$det(A^2+A-I_2)+det(A^2+I_2) = 5$












3












$begingroup$


Let $A in M_{2times 2}(mathbb{C})$ and $det(A)=1DeclareMathOperator{tr}{tr}$



Prove that $det(A^2+A-I_2)+det(A^2+I_2) = 5$



using Cayley-Hamilton Theorem $A^2-tr(A)A+det(A)I_2=0$



$detbig(tr(A)A-det(A)I_2-I_2big) + detbig(A(A+A^{-1})big)=5$



$detbig(tr(A)A-I_2(det(A)+1)big)+det(A+A^{-1})=5$



using https://math.stackexchange.com/q/1937052 $det(A+B)=det A+det B+det A⋅tr(A^{-1}B) $



$tr(A)det(A)-big(det(A)+1big)det(I_2)+tr(A)big(-det(A)-1big)^{-1}tr(I^{-1}A)+det(A)+det(A^{-1})+tr(A^2)=5
$



$tr(A)-2-tr(A)^20.5+1+1+tr(A^2)=5$



$tr(A)-tr(A)^20.5+trbig(tr(A)A-det(A)I_2big)=5$



$tr(A)-tr(A)^20.5+tr(A)^2-tr(I_2)=5$



$tr(A)+0.5tr(A)^2-2=5$



This is where I am stuck. And also I don't know how to prove the identity which I cited.










share|cite|improve this question











$endgroup$












  • $begingroup$
    It took me a while to decipher what you did wrong. The first error is the line after the Cayley-Hamilton Theorem, where you should have $det(text{tr}(A),A-det(A),I_2+A-I_2)$ for the first term. The second error is the line after $det(A+B)$. You should have $big(text{tr}(A)+1big)^2,det(A)$ for the first term, $big(-det(A)-1big)^2,det(I_2)$ for the second term, and then $det(A),big(text{tr}(A)+1big),big(-det(A)-1big),text{tr}(I^{-1},A)$ for the third term.
    $endgroup$
    – Batominovski
    Dec 3 '18 at 23:06


















3












$begingroup$


Let $A in M_{2times 2}(mathbb{C})$ and $det(A)=1DeclareMathOperator{tr}{tr}$



Prove that $det(A^2+A-I_2)+det(A^2+I_2) = 5$



using Cayley-Hamilton Theorem $A^2-tr(A)A+det(A)I_2=0$



$detbig(tr(A)A-det(A)I_2-I_2big) + detbig(A(A+A^{-1})big)=5$



$detbig(tr(A)A-I_2(det(A)+1)big)+det(A+A^{-1})=5$



using https://math.stackexchange.com/q/1937052 $det(A+B)=det A+det B+det A⋅tr(A^{-1}B) $



$tr(A)det(A)-big(det(A)+1big)det(I_2)+tr(A)big(-det(A)-1big)^{-1}tr(I^{-1}A)+det(A)+det(A^{-1})+tr(A^2)=5
$



$tr(A)-2-tr(A)^20.5+1+1+tr(A^2)=5$



$tr(A)-tr(A)^20.5+trbig(tr(A)A-det(A)I_2big)=5$



$tr(A)-tr(A)^20.5+tr(A)^2-tr(I_2)=5$



$tr(A)+0.5tr(A)^2-2=5$



This is where I am stuck. And also I don't know how to prove the identity which I cited.










share|cite|improve this question











$endgroup$












  • $begingroup$
    It took me a while to decipher what you did wrong. The first error is the line after the Cayley-Hamilton Theorem, where you should have $det(text{tr}(A),A-det(A),I_2+A-I_2)$ for the first term. The second error is the line after $det(A+B)$. You should have $big(text{tr}(A)+1big)^2,det(A)$ for the first term, $big(-det(A)-1big)^2,det(I_2)$ for the second term, and then $det(A),big(text{tr}(A)+1big),big(-det(A)-1big),text{tr}(I^{-1},A)$ for the third term.
    $endgroup$
    – Batominovski
    Dec 3 '18 at 23:06
















3












3








3


1



$begingroup$


Let $A in M_{2times 2}(mathbb{C})$ and $det(A)=1DeclareMathOperator{tr}{tr}$



Prove that $det(A^2+A-I_2)+det(A^2+I_2) = 5$



using Cayley-Hamilton Theorem $A^2-tr(A)A+det(A)I_2=0$



$detbig(tr(A)A-det(A)I_2-I_2big) + detbig(A(A+A^{-1})big)=5$



$detbig(tr(A)A-I_2(det(A)+1)big)+det(A+A^{-1})=5$



using https://math.stackexchange.com/q/1937052 $det(A+B)=det A+det B+det A⋅tr(A^{-1}B) $



$tr(A)det(A)-big(det(A)+1big)det(I_2)+tr(A)big(-det(A)-1big)^{-1}tr(I^{-1}A)+det(A)+det(A^{-1})+tr(A^2)=5
$



$tr(A)-2-tr(A)^20.5+1+1+tr(A^2)=5$



$tr(A)-tr(A)^20.5+trbig(tr(A)A-det(A)I_2big)=5$



$tr(A)-tr(A)^20.5+tr(A)^2-tr(I_2)=5$



$tr(A)+0.5tr(A)^2-2=5$



This is where I am stuck. And also I don't know how to prove the identity which I cited.










share|cite|improve this question











$endgroup$




Let $A in M_{2times 2}(mathbb{C})$ and $det(A)=1DeclareMathOperator{tr}{tr}$



Prove that $det(A^2+A-I_2)+det(A^2+I_2) = 5$



using Cayley-Hamilton Theorem $A^2-tr(A)A+det(A)I_2=0$



$detbig(tr(A)A-det(A)I_2-I_2big) + detbig(A(A+A^{-1})big)=5$



$detbig(tr(A)A-I_2(det(A)+1)big)+det(A+A^{-1})=5$



using https://math.stackexchange.com/q/1937052 $det(A+B)=det A+det B+det A⋅tr(A^{-1}B) $



$tr(A)det(A)-big(det(A)+1big)det(I_2)+tr(A)big(-det(A)-1big)^{-1}tr(I^{-1}A)+det(A)+det(A^{-1})+tr(A^2)=5
$



$tr(A)-2-tr(A)^20.5+1+1+tr(A^2)=5$



$tr(A)-tr(A)^20.5+trbig(tr(A)A-det(A)I_2big)=5$



$tr(A)-tr(A)^20.5+tr(A)^2-tr(I_2)=5$



$tr(A)+0.5tr(A)^2-2=5$



This is where I am stuck. And also I don't know how to prove the identity which I cited.







linear-algebra matrices proof-verification determinant trace






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 3 '18 at 23:14









Batominovski

1




1










asked Dec 3 '18 at 22:36









StudentStudent

334




334












  • $begingroup$
    It took me a while to decipher what you did wrong. The first error is the line after the Cayley-Hamilton Theorem, where you should have $det(text{tr}(A),A-det(A),I_2+A-I_2)$ for the first term. The second error is the line after $det(A+B)$. You should have $big(text{tr}(A)+1big)^2,det(A)$ for the first term, $big(-det(A)-1big)^2,det(I_2)$ for the second term, and then $det(A),big(text{tr}(A)+1big),big(-det(A)-1big),text{tr}(I^{-1},A)$ for the third term.
    $endgroup$
    – Batominovski
    Dec 3 '18 at 23:06




















  • $begingroup$
    It took me a while to decipher what you did wrong. The first error is the line after the Cayley-Hamilton Theorem, where you should have $det(text{tr}(A),A-det(A),I_2+A-I_2)$ for the first term. The second error is the line after $det(A+B)$. You should have $big(text{tr}(A)+1big)^2,det(A)$ for the first term, $big(-det(A)-1big)^2,det(I_2)$ for the second term, and then $det(A),big(text{tr}(A)+1big),big(-det(A)-1big),text{tr}(I^{-1},A)$ for the third term.
    $endgroup$
    – Batominovski
    Dec 3 '18 at 23:06


















$begingroup$
It took me a while to decipher what you did wrong. The first error is the line after the Cayley-Hamilton Theorem, where you should have $det(text{tr}(A),A-det(A),I_2+A-I_2)$ for the first term. The second error is the line after $det(A+B)$. You should have $big(text{tr}(A)+1big)^2,det(A)$ for the first term, $big(-det(A)-1big)^2,det(I_2)$ for the second term, and then $det(A),big(text{tr}(A)+1big),big(-det(A)-1big),text{tr}(I^{-1},A)$ for the third term.
$endgroup$
– Batominovski
Dec 3 '18 at 23:06






$begingroup$
It took me a while to decipher what you did wrong. The first error is the line after the Cayley-Hamilton Theorem, where you should have $det(text{tr}(A),A-det(A),I_2+A-I_2)$ for the first term. The second error is the line after $det(A+B)$. You should have $big(text{tr}(A)+1big)^2,det(A)$ for the first term, $big(-det(A)-1big)^2,det(I_2)$ for the second term, and then $det(A),big(text{tr}(A)+1big),big(-det(A)-1big),text{tr}(I^{-1},A)$ for the third term.
$endgroup$
– Batominovski
Dec 3 '18 at 23:06












3 Answers
3






active

oldest

votes


















2












$begingroup$

You're on the good track.



Let $t=operatorname{tr}(A)$. Then, from $det(A)=1$, we know by Cayley-Hamilton that
$$
A^2-tA+I_2=0
$$

Thus
$$
A^2+A-I_2=tA-I_2+A-I_2=(t+1)A-2I_2
$$

and
$$
A^2+I_2=tA
$$

Thus $det(A^2+I_2)=t^2det(A)=t^2$.



The formula you cite tells you that
$$
det(X+Y)=det(X)+det(Y)+det(X)operatorname{tr}(X^{-1}Y)
$$

and we can apply it to $X=-2I_2$, $Y=(t+1)A$. Thus
$$
det(X)=4,qquad det(Y)=(t+1)^2,qquad X^{-1}Y=-frac{1}{2}(t+1)A,
qquad operatorname{tr}(X^{-1}Y)=-frac{1}{2}t(t+1)
$$

Thus the expression on the left-hand side becomes
$$
4+(t+1)^2-2t(t+1)+t^2=5
$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Let $p(x):=det(x,I-A)$ be the characteristic polynomial of $A$, where $I$ is a short-hand notation for $I_2$. Then, show that
    $$det(A^2+A-I)+det(A^2+I)=pleft(phiright),pleft(bar{phi}right)+p(+text{i}),p(-text{i}),,$$
    where $phi:=dfrac{-1+sqrt{5}}{2}$ and $bar{phi}:=dfrac{-1-sqrt{5}}{2}$.
    Since $det(A)=1$, $p(x)=x^2-bx+1$ for some $binmathbb{C}$.



    Because $phi$ and $bar{phi}$ are roots of the polynomial $x^2+x-1$, we have
    $$p(t)=t^2-bt+1=(1-t)-bt+1=2-(1+b)t$$
    for $tin{phi,bar{phi}}$. This shows that
    $$p(phi),p(bar{phi})=big(2-(1+b)phibig),big(2-(1+b)bar{phi}big)=4-2(1+b)(phi+bar{phi})+(1+b)^2phibar{phi},.$$
    That is,
    $$p(phi),p(bar{phi})=4-2(1+b)(-1)+(1+b)^2(-1)=5-b^2,.$$



    Similarly, $+text{i}$ and $-text{i}$ are roots of the polynomial $x^2+1$, we have
    $$p(t)=t^2-bt+1=(-1)-bt+1=-bt$$
    for $tin{+text{i},-text{i}}$. Hence,
    $$p(+text{i}),p(-text{i})=(-btext{i})(+btext{i})=b^2,.$$
    The claim follows immediately.





    Below is a proof of the cited identity, i.e., $$det(A+B)=det(A)+det(B)+det(A),text{tr}(A^{-1}B)$$ for any $A,Bintext{Mat}_{2times 2}(K)$ such that $A$ is invertible. Here, $K$ is any field.



    Since $A$ is invertible,
    $$det(A+B)=det(A),det(I+A^{-1}B),.$$
    The characteristic polynomial of $A^{-1}B$ is
    $$q(x):=det(x,I-A^{-1}B)=x^2-text{tr}(A^{-1}B),x+det(A^{-1}B),.$$
    Thus,
    $$det(I+A^{-1}B)=(-1)^2,det(-I-A^{-1}B)=q(-1)=1+text{tr}(A^{-1}B)+det(A^{-1}B),.$$
    Ergo,
    $$begin{align}det(A+B)&=det(A),Big(1+text{tr}(A^{-1}B)+det(A^{-1}B)Big)\&=det(A)+det(A),det(A^{-1}B)+det(A),text{tr}(A^{-1}B)\&=det(A)+det(B)+det(A),text{tr}(A^{-1}B),.end{align}$$






    share|cite|improve this answer











    $endgroup$





















      0












      $begingroup$

      By brute force, calling



      $$
      A = left(begin{array}{cc}a_1 & a_2 \ a_3 & a_4end{array}right)
      $$



      we have



      $$
      det A = 1to a_1 a_4 = 1 + a_2 a_3
      $$



      and also



      $$
      detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 2 a_4^2 a_1^2+a_4 a_1^2+a_4^2 a_1-a_2 a_3 a_1-4 a_2 a_3 a_4 a_1+a_4 a_1-a_1+2 a_2^2 a_3^2-a_2 a_3-a_2 a_3 a_4-a_4+2
      $$



      and after substituting $ a_1 a_4 = 1 + a_2 a_3$ we obtain the result



      $$
      detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 5
      $$






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024798%2fdeta2a-i-2-deta2i-2-5%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        You're on the good track.



        Let $t=operatorname{tr}(A)$. Then, from $det(A)=1$, we know by Cayley-Hamilton that
        $$
        A^2-tA+I_2=0
        $$

        Thus
        $$
        A^2+A-I_2=tA-I_2+A-I_2=(t+1)A-2I_2
        $$

        and
        $$
        A^2+I_2=tA
        $$

        Thus $det(A^2+I_2)=t^2det(A)=t^2$.



        The formula you cite tells you that
        $$
        det(X+Y)=det(X)+det(Y)+det(X)operatorname{tr}(X^{-1}Y)
        $$

        and we can apply it to $X=-2I_2$, $Y=(t+1)A$. Thus
        $$
        det(X)=4,qquad det(Y)=(t+1)^2,qquad X^{-1}Y=-frac{1}{2}(t+1)A,
        qquad operatorname{tr}(X^{-1}Y)=-frac{1}{2}t(t+1)
        $$

        Thus the expression on the left-hand side becomes
        $$
        4+(t+1)^2-2t(t+1)+t^2=5
        $$






        share|cite|improve this answer









        $endgroup$


















          2












          $begingroup$

          You're on the good track.



          Let $t=operatorname{tr}(A)$. Then, from $det(A)=1$, we know by Cayley-Hamilton that
          $$
          A^2-tA+I_2=0
          $$

          Thus
          $$
          A^2+A-I_2=tA-I_2+A-I_2=(t+1)A-2I_2
          $$

          and
          $$
          A^2+I_2=tA
          $$

          Thus $det(A^2+I_2)=t^2det(A)=t^2$.



          The formula you cite tells you that
          $$
          det(X+Y)=det(X)+det(Y)+det(X)operatorname{tr}(X^{-1}Y)
          $$

          and we can apply it to $X=-2I_2$, $Y=(t+1)A$. Thus
          $$
          det(X)=4,qquad det(Y)=(t+1)^2,qquad X^{-1}Y=-frac{1}{2}(t+1)A,
          qquad operatorname{tr}(X^{-1}Y)=-frac{1}{2}t(t+1)
          $$

          Thus the expression on the left-hand side becomes
          $$
          4+(t+1)^2-2t(t+1)+t^2=5
          $$






          share|cite|improve this answer









          $endgroup$
















            2












            2








            2





            $begingroup$

            You're on the good track.



            Let $t=operatorname{tr}(A)$. Then, from $det(A)=1$, we know by Cayley-Hamilton that
            $$
            A^2-tA+I_2=0
            $$

            Thus
            $$
            A^2+A-I_2=tA-I_2+A-I_2=(t+1)A-2I_2
            $$

            and
            $$
            A^2+I_2=tA
            $$

            Thus $det(A^2+I_2)=t^2det(A)=t^2$.



            The formula you cite tells you that
            $$
            det(X+Y)=det(X)+det(Y)+det(X)operatorname{tr}(X^{-1}Y)
            $$

            and we can apply it to $X=-2I_2$, $Y=(t+1)A$. Thus
            $$
            det(X)=4,qquad det(Y)=(t+1)^2,qquad X^{-1}Y=-frac{1}{2}(t+1)A,
            qquad operatorname{tr}(X^{-1}Y)=-frac{1}{2}t(t+1)
            $$

            Thus the expression on the left-hand side becomes
            $$
            4+(t+1)^2-2t(t+1)+t^2=5
            $$






            share|cite|improve this answer









            $endgroup$



            You're on the good track.



            Let $t=operatorname{tr}(A)$. Then, from $det(A)=1$, we know by Cayley-Hamilton that
            $$
            A^2-tA+I_2=0
            $$

            Thus
            $$
            A^2+A-I_2=tA-I_2+A-I_2=(t+1)A-2I_2
            $$

            and
            $$
            A^2+I_2=tA
            $$

            Thus $det(A^2+I_2)=t^2det(A)=t^2$.



            The formula you cite tells you that
            $$
            det(X+Y)=det(X)+det(Y)+det(X)operatorname{tr}(X^{-1}Y)
            $$

            and we can apply it to $X=-2I_2$, $Y=(t+1)A$. Thus
            $$
            det(X)=4,qquad det(Y)=(t+1)^2,qquad X^{-1}Y=-frac{1}{2}(t+1)A,
            qquad operatorname{tr}(X^{-1}Y)=-frac{1}{2}t(t+1)
            $$

            Thus the expression on the left-hand side becomes
            $$
            4+(t+1)^2-2t(t+1)+t^2=5
            $$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 3 '18 at 22:57









            egregegreg

            180k1485202




            180k1485202























                1












                $begingroup$

                Let $p(x):=det(x,I-A)$ be the characteristic polynomial of $A$, where $I$ is a short-hand notation for $I_2$. Then, show that
                $$det(A^2+A-I)+det(A^2+I)=pleft(phiright),pleft(bar{phi}right)+p(+text{i}),p(-text{i}),,$$
                where $phi:=dfrac{-1+sqrt{5}}{2}$ and $bar{phi}:=dfrac{-1-sqrt{5}}{2}$.
                Since $det(A)=1$, $p(x)=x^2-bx+1$ for some $binmathbb{C}$.



                Because $phi$ and $bar{phi}$ are roots of the polynomial $x^2+x-1$, we have
                $$p(t)=t^2-bt+1=(1-t)-bt+1=2-(1+b)t$$
                for $tin{phi,bar{phi}}$. This shows that
                $$p(phi),p(bar{phi})=big(2-(1+b)phibig),big(2-(1+b)bar{phi}big)=4-2(1+b)(phi+bar{phi})+(1+b)^2phibar{phi},.$$
                That is,
                $$p(phi),p(bar{phi})=4-2(1+b)(-1)+(1+b)^2(-1)=5-b^2,.$$



                Similarly, $+text{i}$ and $-text{i}$ are roots of the polynomial $x^2+1$, we have
                $$p(t)=t^2-bt+1=(-1)-bt+1=-bt$$
                for $tin{+text{i},-text{i}}$. Hence,
                $$p(+text{i}),p(-text{i})=(-btext{i})(+btext{i})=b^2,.$$
                The claim follows immediately.





                Below is a proof of the cited identity, i.e., $$det(A+B)=det(A)+det(B)+det(A),text{tr}(A^{-1}B)$$ for any $A,Bintext{Mat}_{2times 2}(K)$ such that $A$ is invertible. Here, $K$ is any field.



                Since $A$ is invertible,
                $$det(A+B)=det(A),det(I+A^{-1}B),.$$
                The characteristic polynomial of $A^{-1}B$ is
                $$q(x):=det(x,I-A^{-1}B)=x^2-text{tr}(A^{-1}B),x+det(A^{-1}B),.$$
                Thus,
                $$det(I+A^{-1}B)=(-1)^2,det(-I-A^{-1}B)=q(-1)=1+text{tr}(A^{-1}B)+det(A^{-1}B),.$$
                Ergo,
                $$begin{align}det(A+B)&=det(A),Big(1+text{tr}(A^{-1}B)+det(A^{-1}B)Big)\&=det(A)+det(A),det(A^{-1}B)+det(A),text{tr}(A^{-1}B)\&=det(A)+det(B)+det(A),text{tr}(A^{-1}B),.end{align}$$






                share|cite|improve this answer











                $endgroup$


















                  1












                  $begingroup$

                  Let $p(x):=det(x,I-A)$ be the characteristic polynomial of $A$, where $I$ is a short-hand notation for $I_2$. Then, show that
                  $$det(A^2+A-I)+det(A^2+I)=pleft(phiright),pleft(bar{phi}right)+p(+text{i}),p(-text{i}),,$$
                  where $phi:=dfrac{-1+sqrt{5}}{2}$ and $bar{phi}:=dfrac{-1-sqrt{5}}{2}$.
                  Since $det(A)=1$, $p(x)=x^2-bx+1$ for some $binmathbb{C}$.



                  Because $phi$ and $bar{phi}$ are roots of the polynomial $x^2+x-1$, we have
                  $$p(t)=t^2-bt+1=(1-t)-bt+1=2-(1+b)t$$
                  for $tin{phi,bar{phi}}$. This shows that
                  $$p(phi),p(bar{phi})=big(2-(1+b)phibig),big(2-(1+b)bar{phi}big)=4-2(1+b)(phi+bar{phi})+(1+b)^2phibar{phi},.$$
                  That is,
                  $$p(phi),p(bar{phi})=4-2(1+b)(-1)+(1+b)^2(-1)=5-b^2,.$$



                  Similarly, $+text{i}$ and $-text{i}$ are roots of the polynomial $x^2+1$, we have
                  $$p(t)=t^2-bt+1=(-1)-bt+1=-bt$$
                  for $tin{+text{i},-text{i}}$. Hence,
                  $$p(+text{i}),p(-text{i})=(-btext{i})(+btext{i})=b^2,.$$
                  The claim follows immediately.





                  Below is a proof of the cited identity, i.e., $$det(A+B)=det(A)+det(B)+det(A),text{tr}(A^{-1}B)$$ for any $A,Bintext{Mat}_{2times 2}(K)$ such that $A$ is invertible. Here, $K$ is any field.



                  Since $A$ is invertible,
                  $$det(A+B)=det(A),det(I+A^{-1}B),.$$
                  The characteristic polynomial of $A^{-1}B$ is
                  $$q(x):=det(x,I-A^{-1}B)=x^2-text{tr}(A^{-1}B),x+det(A^{-1}B),.$$
                  Thus,
                  $$det(I+A^{-1}B)=(-1)^2,det(-I-A^{-1}B)=q(-1)=1+text{tr}(A^{-1}B)+det(A^{-1}B),.$$
                  Ergo,
                  $$begin{align}det(A+B)&=det(A),Big(1+text{tr}(A^{-1}B)+det(A^{-1}B)Big)\&=det(A)+det(A),det(A^{-1}B)+det(A),text{tr}(A^{-1}B)\&=det(A)+det(B)+det(A),text{tr}(A^{-1}B),.end{align}$$






                  share|cite|improve this answer











                  $endgroup$
















                    1












                    1








                    1





                    $begingroup$

                    Let $p(x):=det(x,I-A)$ be the characteristic polynomial of $A$, where $I$ is a short-hand notation for $I_2$. Then, show that
                    $$det(A^2+A-I)+det(A^2+I)=pleft(phiright),pleft(bar{phi}right)+p(+text{i}),p(-text{i}),,$$
                    where $phi:=dfrac{-1+sqrt{5}}{2}$ and $bar{phi}:=dfrac{-1-sqrt{5}}{2}$.
                    Since $det(A)=1$, $p(x)=x^2-bx+1$ for some $binmathbb{C}$.



                    Because $phi$ and $bar{phi}$ are roots of the polynomial $x^2+x-1$, we have
                    $$p(t)=t^2-bt+1=(1-t)-bt+1=2-(1+b)t$$
                    for $tin{phi,bar{phi}}$. This shows that
                    $$p(phi),p(bar{phi})=big(2-(1+b)phibig),big(2-(1+b)bar{phi}big)=4-2(1+b)(phi+bar{phi})+(1+b)^2phibar{phi},.$$
                    That is,
                    $$p(phi),p(bar{phi})=4-2(1+b)(-1)+(1+b)^2(-1)=5-b^2,.$$



                    Similarly, $+text{i}$ and $-text{i}$ are roots of the polynomial $x^2+1$, we have
                    $$p(t)=t^2-bt+1=(-1)-bt+1=-bt$$
                    for $tin{+text{i},-text{i}}$. Hence,
                    $$p(+text{i}),p(-text{i})=(-btext{i})(+btext{i})=b^2,.$$
                    The claim follows immediately.





                    Below is a proof of the cited identity, i.e., $$det(A+B)=det(A)+det(B)+det(A),text{tr}(A^{-1}B)$$ for any $A,Bintext{Mat}_{2times 2}(K)$ such that $A$ is invertible. Here, $K$ is any field.



                    Since $A$ is invertible,
                    $$det(A+B)=det(A),det(I+A^{-1}B),.$$
                    The characteristic polynomial of $A^{-1}B$ is
                    $$q(x):=det(x,I-A^{-1}B)=x^2-text{tr}(A^{-1}B),x+det(A^{-1}B),.$$
                    Thus,
                    $$det(I+A^{-1}B)=(-1)^2,det(-I-A^{-1}B)=q(-1)=1+text{tr}(A^{-1}B)+det(A^{-1}B),.$$
                    Ergo,
                    $$begin{align}det(A+B)&=det(A),Big(1+text{tr}(A^{-1}B)+det(A^{-1}B)Big)\&=det(A)+det(A),det(A^{-1}B)+det(A),text{tr}(A^{-1}B)\&=det(A)+det(B)+det(A),text{tr}(A^{-1}B),.end{align}$$






                    share|cite|improve this answer











                    $endgroup$



                    Let $p(x):=det(x,I-A)$ be the characteristic polynomial of $A$, where $I$ is a short-hand notation for $I_2$. Then, show that
                    $$det(A^2+A-I)+det(A^2+I)=pleft(phiright),pleft(bar{phi}right)+p(+text{i}),p(-text{i}),,$$
                    where $phi:=dfrac{-1+sqrt{5}}{2}$ and $bar{phi}:=dfrac{-1-sqrt{5}}{2}$.
                    Since $det(A)=1$, $p(x)=x^2-bx+1$ for some $binmathbb{C}$.



                    Because $phi$ and $bar{phi}$ are roots of the polynomial $x^2+x-1$, we have
                    $$p(t)=t^2-bt+1=(1-t)-bt+1=2-(1+b)t$$
                    for $tin{phi,bar{phi}}$. This shows that
                    $$p(phi),p(bar{phi})=big(2-(1+b)phibig),big(2-(1+b)bar{phi}big)=4-2(1+b)(phi+bar{phi})+(1+b)^2phibar{phi},.$$
                    That is,
                    $$p(phi),p(bar{phi})=4-2(1+b)(-1)+(1+b)^2(-1)=5-b^2,.$$



                    Similarly, $+text{i}$ and $-text{i}$ are roots of the polynomial $x^2+1$, we have
                    $$p(t)=t^2-bt+1=(-1)-bt+1=-bt$$
                    for $tin{+text{i},-text{i}}$. Hence,
                    $$p(+text{i}),p(-text{i})=(-btext{i})(+btext{i})=b^2,.$$
                    The claim follows immediately.





                    Below is a proof of the cited identity, i.e., $$det(A+B)=det(A)+det(B)+det(A),text{tr}(A^{-1}B)$$ for any $A,Bintext{Mat}_{2times 2}(K)$ such that $A$ is invertible. Here, $K$ is any field.



                    Since $A$ is invertible,
                    $$det(A+B)=det(A),det(I+A^{-1}B),.$$
                    The characteristic polynomial of $A^{-1}B$ is
                    $$q(x):=det(x,I-A^{-1}B)=x^2-text{tr}(A^{-1}B),x+det(A^{-1}B),.$$
                    Thus,
                    $$det(I+A^{-1}B)=(-1)^2,det(-I-A^{-1}B)=q(-1)=1+text{tr}(A^{-1}B)+det(A^{-1}B),.$$
                    Ergo,
                    $$begin{align}det(A+B)&=det(A),Big(1+text{tr}(A^{-1}B)+det(A^{-1}B)Big)\&=det(A)+det(A),det(A^{-1}B)+det(A),text{tr}(A^{-1}B)\&=det(A)+det(B)+det(A),text{tr}(A^{-1}B),.end{align}$$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Dec 3 '18 at 23:21

























                    answered Dec 3 '18 at 22:50









                    BatominovskiBatominovski

                    1




                    1























                        0












                        $begingroup$

                        By brute force, calling



                        $$
                        A = left(begin{array}{cc}a_1 & a_2 \ a_3 & a_4end{array}right)
                        $$



                        we have



                        $$
                        det A = 1to a_1 a_4 = 1 + a_2 a_3
                        $$



                        and also



                        $$
                        detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 2 a_4^2 a_1^2+a_4 a_1^2+a_4^2 a_1-a_2 a_3 a_1-4 a_2 a_3 a_4 a_1+a_4 a_1-a_1+2 a_2^2 a_3^2-a_2 a_3-a_2 a_3 a_4-a_4+2
                        $$



                        and after substituting $ a_1 a_4 = 1 + a_2 a_3$ we obtain the result



                        $$
                        detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 5
                        $$






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          By brute force, calling



                          $$
                          A = left(begin{array}{cc}a_1 & a_2 \ a_3 & a_4end{array}right)
                          $$



                          we have



                          $$
                          det A = 1to a_1 a_4 = 1 + a_2 a_3
                          $$



                          and also



                          $$
                          detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 2 a_4^2 a_1^2+a_4 a_1^2+a_4^2 a_1-a_2 a_3 a_1-4 a_2 a_3 a_4 a_1+a_4 a_1-a_1+2 a_2^2 a_3^2-a_2 a_3-a_2 a_3 a_4-a_4+2
                          $$



                          and after substituting $ a_1 a_4 = 1 + a_2 a_3$ we obtain the result



                          $$
                          detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 5
                          $$






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            By brute force, calling



                            $$
                            A = left(begin{array}{cc}a_1 & a_2 \ a_3 & a_4end{array}right)
                            $$



                            we have



                            $$
                            det A = 1to a_1 a_4 = 1 + a_2 a_3
                            $$



                            and also



                            $$
                            detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 2 a_4^2 a_1^2+a_4 a_1^2+a_4^2 a_1-a_2 a_3 a_1-4 a_2 a_3 a_4 a_1+a_4 a_1-a_1+2 a_2^2 a_3^2-a_2 a_3-a_2 a_3 a_4-a_4+2
                            $$



                            and after substituting $ a_1 a_4 = 1 + a_2 a_3$ we obtain the result



                            $$
                            detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 5
                            $$






                            share|cite|improve this answer









                            $endgroup$



                            By brute force, calling



                            $$
                            A = left(begin{array}{cc}a_1 & a_2 \ a_3 & a_4end{array}right)
                            $$



                            we have



                            $$
                            det A = 1to a_1 a_4 = 1 + a_2 a_3
                            $$



                            and also



                            $$
                            detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 2 a_4^2 a_1^2+a_4 a_1^2+a_4^2 a_1-a_2 a_3 a_1-4 a_2 a_3 a_4 a_1+a_4 a_1-a_1+2 a_2^2 a_3^2-a_2 a_3-a_2 a_3 a_4-a_4+2
                            $$



                            and after substituting $ a_1 a_4 = 1 + a_2 a_3$ we obtain the result



                            $$
                            detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 5
                            $$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Dec 3 '18 at 23:07









                            CesareoCesareo

                            8,6093516




                            8,6093516






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024798%2fdeta2a-i-2-deta2i-2-5%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                How do I know what Microsoft account the skydrive app is syncing to?

                                When does type information flow backwards in C++?

                                Grease: Live!