}^{x} frac{mathrm{d}}{mathrm{d}x} left(x p_{n-1} (x) mathrm{e}^{-x}right) , , , n in mathbb{N} , ,$$
for $x in mathbb{R}$ . The exponential generating function
$$ sum limits_{n=0}^infty frac{p_n(x)}{n!} t^n = mathrm{e}^{t+x(1-mathrm{e}^t)}$$
can actually be computed from a PDE and it turns out that the polynomials are given by
$$p_n(x) = frac{B_{n+1}(-x)}{-x} , , , x in mathbb{R} , , , n in mathbb{N}_0 , , $$
where $(B_k)_{k in mathbb{N}_0}$ are the Bell or Touchard polynomials.
edited Aug 12 '18 at 16:11
answered Aug 12 '18 at 13:57
ComplexYetTrivialComplexYetTrivial
3,7602629
3,7602629
1
$begingroup$
You are going to be the next integral wizard on Math SE...
$endgroup$
– Szeto
Aug 12 '18 at 15:35
$begingroup$
@Szeto That will probably still take a long time, but thanks ;)
$endgroup$
– ComplexYetTrivial
Aug 12 '18 at 16:12
add a comment |
1
$begingroup$
You are going to be the next integral wizard on Math SE...
$endgroup$
– Szeto
Aug 12 '18 at 15:35
$begingroup$
@Szeto That will probably still take a long time, but thanks ;)
$endgroup$
– ComplexYetTrivial
Aug 12 '18 at 16:12
1
1
$begingroup$
You are going to be the next integral wizard on Math SE...
$endgroup$
– Szeto
Aug 12 '18 at 15:35
$begingroup$
You are going to be the next integral wizard on Math SE...
$endgroup$
– Szeto
Aug 12 '18 at 15:35
$begingroup$
@Szeto That will probably still take a long time, but thanks ;)
$endgroup$
– ComplexYetTrivial
Aug 12 '18 at 16:12
$begingroup$
@Szeto That will probably still take a long time, but thanks ;)
$endgroup$
– ComplexYetTrivial
Aug 12 '18 at 16:12
add a comment |
$begingroup$
It is pretty straightforward to differentiate three times
$$ int_{0}^{+infty}(x^2-3x+1)x^s e^{-x},dx = s^2,Gamma(s+1)$$
then consider the limit as $sto 0^+$. The final outcome is $color{red}{-6,gamma}=6,Gamma'(1)$ since $s^2,Gamma(s+1)$ clearly has a zero of order $2$ at the origin.
$endgroup$
add a comment |
$begingroup$
It is pretty straightforward to differentiate three times
$$ int_{0}^{+infty}(x^2-3x+1)x^s e^{-x},dx = s^2,Gamma(s+1)$$
then consider the limit as $sto 0^+$. The final outcome is $color{red}{-6,gamma}=6,Gamma'(1)$ since $s^2,Gamma(s+1)$ clearly has a zero of order $2$ at the origin.
$endgroup$
add a comment |
$begingroup$
It is pretty straightforward to differentiate three times
$$ int_{0}^{+infty}(x^2-3x+1)x^s e^{-x},dx = s^2,Gamma(s+1)$$
then consider the limit as $sto 0^+$. The final outcome is $color{red}{-6,gamma}=6,Gamma'(1)$ since $s^2,Gamma(s+1)$ clearly has a zero of order $2$ at the origin.
$endgroup$
It is pretty straightforward to differentiate three times
$$ int_{0}^{+infty}(x^2-3x+1)x^s e^{-x},dx = s^2,Gamma(s+1)$$
then consider the limit as $sto 0^+$. The final outcome is $color{red}{-6,gamma}=6,Gamma'(1)$ since $s^2,Gamma(s+1)$ clearly has a zero of order $2$ at the origin.
edited Aug 13 '18 at 5:02
answered Aug 13 '18 at 4:57
Jack D'AurizioJack D'Aurizio
288k33280660
288k33280660
add a comment |
add a comment |
$begingroup$
Though it's not good practice, we will ignore any constants when evaluating indefinite integrals, as the end result is definite.
Step I:
Let's start with the integral $$G_1=intln x,dx=x(ln x-1).$$ Integration by parts gives $$G_2=intln^2x,dx=[xln x(ln x-1)]-int(ln x-1),dx=x(ln^2x-2ln x+2)$$ and similarly, $$G_3=intln^3x,dx=x(ln^3x-3ln^2x+6ln x-6)$$
Step II:
Consider the integral $$H_1=intfrac{ln x}{e^x},dx.$$ Integration by parts gives $$H_1=left[frac{G_1}{e^x}right]+intfrac{x(ln x-1)}{e^x},dximplies I_1=intfrac{xln x}{e^x},dx=H_1-frac{G_1}{e^x}+intfrac x{e^x},dx$$ Similarly, if we denote $I_n$ as the integral of $xe^{-x}ln^nx$ and $H_n$ as the integral of $e^{-x}ln^nx$, we get $$I_2=H_2-frac{G_2}{e^x}+2I_1-2intfrac x{e^x},dx$$ and $$I_3=H_3-frac{G_3}{e^x}+3I_2-6I_1+6intfrac x{e^x},dx$$ which can be written as $$I_3=H_3+3H_2-frac1{e^x}(G_3-3G_2)$$
Step III:
Now integrate by parts $I_3$. We will integrate the polynomial part of the integrand ($x$) and differentiate the rest ($e^{-x}ln^3x$). So $$I_3=left[frac{x^2ln^3x}{2e^x}right]-intfrac{xln^2x(3-xln x)}{2e^x},dx=frac{x^2ln^3x}{2e^x}-frac32I_2+frac12intfrac{x^2ln^3x}{e^x},dx$$ giving $$J_3=intfrac{x^2ln^3x}{e^x},dx=2I_3+3I_2-frac{x^2ln^3x}{e^x}$$ Hence your indefinite integral is $$K=intfrac{(x^2-3x+1)ln^3x}{e^x},dx=J_3-3I_3+H_3=frac1{e^x}(G_3-3G_2-x^2ln^3x)+3H_2$$
$endgroup$
add a comment |
$begingroup$
Though it's not good practice, we will ignore any constants when evaluating indefinite integrals, as the end result is definite.
Step I:
Let's start with the integral $$G_1=intln x,dx=x(ln x-1).$$ Integration by parts gives $$G_2=intln^2x,dx=[xln x(ln x-1)]-int(ln x-1),dx=x(ln^2x-2ln x+2)$$ and similarly, $$G_3=intln^3x,dx=x(ln^3x-3ln^2x+6ln x-6)$$
Step II:
Consider the integral $$H_1=intfrac{ln x}{e^x},dx.$$ Integration by parts gives $$H_1=left[frac{G_1}{e^x}right]+intfrac{x(ln x-1)}{e^x},dximplies I_1=intfrac{xln x}{e^x},dx=H_1-frac{G_1}{e^x}+intfrac x{e^x},dx$$ Similarly, if we denote $I_n$ as the integral of $xe^{-x}ln^nx$ and $H_n$ as the integral of $e^{-x}ln^nx$, we get $$I_2=H_2-frac{G_2}{e^x}+2I_1-2intfrac x{e^x},dx$$ and $$I_3=H_3-frac{G_3}{e^x}+3I_2-6I_1+6intfrac x{e^x},dx$$ which can be written as $$I_3=H_3+3H_2-frac1{e^x}(G_3-3G_2)$$
Step III:
Now integrate by parts $I_3$. We will integrate the polynomial part of the integrand ($x$) and differentiate the rest ($e^{-x}ln^3x$). So $$I_3=left[frac{x^2ln^3x}{2e^x}right]-intfrac{xln^2x(3-xln x)}{2e^x},dx=frac{x^2ln^3x}{2e^x}-frac32I_2+frac12intfrac{x^2ln^3x}{e^x},dx$$ giving $$J_3=intfrac{x^2ln^3x}{e^x},dx=2I_3+3I_2-frac{x^2ln^3x}{e^x}$$ Hence your indefinite integral is $$K=intfrac{(x^2-3x+1)ln^3x}{e^x},dx=J_3-3I_3+H_3=frac1{e^x}(G_3-3G_2-x^2ln^3x)+3H_2$$
$endgroup$
add a comment |
$begingroup$
Though it's not good practice, we will ignore any constants when evaluating indefinite integrals, as the end result is definite.
Step I:
Let's start with the integral $$G_1=intln x,dx=x(ln x-1).$$ Integration by parts gives $$G_2=intln^2x,dx=[xln x(ln x-1)]-int(ln x-1),dx=x(ln^2x-2ln x+2)$$ and similarly, $$G_3=intln^3x,dx=x(ln^3x-3ln^2x+6ln x-6)$$
Step II:
Consider the integral $$H_1=intfrac{ln x}{e^x},dx.$$ Integration by parts gives $$H_1=left[frac{G_1}{e^x}right]+intfrac{x(ln x-1)}{e^x},dximplies I_1=intfrac{xln x}{e^x},dx=H_1-frac{G_1}{e^x}+intfrac x{e^x},dx$$ Similarly, if we denote $I_n$ as the integral of $xe^{-x}ln^nx$ and $H_n$ as the integral of $e^{-x}ln^nx$, we get $$I_2=H_2-frac{G_2}{e^x}+2I_1-2intfrac x{e^x},dx$$ and $$I_3=H_3-frac{G_3}{e^x}+3I_2-6I_1+6intfrac x{e^x},dx$$ which can be written as $$I_3=H_3+3H_2-frac1{e^x}(G_3-3G_2)$$
Step III:
Now integrate by parts $I_3$. We will integrate the polynomial part of the integrand ($x$) and differentiate the rest ($e^{-x}ln^3x$). So $$I_3=left[frac{x^2ln^3x}{2e^x}right]-intfrac{xln^2x(3-xln x)}{2e^x},dx=frac{x^2ln^3x}{2e^x}-frac32I_2+frac12intfrac{x^2ln^3x}{e^x},dx$$ giving $$J_3=intfrac{x^2ln^3x}{e^x},dx=2I_3+3I_2-frac{x^2ln^3x}{e^x}$$ Hence your indefinite integral is $$K=intfrac{(x^2-3x+1)ln^3x}{e^x},dx=J_3-3I_3+H_3=frac1{e^x}(G_3-3G_2-x^2ln^3x)+3H_2$$
$endgroup$
Though it's not good practice, we will ignore any constants when evaluating indefinite integrals, as the end result is definite.
Step I:
Let's start with the integral $$G_1=intln x,dx=x(ln x-1).$$ Integration by parts gives $$G_2=intln^2x,dx=[xln x(ln x-1)]-int(ln x-1),dx=x(ln^2x-2ln x+2)$$ and similarly, $$G_3=intln^3x,dx=x(ln^3x-3ln^2x+6ln x-6)$$
Step II:
Consider the integral $$H_1=intfrac{ln x}{e^x},dx.$$ Integration by parts gives $$H_1=left[frac{G_1}{e^x}right]+intfrac{x(ln x-1)}{e^x},dximplies I_1=intfrac{xln x}{e^x},dx=H_1-frac{G_1}{e^x}+intfrac x{e^x},dx$$ Similarly, if we denote $I_n$ as the integral of $xe^{-x}ln^nx$ and $H_n$ as the integral of $e^{-x}ln^nx$, we get $$I_2=H_2-frac{G_2}{e^x}+2I_1-2intfrac x{e^x},dx$$ and $$I_3=H_3-frac{G_3}{e^x}+3I_2-6I_1+6intfrac x{e^x},dx$$ which can be written as $$I_3=H_3+3H_2-frac1{e^x}(G_3-3G_2)$$
Step III:
Now integrate by parts $I_3$. We will integrate the polynomial part of the integrand ($x$) and differentiate the rest ($e^{-x}ln^3x$). So $$I_3=left[frac{x^2ln^3x}{2e^x}right]-intfrac{xln^2x(3-xln x)}{2e^x},dx=frac{x^2ln^3x}{2e^x}-frac32I_2+frac12intfrac{x^2ln^3x}{e^x},dx$$ giving $$J_3=intfrac{x^2ln^3x}{e^x},dx=2I_3+3I_2-frac{x^2ln^3x}{e^x}$$ Hence your indefinite integral is $$K=intfrac{(x^2-3x+1)ln^3x}{e^x},dx=J_3-3I_3+H_3=frac1{e^x}(G_3-3G_2-x^2ln^3x)+3H_2$$
answered Aug 12 '18 at 13:38
TheSimpliFireTheSimpliFire
12.5k62460
12.5k62460
add a comment |
add a comment |
$begingroup$
The form of the integral takes on the form of the product of a power function, $e^{-x}$, and an integer power of a logarithm. This allows us to consider the integral
$$ int_{0}^{infty}x^{s-1+epsilon},e^{-x},mathrm{d}x = int_{0}^{infty}x^{s-1}e^{epsilonln x},e^{-x},mathrm{d}x = sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{infty}x^{s-1},e^{-x},ln^{n}x,mathrm{d}x. $$
Using the gamma function, this integral is also
$$ int_{0}^{infty}x^{s-1+epsilon},e^{-x},mathrm{d}x = Gamma(s + epsilon). $$
Using the recursion relation, we may write this in terms of $Gamma(1+epsilon)$, which we have a Taylor series expansion for. For example, with $x^{2}$ in the integrand, $s = 3$, so we get $Gamma(3+epsilon) = (2+epsilon)(1+epsilon)Gamma(1+epsilon)$.
We have rewritten our integral as a coefficient in a series expansion. Our integral needs the coefficient of $epsilon^{3}$ to get the integral with $ln^{3}x$. We therefore have to obtain the corresponding $epsilon^{3}$ coefficient in the expansion of the gamma function $Gamma(1+epsilon)$.
The usual way of tackling this integral would be to consider the three terms separately and then keep the appropriate terms, but we can do better by evaluating the gamma function terms directly first, which contribute in the following manner:
$$begin{align} x^{2} - 3x + 1 &to Gamma(3 + epsilon) - 3Gamma(2+epsilon) + Gamma(1+epsilon) \
&to left((2+epsilon)(1+epsilon) - 3(1+epsilon) + 1right)Gamma(1+epsilon) \
&to epsilon^{2},Gamma(1 + epsilon). end{align}$$
Since all that is left is an $epsilon^{2}$ out in front, we only need keep terms up to first order in $epsilon$ in the expansion of the gamma function (where $gamma$ is the Euler-Mascheroni constant and $zeta(s)$ is the Riemann zeta function)
$$begin{align} lnGamma(1 + epsilon) &= -gammaepsilon + sum_{k=2}^{infty}frac{(-1)^{k}zeta(k)}{k}epsilon^{k} \
Gamma(1 + epsilon) &approx e^{-gammaepsilon} approx 1 - gammaepsilon. end{align}$$
Our coefficient is therefore $-gamma$. Remembering to multiply by $3! = 6$ to account for the factorial in the original series expansion, our answer is
$$ int_{0}^{infty}left(x^{2} - 3x + 1right)e^{-x}ln^{3}x,mathrm{d}x = -6gamma. $$
$endgroup$
$begingroup$
I see the technique you use above to evaluate the integral you have used elsewhere on this site to great affect. It is an interesting approach which I'd like to learn more about. Does the method go by some standard name in the literature and do you know of any good references that describe this approach you could point me towards?
$endgroup$
– omegadot
Jan 4 at 1:42
add a comment |
$begingroup$
The form of the integral takes on the form of the product of a power function, $e^{-x}$, and an integer power of a logarithm. This allows us to consider the integral
$$ int_{0}^{infty}x^{s-1+epsilon},e^{-x},mathrm{d}x = int_{0}^{infty}x^{s-1}e^{epsilonln x},e^{-x},mathrm{d}x = sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{infty}x^{s-1},e^{-x},ln^{n}x,mathrm{d}x. $$
Using the gamma function, this integral is also
$$ int_{0}^{infty}x^{s-1+epsilon},e^{-x},mathrm{d}x = Gamma(s + epsilon). $$
Using the recursion relation, we may write this in terms of $Gamma(1+epsilon)$, which we have a Taylor series expansion for. For example, with $x^{2}$ in the integrand, $s = 3$, so we get $Gamma(3+epsilon) = (2+epsilon)(1+epsilon)Gamma(1+epsilon)$.
We have rewritten our integral as a coefficient in a series expansion. Our integral needs the coefficient of $epsilon^{3}$ to get the integral with $ln^{3}x$. We therefore have to obtain the corresponding $epsilon^{3}$ coefficient in the expansion of the gamma function $Gamma(1+epsilon)$.
The usual way of tackling this integral would be to consider the three terms separately and then keep the appropriate terms, but we can do better by evaluating the gamma function terms directly first, which contribute in the following manner:
$$begin{align} x^{2} - 3x + 1 &to Gamma(3 + epsilon) - 3Gamma(2+epsilon) + Gamma(1+epsilon) \
&to left((2+epsilon)(1+epsilon) - 3(1+epsilon) + 1right)Gamma(1+epsilon) \
&to epsilon^{2},Gamma(1 + epsilon). end{align}$$
Since all that is left is an $epsilon^{2}$ out in front, we only need keep terms up to first order in $epsilon$ in the expansion of the gamma function (where $gamma$ is the Euler-Mascheroni constant and $zeta(s)$ is the Riemann zeta function)
$$begin{align} lnGamma(1 + epsilon) &= -gammaepsilon + sum_{k=2}^{infty}frac{(-1)^{k}zeta(k)}{k}epsilon^{k} \
Gamma(1 + epsilon) &approx e^{-gammaepsilon} approx 1 - gammaepsilon. end{align}$$
Our coefficient is therefore $-gamma$. Remembering to multiply by $3! = 6$ to account for the factorial in the original series expansion, our answer is
$$ int_{0}^{infty}left(x^{2} - 3x + 1right)e^{-x}ln^{3}x,mathrm{d}x = -6gamma. $$
$endgroup$
$begingroup$
I see the technique you use above to evaluate the integral you have used elsewhere on this site to great affect. It is an interesting approach which I'd like to learn more about. Does the method go by some standard name in the literature and do you know of any good references that describe this approach you could point me towards?
$endgroup$
– omegadot
Jan 4 at 1:42
add a comment |
$begingroup$
The form of the integral takes on the form of the product of a power function, $e^{-x}$, and an integer power of a logarithm. This allows us to consider the integral
$$ int_{0}^{infty}x^{s-1+epsilon},e^{-x},mathrm{d}x = int_{0}^{infty}x^{s-1}e^{epsilonln x},e^{-x},mathrm{d}x = sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{infty}x^{s-1},e^{-x},ln^{n}x,mathrm{d}x. $$
Using the gamma function, this integral is also
$$ int_{0}^{infty}x^{s-1+epsilon},e^{-x},mathrm{d}x = Gamma(s + epsilon). $$
Using the recursion relation, we may write this in terms of $Gamma(1+epsilon)$, which we have a Taylor series expansion for. For example, with $x^{2}$ in the integrand, $s = 3$, so we get $Gamma(3+epsilon) = (2+epsilon)(1+epsilon)Gamma(1+epsilon)$.
We have rewritten our integral as a coefficient in a series expansion. Our integral needs the coefficient of $epsilon^{3}$ to get the integral with $ln^{3}x$. We therefore have to obtain the corresponding $epsilon^{3}$ coefficient in the expansion of the gamma function $Gamma(1+epsilon)$.
The usual way of tackling this integral would be to consider the three terms separately and then keep the appropriate terms, but we can do better by evaluating the gamma function terms directly first, which contribute in the following manner:
$$begin{align} x^{2} - 3x + 1 &to Gamma(3 + epsilon) - 3Gamma(2+epsilon) + Gamma(1+epsilon) \
&to left((2+epsilon)(1+epsilon) - 3(1+epsilon) + 1right)Gamma(1+epsilon) \
&to epsilon^{2},Gamma(1 + epsilon). end{align}$$
Since all that is left is an $epsilon^{2}$ out in front, we only need keep terms up to first order in $epsilon$ in the expansion of the gamma function (where $gamma$ is the Euler-Mascheroni constant and $zeta(s)$ is the Riemann zeta function)
$$begin{align} lnGamma(1 + epsilon) &= -gammaepsilon + sum_{k=2}^{infty}frac{(-1)^{k}zeta(k)}{k}epsilon^{k} \
Gamma(1 + epsilon) &approx e^{-gammaepsilon} approx 1 - gammaepsilon. end{align}$$
Our coefficient is therefore $-gamma$. Remembering to multiply by $3! = 6$ to account for the factorial in the original series expansion, our answer is
$$ int_{0}^{infty}left(x^{2} - 3x + 1right)e^{-x}ln^{3}x,mathrm{d}x = -6gamma. $$
$endgroup$
The form of the integral takes on the form of the product of a power function, $e^{-x}$, and an integer power of a logarithm. This allows us to consider the integral
$$ int_{0}^{infty}x^{s-1+epsilon},e^{-x},mathrm{d}x = int_{0}^{infty}x^{s-1}e^{epsilonln x},e^{-x},mathrm{d}x = sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{infty}x^{s-1},e^{-x},ln^{n}x,mathrm{d}x. $$
Using the gamma function, this integral is also
$$ int_{0}^{infty}x^{s-1+epsilon},e^{-x},mathrm{d}x = Gamma(s + epsilon). $$
Using the recursion relation, we may write this in terms of $Gamma(1+epsilon)$, which we have a Taylor series expansion for. For example, with $x^{2}$ in the integrand, $s = 3$, so we get $Gamma(3+epsilon) = (2+epsilon)(1+epsilon)Gamma(1+epsilon)$.
We have rewritten our integral as a coefficient in a series expansion. Our integral needs the coefficient of $epsilon^{3}$ to get the integral with $ln^{3}x$. We therefore have to obtain the corresponding $epsilon^{3}$ coefficient in the expansion of the gamma function $Gamma(1+epsilon)$.
The usual way of tackling this integral would be to consider the three terms separately and then keep the appropriate terms, but we can do better by evaluating the gamma function terms directly first, which contribute in the following manner:
$$begin{align} x^{2} - 3x + 1 &to Gamma(3 + epsilon) - 3Gamma(2+epsilon) + Gamma(1+epsilon) \
&to left((2+epsilon)(1+epsilon) - 3(1+epsilon) + 1right)Gamma(1+epsilon) \
&to epsilon^{2},Gamma(1 + epsilon). end{align}$$
Since all that is left is an $epsilon^{2}$ out in front, we only need keep terms up to first order in $epsilon$ in the expansion of the gamma function (where $gamma$ is the Euler-Mascheroni constant and $zeta(s)$ is the Riemann zeta function)
$$begin{align} lnGamma(1 + epsilon) &= -gammaepsilon + sum_{k=2}^{infty}frac{(-1)^{k}zeta(k)}{k}epsilon^{k} \
Gamma(1 + epsilon) &approx e^{-gammaepsilon} approx 1 - gammaepsilon. end{align}$$
Our coefficient is therefore $-gamma$. Remembering to multiply by $3! = 6$ to account for the factorial in the original series expansion, our answer is
$$ int_{0}^{infty}left(x^{2} - 3x + 1right)e^{-x}ln^{3}x,mathrm{d}x = -6gamma. $$
answered Dec 3 '18 at 21:34
IninterrompueIninterrompue
63519
63519
$begingroup$
I see the technique you use above to evaluate the integral you have used elsewhere on this site to great affect. It is an interesting approach which I'd like to learn more about. Does the method go by some standard name in the literature and do you know of any good references that describe this approach you could point me towards?
$endgroup$
– omegadot
Jan 4 at 1:42
add a comment |
$begingroup$
I see the technique you use above to evaluate the integral you have used elsewhere on this site to great affect. It is an interesting approach which I'd like to learn more about. Does the method go by some standard name in the literature and do you know of any good references that describe this approach you could point me towards?
$endgroup$
– omegadot
Jan 4 at 1:42
$begingroup$
I see the technique you use above to evaluate the integral you have used elsewhere on this site to great affect. It is an interesting approach which I'd like to learn more about. Does the method go by some standard name in the literature and do you know of any good references that describe this approach you could point me towards?
$endgroup$
– omegadot
Jan 4 at 1:42
$begingroup$
I see the technique you use above to evaluate the integral you have used elsewhere on this site to great affect. It is an interesting approach which I'd like to learn more about. Does the method go by some standard name in the literature and do you know of any good references that describe this approach you could point me towards?
$endgroup$
– omegadot
Jan 4 at 1:42
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2880293%2fevaluate-int-0-infty-leftx2-3x1-righte-x-ln3x-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Power series expansion of $e^{-x}$ is useless here - even the integrals you get don't converge. One of the right tools here is $Gamma$ function and its derivatives.
$endgroup$
– metamorphy
Aug 12 '18 at 12:43
$begingroup$
Here's my rather recent blog post I dealt dealing with the case when it was $ln x$: $$int_0^1frac{(x^2-3x+1)ln x}{e^x},dx=-frac1e$$. In a similar vein you can show that $$int_0^inftyfrac{(x^2-3x+1)ln x}{e^x},dx=0$$
$endgroup$
– TheSimpliFire
Aug 12 '18 at 12:48
$begingroup$
BTW, the answer I get is $6Gamma'(1) = -6gamma$.
$endgroup$
– metamorphy
Aug 12 '18 at 13:25
$begingroup$
How many solutions have you seen so far using differentiation under the integral sign / Feynman's trick? My guess is many.
$endgroup$
– Jack D'Aurizio
Aug 13 '18 at 5:03