$det(A^2+A-I_2)+det(A^2+I_2) = 5$
$begingroup$
Let $A in M_{2times 2}(mathbb{C})$ and $det(A)=1DeclareMathOperator{tr}{tr}$
Prove that $det(A^2+A-I_2)+det(A^2+I_2) = 5$
using Cayley-Hamilton Theorem $A^2-tr(A)A+det(A)I_2=0$
$detbig(tr(A)A-det(A)I_2-I_2big) + detbig(A(A+A^{-1})big)=5$
$detbig(tr(A)A-I_2(det(A)+1)big)+det(A+A^{-1})=5$
using https://math.stackexchange.com/q/1937052 $det(A+B)=det A+det B+det A⋅tr(A^{-1}B) $
$tr(A)det(A)-big(det(A)+1big)det(I_2)+tr(A)big(-det(A)-1big)^{-1}tr(I^{-1}A)+det(A)+det(A^{-1})+tr(A^2)=5
$
$tr(A)-2-tr(A)^20.5+1+1+tr(A^2)=5$
$tr(A)-tr(A)^20.5+trbig(tr(A)A-det(A)I_2big)=5$
$tr(A)-tr(A)^20.5+tr(A)^2-tr(I_2)=5$
$tr(A)+0.5tr(A)^2-2=5$
This is where I am stuck. And also I don't know how to prove the identity which I cited.
linear-algebra matrices proof-verification determinant trace
$endgroup$
add a comment |
$begingroup$
Let $A in M_{2times 2}(mathbb{C})$ and $det(A)=1DeclareMathOperator{tr}{tr}$
Prove that $det(A^2+A-I_2)+det(A^2+I_2) = 5$
using Cayley-Hamilton Theorem $A^2-tr(A)A+det(A)I_2=0$
$detbig(tr(A)A-det(A)I_2-I_2big) + detbig(A(A+A^{-1})big)=5$
$detbig(tr(A)A-I_2(det(A)+1)big)+det(A+A^{-1})=5$
using https://math.stackexchange.com/q/1937052 $det(A+B)=det A+det B+det A⋅tr(A^{-1}B) $
$tr(A)det(A)-big(det(A)+1big)det(I_2)+tr(A)big(-det(A)-1big)^{-1}tr(I^{-1}A)+det(A)+det(A^{-1})+tr(A^2)=5
$
$tr(A)-2-tr(A)^20.5+1+1+tr(A^2)=5$
$tr(A)-tr(A)^20.5+trbig(tr(A)A-det(A)I_2big)=5$
$tr(A)-tr(A)^20.5+tr(A)^2-tr(I_2)=5$
$tr(A)+0.5tr(A)^2-2=5$
This is where I am stuck. And also I don't know how to prove the identity which I cited.
linear-algebra matrices proof-verification determinant trace
$endgroup$
$begingroup$
It took me a while to decipher what you did wrong. The first error is the line after the Cayley-Hamilton Theorem, where you should have $det(text{tr}(A),A-det(A),I_2+A-I_2)$ for the first term. The second error is the line after $det(A+B)$. You should have $big(text{tr}(A)+1big)^2,det(A)$ for the first term, $big(-det(A)-1big)^2,det(I_2)$ for the second term, and then $det(A),big(text{tr}(A)+1big),big(-det(A)-1big),text{tr}(I^{-1},A)$ for the third term.
$endgroup$
– Batominovski
Dec 3 '18 at 23:06
add a comment |
$begingroup$
Let $A in M_{2times 2}(mathbb{C})$ and $det(A)=1DeclareMathOperator{tr}{tr}$
Prove that $det(A^2+A-I_2)+det(A^2+I_2) = 5$
using Cayley-Hamilton Theorem $A^2-tr(A)A+det(A)I_2=0$
$detbig(tr(A)A-det(A)I_2-I_2big) + detbig(A(A+A^{-1})big)=5$
$detbig(tr(A)A-I_2(det(A)+1)big)+det(A+A^{-1})=5$
using https://math.stackexchange.com/q/1937052 $det(A+B)=det A+det B+det A⋅tr(A^{-1}B) $
$tr(A)det(A)-big(det(A)+1big)det(I_2)+tr(A)big(-det(A)-1big)^{-1}tr(I^{-1}A)+det(A)+det(A^{-1})+tr(A^2)=5
$
$tr(A)-2-tr(A)^20.5+1+1+tr(A^2)=5$
$tr(A)-tr(A)^20.5+trbig(tr(A)A-det(A)I_2big)=5$
$tr(A)-tr(A)^20.5+tr(A)^2-tr(I_2)=5$
$tr(A)+0.5tr(A)^2-2=5$
This is where I am stuck. And also I don't know how to prove the identity which I cited.
linear-algebra matrices proof-verification determinant trace
$endgroup$
Let $A in M_{2times 2}(mathbb{C})$ and $det(A)=1DeclareMathOperator{tr}{tr}$
Prove that $det(A^2+A-I_2)+det(A^2+I_2) = 5$
using Cayley-Hamilton Theorem $A^2-tr(A)A+det(A)I_2=0$
$detbig(tr(A)A-det(A)I_2-I_2big) + detbig(A(A+A^{-1})big)=5$
$detbig(tr(A)A-I_2(det(A)+1)big)+det(A+A^{-1})=5$
using https://math.stackexchange.com/q/1937052 $det(A+B)=det A+det B+det A⋅tr(A^{-1}B) $
$tr(A)det(A)-big(det(A)+1big)det(I_2)+tr(A)big(-det(A)-1big)^{-1}tr(I^{-1}A)+det(A)+det(A^{-1})+tr(A^2)=5
$
$tr(A)-2-tr(A)^20.5+1+1+tr(A^2)=5$
$tr(A)-tr(A)^20.5+trbig(tr(A)A-det(A)I_2big)=5$
$tr(A)-tr(A)^20.5+tr(A)^2-tr(I_2)=5$
$tr(A)+0.5tr(A)^2-2=5$
This is where I am stuck. And also I don't know how to prove the identity which I cited.
linear-algebra matrices proof-verification determinant trace
linear-algebra matrices proof-verification determinant trace
edited Dec 3 '18 at 23:14
Batominovski
1
1
asked Dec 3 '18 at 22:36
StudentStudent
334
334
$begingroup$
It took me a while to decipher what you did wrong. The first error is the line after the Cayley-Hamilton Theorem, where you should have $det(text{tr}(A),A-det(A),I_2+A-I_2)$ for the first term. The second error is the line after $det(A+B)$. You should have $big(text{tr}(A)+1big)^2,det(A)$ for the first term, $big(-det(A)-1big)^2,det(I_2)$ for the second term, and then $det(A),big(text{tr}(A)+1big),big(-det(A)-1big),text{tr}(I^{-1},A)$ for the third term.
$endgroup$
– Batominovski
Dec 3 '18 at 23:06
add a comment |
$begingroup$
It took me a while to decipher what you did wrong. The first error is the line after the Cayley-Hamilton Theorem, where you should have $det(text{tr}(A),A-det(A),I_2+A-I_2)$ for the first term. The second error is the line after $det(A+B)$. You should have $big(text{tr}(A)+1big)^2,det(A)$ for the first term, $big(-det(A)-1big)^2,det(I_2)$ for the second term, and then $det(A),big(text{tr}(A)+1big),big(-det(A)-1big),text{tr}(I^{-1},A)$ for the third term.
$endgroup$
– Batominovski
Dec 3 '18 at 23:06
$begingroup$
It took me a while to decipher what you did wrong. The first error is the line after the Cayley-Hamilton Theorem, where you should have $det(text{tr}(A),A-det(A),I_2+A-I_2)$ for the first term. The second error is the line after $det(A+B)$. You should have $big(text{tr}(A)+1big)^2,det(A)$ for the first term, $big(-det(A)-1big)^2,det(I_2)$ for the second term, and then $det(A),big(text{tr}(A)+1big),big(-det(A)-1big),text{tr}(I^{-1},A)$ for the third term.
$endgroup$
– Batominovski
Dec 3 '18 at 23:06
$begingroup$
It took me a while to decipher what you did wrong. The first error is the line after the Cayley-Hamilton Theorem, where you should have $det(text{tr}(A),A-det(A),I_2+A-I_2)$ for the first term. The second error is the line after $det(A+B)$. You should have $big(text{tr}(A)+1big)^2,det(A)$ for the first term, $big(-det(A)-1big)^2,det(I_2)$ for the second term, and then $det(A),big(text{tr}(A)+1big),big(-det(A)-1big),text{tr}(I^{-1},A)$ for the third term.
$endgroup$
– Batominovski
Dec 3 '18 at 23:06
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
You're on the good track.
Let $t=operatorname{tr}(A)$. Then, from $det(A)=1$, we know by Cayley-Hamilton that
$$
A^2-tA+I_2=0
$$
Thus
$$
A^2+A-I_2=tA-I_2+A-I_2=(t+1)A-2I_2
$$
and
$$
A^2+I_2=tA
$$
Thus $det(A^2+I_2)=t^2det(A)=t^2$.
The formula you cite tells you that
$$
det(X+Y)=det(X)+det(Y)+det(X)operatorname{tr}(X^{-1}Y)
$$
and we can apply it to $X=-2I_2$, $Y=(t+1)A$. Thus
$$
det(X)=4,qquad det(Y)=(t+1)^2,qquad X^{-1}Y=-frac{1}{2}(t+1)A,
qquad operatorname{tr}(X^{-1}Y)=-frac{1}{2}t(t+1)
$$
Thus the expression on the left-hand side becomes
$$
4+(t+1)^2-2t(t+1)+t^2=5
$$
$endgroup$
add a comment |
$begingroup$
Let $p(x):=det(x,I-A)$ be the characteristic polynomial of $A$, where $I$ is a short-hand notation for $I_2$. Then, show that
$$det(A^2+A-I)+det(A^2+I)=pleft(phiright),pleft(bar{phi}right)+p(+text{i}),p(-text{i}),,$$
where $phi:=dfrac{-1+sqrt{5}}{2}$ and $bar{phi}:=dfrac{-1-sqrt{5}}{2}$.
Since $det(A)=1$, $p(x)=x^2-bx+1$ for some $binmathbb{C}$.
Because $phi$ and $bar{phi}$ are roots of the polynomial $x^2+x-1$, we have
$$p(t)=t^2-bt+1=(1-t)-bt+1=2-(1+b)t$$
for $tin{phi,bar{phi}}$. This shows that
$$p(phi),p(bar{phi})=big(2-(1+b)phibig),big(2-(1+b)bar{phi}big)=4-2(1+b)(phi+bar{phi})+(1+b)^2phibar{phi},.$$
That is,
$$p(phi),p(bar{phi})=4-2(1+b)(-1)+(1+b)^2(-1)=5-b^2,.$$
Similarly, $+text{i}$ and $-text{i}$ are roots of the polynomial $x^2+1$, we have
$$p(t)=t^2-bt+1=(-1)-bt+1=-bt$$
for $tin{+text{i},-text{i}}$. Hence,
$$p(+text{i}),p(-text{i})=(-btext{i})(+btext{i})=b^2,.$$
The claim follows immediately.
Below is a proof of the cited identity, i.e., $$det(A+B)=det(A)+det(B)+det(A),text{tr}(A^{-1}B)$$ for any $A,Bintext{Mat}_{2times 2}(K)$ such that $A$ is invertible. Here, $K$ is any field.
Since $A$ is invertible,
$$det(A+B)=det(A),det(I+A^{-1}B),.$$
The characteristic polynomial of $A^{-1}B$ is
$$q(x):=det(x,I-A^{-1}B)=x^2-text{tr}(A^{-1}B),x+det(A^{-1}B),.$$
Thus,
$$det(I+A^{-1}B)=(-1)^2,det(-I-A^{-1}B)=q(-1)=1+text{tr}(A^{-1}B)+det(A^{-1}B),.$$
Ergo,
$$begin{align}det(A+B)&=det(A),Big(1+text{tr}(A^{-1}B)+det(A^{-1}B)Big)\&=det(A)+det(A),det(A^{-1}B)+det(A),text{tr}(A^{-1}B)\&=det(A)+det(B)+det(A),text{tr}(A^{-1}B),.end{align}$$
$endgroup$
add a comment |
$begingroup$
By brute force, calling
$$
A = left(begin{array}{cc}a_1 & a_2 \ a_3 & a_4end{array}right)
$$
we have
$$
det A = 1to a_1 a_4 = 1 + a_2 a_3
$$
and also
$$
detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 2 a_4^2 a_1^2+a_4 a_1^2+a_4^2 a_1-a_2 a_3 a_1-4 a_2 a_3 a_4 a_1+a_4 a_1-a_1+2 a_2^2 a_3^2-a_2 a_3-a_2 a_3 a_4-a_4+2
$$
and after substituting $ a_1 a_4 = 1 + a_2 a_3$ we obtain the result
$$
detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 5
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024798%2fdeta2a-i-2-deta2i-2-5%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You're on the good track.
Let $t=operatorname{tr}(A)$. Then, from $det(A)=1$, we know by Cayley-Hamilton that
$$
A^2-tA+I_2=0
$$
Thus
$$
A^2+A-I_2=tA-I_2+A-I_2=(t+1)A-2I_2
$$
and
$$
A^2+I_2=tA
$$
Thus $det(A^2+I_2)=t^2det(A)=t^2$.
The formula you cite tells you that
$$
det(X+Y)=det(X)+det(Y)+det(X)operatorname{tr}(X^{-1}Y)
$$
and we can apply it to $X=-2I_2$, $Y=(t+1)A$. Thus
$$
det(X)=4,qquad det(Y)=(t+1)^2,qquad X^{-1}Y=-frac{1}{2}(t+1)A,
qquad operatorname{tr}(X^{-1}Y)=-frac{1}{2}t(t+1)
$$
Thus the expression on the left-hand side becomes
$$
4+(t+1)^2-2t(t+1)+t^2=5
$$
$endgroup$
add a comment |
$begingroup$
You're on the good track.
Let $t=operatorname{tr}(A)$. Then, from $det(A)=1$, we know by Cayley-Hamilton that
$$
A^2-tA+I_2=0
$$
Thus
$$
A^2+A-I_2=tA-I_2+A-I_2=(t+1)A-2I_2
$$
and
$$
A^2+I_2=tA
$$
Thus $det(A^2+I_2)=t^2det(A)=t^2$.
The formula you cite tells you that
$$
det(X+Y)=det(X)+det(Y)+det(X)operatorname{tr}(X^{-1}Y)
$$
and we can apply it to $X=-2I_2$, $Y=(t+1)A$. Thus
$$
det(X)=4,qquad det(Y)=(t+1)^2,qquad X^{-1}Y=-frac{1}{2}(t+1)A,
qquad operatorname{tr}(X^{-1}Y)=-frac{1}{2}t(t+1)
$$
Thus the expression on the left-hand side becomes
$$
4+(t+1)^2-2t(t+1)+t^2=5
$$
$endgroup$
add a comment |
$begingroup$
You're on the good track.
Let $t=operatorname{tr}(A)$. Then, from $det(A)=1$, we know by Cayley-Hamilton that
$$
A^2-tA+I_2=0
$$
Thus
$$
A^2+A-I_2=tA-I_2+A-I_2=(t+1)A-2I_2
$$
and
$$
A^2+I_2=tA
$$
Thus $det(A^2+I_2)=t^2det(A)=t^2$.
The formula you cite tells you that
$$
det(X+Y)=det(X)+det(Y)+det(X)operatorname{tr}(X^{-1}Y)
$$
and we can apply it to $X=-2I_2$, $Y=(t+1)A$. Thus
$$
det(X)=4,qquad det(Y)=(t+1)^2,qquad X^{-1}Y=-frac{1}{2}(t+1)A,
qquad operatorname{tr}(X^{-1}Y)=-frac{1}{2}t(t+1)
$$
Thus the expression on the left-hand side becomes
$$
4+(t+1)^2-2t(t+1)+t^2=5
$$
$endgroup$
You're on the good track.
Let $t=operatorname{tr}(A)$. Then, from $det(A)=1$, we know by Cayley-Hamilton that
$$
A^2-tA+I_2=0
$$
Thus
$$
A^2+A-I_2=tA-I_2+A-I_2=(t+1)A-2I_2
$$
and
$$
A^2+I_2=tA
$$
Thus $det(A^2+I_2)=t^2det(A)=t^2$.
The formula you cite tells you that
$$
det(X+Y)=det(X)+det(Y)+det(X)operatorname{tr}(X^{-1}Y)
$$
and we can apply it to $X=-2I_2$, $Y=(t+1)A$. Thus
$$
det(X)=4,qquad det(Y)=(t+1)^2,qquad X^{-1}Y=-frac{1}{2}(t+1)A,
qquad operatorname{tr}(X^{-1}Y)=-frac{1}{2}t(t+1)
$$
Thus the expression on the left-hand side becomes
$$
4+(t+1)^2-2t(t+1)+t^2=5
$$
answered Dec 3 '18 at 22:57
egregegreg
180k1485202
180k1485202
add a comment |
add a comment |
$begingroup$
Let $p(x):=det(x,I-A)$ be the characteristic polynomial of $A$, where $I$ is a short-hand notation for $I_2$. Then, show that
$$det(A^2+A-I)+det(A^2+I)=pleft(phiright),pleft(bar{phi}right)+p(+text{i}),p(-text{i}),,$$
where $phi:=dfrac{-1+sqrt{5}}{2}$ and $bar{phi}:=dfrac{-1-sqrt{5}}{2}$.
Since $det(A)=1$, $p(x)=x^2-bx+1$ for some $binmathbb{C}$.
Because $phi$ and $bar{phi}$ are roots of the polynomial $x^2+x-1$, we have
$$p(t)=t^2-bt+1=(1-t)-bt+1=2-(1+b)t$$
for $tin{phi,bar{phi}}$. This shows that
$$p(phi),p(bar{phi})=big(2-(1+b)phibig),big(2-(1+b)bar{phi}big)=4-2(1+b)(phi+bar{phi})+(1+b)^2phibar{phi},.$$
That is,
$$p(phi),p(bar{phi})=4-2(1+b)(-1)+(1+b)^2(-1)=5-b^2,.$$
Similarly, $+text{i}$ and $-text{i}$ are roots of the polynomial $x^2+1$, we have
$$p(t)=t^2-bt+1=(-1)-bt+1=-bt$$
for $tin{+text{i},-text{i}}$. Hence,
$$p(+text{i}),p(-text{i})=(-btext{i})(+btext{i})=b^2,.$$
The claim follows immediately.
Below is a proof of the cited identity, i.e., $$det(A+B)=det(A)+det(B)+det(A),text{tr}(A^{-1}B)$$ for any $A,Bintext{Mat}_{2times 2}(K)$ such that $A$ is invertible. Here, $K$ is any field.
Since $A$ is invertible,
$$det(A+B)=det(A),det(I+A^{-1}B),.$$
The characteristic polynomial of $A^{-1}B$ is
$$q(x):=det(x,I-A^{-1}B)=x^2-text{tr}(A^{-1}B),x+det(A^{-1}B),.$$
Thus,
$$det(I+A^{-1}B)=(-1)^2,det(-I-A^{-1}B)=q(-1)=1+text{tr}(A^{-1}B)+det(A^{-1}B),.$$
Ergo,
$$begin{align}det(A+B)&=det(A),Big(1+text{tr}(A^{-1}B)+det(A^{-1}B)Big)\&=det(A)+det(A),det(A^{-1}B)+det(A),text{tr}(A^{-1}B)\&=det(A)+det(B)+det(A),text{tr}(A^{-1}B),.end{align}$$
$endgroup$
add a comment |
$begingroup$
Let $p(x):=det(x,I-A)$ be the characteristic polynomial of $A$, where $I$ is a short-hand notation for $I_2$. Then, show that
$$det(A^2+A-I)+det(A^2+I)=pleft(phiright),pleft(bar{phi}right)+p(+text{i}),p(-text{i}),,$$
where $phi:=dfrac{-1+sqrt{5}}{2}$ and $bar{phi}:=dfrac{-1-sqrt{5}}{2}$.
Since $det(A)=1$, $p(x)=x^2-bx+1$ for some $binmathbb{C}$.
Because $phi$ and $bar{phi}$ are roots of the polynomial $x^2+x-1$, we have
$$p(t)=t^2-bt+1=(1-t)-bt+1=2-(1+b)t$$
for $tin{phi,bar{phi}}$. This shows that
$$p(phi),p(bar{phi})=big(2-(1+b)phibig),big(2-(1+b)bar{phi}big)=4-2(1+b)(phi+bar{phi})+(1+b)^2phibar{phi},.$$
That is,
$$p(phi),p(bar{phi})=4-2(1+b)(-1)+(1+b)^2(-1)=5-b^2,.$$
Similarly, $+text{i}$ and $-text{i}$ are roots of the polynomial $x^2+1$, we have
$$p(t)=t^2-bt+1=(-1)-bt+1=-bt$$
for $tin{+text{i},-text{i}}$. Hence,
$$p(+text{i}),p(-text{i})=(-btext{i})(+btext{i})=b^2,.$$
The claim follows immediately.
Below is a proof of the cited identity, i.e., $$det(A+B)=det(A)+det(B)+det(A),text{tr}(A^{-1}B)$$ for any $A,Bintext{Mat}_{2times 2}(K)$ such that $A$ is invertible. Here, $K$ is any field.
Since $A$ is invertible,
$$det(A+B)=det(A),det(I+A^{-1}B),.$$
The characteristic polynomial of $A^{-1}B$ is
$$q(x):=det(x,I-A^{-1}B)=x^2-text{tr}(A^{-1}B),x+det(A^{-1}B),.$$
Thus,
$$det(I+A^{-1}B)=(-1)^2,det(-I-A^{-1}B)=q(-1)=1+text{tr}(A^{-1}B)+det(A^{-1}B),.$$
Ergo,
$$begin{align}det(A+B)&=det(A),Big(1+text{tr}(A^{-1}B)+det(A^{-1}B)Big)\&=det(A)+det(A),det(A^{-1}B)+det(A),text{tr}(A^{-1}B)\&=det(A)+det(B)+det(A),text{tr}(A^{-1}B),.end{align}$$
$endgroup$
add a comment |
$begingroup$
Let $p(x):=det(x,I-A)$ be the characteristic polynomial of $A$, where $I$ is a short-hand notation for $I_2$. Then, show that
$$det(A^2+A-I)+det(A^2+I)=pleft(phiright),pleft(bar{phi}right)+p(+text{i}),p(-text{i}),,$$
where $phi:=dfrac{-1+sqrt{5}}{2}$ and $bar{phi}:=dfrac{-1-sqrt{5}}{2}$.
Since $det(A)=1$, $p(x)=x^2-bx+1$ for some $binmathbb{C}$.
Because $phi$ and $bar{phi}$ are roots of the polynomial $x^2+x-1$, we have
$$p(t)=t^2-bt+1=(1-t)-bt+1=2-(1+b)t$$
for $tin{phi,bar{phi}}$. This shows that
$$p(phi),p(bar{phi})=big(2-(1+b)phibig),big(2-(1+b)bar{phi}big)=4-2(1+b)(phi+bar{phi})+(1+b)^2phibar{phi},.$$
That is,
$$p(phi),p(bar{phi})=4-2(1+b)(-1)+(1+b)^2(-1)=5-b^2,.$$
Similarly, $+text{i}$ and $-text{i}$ are roots of the polynomial $x^2+1$, we have
$$p(t)=t^2-bt+1=(-1)-bt+1=-bt$$
for $tin{+text{i},-text{i}}$. Hence,
$$p(+text{i}),p(-text{i})=(-btext{i})(+btext{i})=b^2,.$$
The claim follows immediately.
Below is a proof of the cited identity, i.e., $$det(A+B)=det(A)+det(B)+det(A),text{tr}(A^{-1}B)$$ for any $A,Bintext{Mat}_{2times 2}(K)$ such that $A$ is invertible. Here, $K$ is any field.
Since $A$ is invertible,
$$det(A+B)=det(A),det(I+A^{-1}B),.$$
The characteristic polynomial of $A^{-1}B$ is
$$q(x):=det(x,I-A^{-1}B)=x^2-text{tr}(A^{-1}B),x+det(A^{-1}B),.$$
Thus,
$$det(I+A^{-1}B)=(-1)^2,det(-I-A^{-1}B)=q(-1)=1+text{tr}(A^{-1}B)+det(A^{-1}B),.$$
Ergo,
$$begin{align}det(A+B)&=det(A),Big(1+text{tr}(A^{-1}B)+det(A^{-1}B)Big)\&=det(A)+det(A),det(A^{-1}B)+det(A),text{tr}(A^{-1}B)\&=det(A)+det(B)+det(A),text{tr}(A^{-1}B),.end{align}$$
$endgroup$
Let $p(x):=det(x,I-A)$ be the characteristic polynomial of $A$, where $I$ is a short-hand notation for $I_2$. Then, show that
$$det(A^2+A-I)+det(A^2+I)=pleft(phiright),pleft(bar{phi}right)+p(+text{i}),p(-text{i}),,$$
where $phi:=dfrac{-1+sqrt{5}}{2}$ and $bar{phi}:=dfrac{-1-sqrt{5}}{2}$.
Since $det(A)=1$, $p(x)=x^2-bx+1$ for some $binmathbb{C}$.
Because $phi$ and $bar{phi}$ are roots of the polynomial $x^2+x-1$, we have
$$p(t)=t^2-bt+1=(1-t)-bt+1=2-(1+b)t$$
for $tin{phi,bar{phi}}$. This shows that
$$p(phi),p(bar{phi})=big(2-(1+b)phibig),big(2-(1+b)bar{phi}big)=4-2(1+b)(phi+bar{phi})+(1+b)^2phibar{phi},.$$
That is,
$$p(phi),p(bar{phi})=4-2(1+b)(-1)+(1+b)^2(-1)=5-b^2,.$$
Similarly, $+text{i}$ and $-text{i}$ are roots of the polynomial $x^2+1$, we have
$$p(t)=t^2-bt+1=(-1)-bt+1=-bt$$
for $tin{+text{i},-text{i}}$. Hence,
$$p(+text{i}),p(-text{i})=(-btext{i})(+btext{i})=b^2,.$$
The claim follows immediately.
Below is a proof of the cited identity, i.e., $$det(A+B)=det(A)+det(B)+det(A),text{tr}(A^{-1}B)$$ for any $A,Bintext{Mat}_{2times 2}(K)$ such that $A$ is invertible. Here, $K$ is any field.
Since $A$ is invertible,
$$det(A+B)=det(A),det(I+A^{-1}B),.$$
The characteristic polynomial of $A^{-1}B$ is
$$q(x):=det(x,I-A^{-1}B)=x^2-text{tr}(A^{-1}B),x+det(A^{-1}B),.$$
Thus,
$$det(I+A^{-1}B)=(-1)^2,det(-I-A^{-1}B)=q(-1)=1+text{tr}(A^{-1}B)+det(A^{-1}B),.$$
Ergo,
$$begin{align}det(A+B)&=det(A),Big(1+text{tr}(A^{-1}B)+det(A^{-1}B)Big)\&=det(A)+det(A),det(A^{-1}B)+det(A),text{tr}(A^{-1}B)\&=det(A)+det(B)+det(A),text{tr}(A^{-1}B),.end{align}$$
edited Dec 3 '18 at 23:21
answered Dec 3 '18 at 22:50
BatominovskiBatominovski
1
1
add a comment |
add a comment |
$begingroup$
By brute force, calling
$$
A = left(begin{array}{cc}a_1 & a_2 \ a_3 & a_4end{array}right)
$$
we have
$$
det A = 1to a_1 a_4 = 1 + a_2 a_3
$$
and also
$$
detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 2 a_4^2 a_1^2+a_4 a_1^2+a_4^2 a_1-a_2 a_3 a_1-4 a_2 a_3 a_4 a_1+a_4 a_1-a_1+2 a_2^2 a_3^2-a_2 a_3-a_2 a_3 a_4-a_4+2
$$
and after substituting $ a_1 a_4 = 1 + a_2 a_3$ we obtain the result
$$
detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 5
$$
$endgroup$
add a comment |
$begingroup$
By brute force, calling
$$
A = left(begin{array}{cc}a_1 & a_2 \ a_3 & a_4end{array}right)
$$
we have
$$
det A = 1to a_1 a_4 = 1 + a_2 a_3
$$
and also
$$
detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 2 a_4^2 a_1^2+a_4 a_1^2+a_4^2 a_1-a_2 a_3 a_1-4 a_2 a_3 a_4 a_1+a_4 a_1-a_1+2 a_2^2 a_3^2-a_2 a_3-a_2 a_3 a_4-a_4+2
$$
and after substituting $ a_1 a_4 = 1 + a_2 a_3$ we obtain the result
$$
detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 5
$$
$endgroup$
add a comment |
$begingroup$
By brute force, calling
$$
A = left(begin{array}{cc}a_1 & a_2 \ a_3 & a_4end{array}right)
$$
we have
$$
det A = 1to a_1 a_4 = 1 + a_2 a_3
$$
and also
$$
detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 2 a_4^2 a_1^2+a_4 a_1^2+a_4^2 a_1-a_2 a_3 a_1-4 a_2 a_3 a_4 a_1+a_4 a_1-a_1+2 a_2^2 a_3^2-a_2 a_3-a_2 a_3 a_4-a_4+2
$$
and after substituting $ a_1 a_4 = 1 + a_2 a_3$ we obtain the result
$$
detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 5
$$
$endgroup$
By brute force, calling
$$
A = left(begin{array}{cc}a_1 & a_2 \ a_3 & a_4end{array}right)
$$
we have
$$
det A = 1to a_1 a_4 = 1 + a_2 a_3
$$
and also
$$
detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 2 a_4^2 a_1^2+a_4 a_1^2+a_4^2 a_1-a_2 a_3 a_1-4 a_2 a_3 a_4 a_1+a_4 a_1-a_1+2 a_2^2 a_3^2-a_2 a_3-a_2 a_3 a_4-a_4+2
$$
and after substituting $ a_1 a_4 = 1 + a_2 a_3$ we obtain the result
$$
detleft(A^2+A-I_2right)+detleft(A^2+I_2right) = 5
$$
answered Dec 3 '18 at 23:07
CesareoCesareo
8,6093516
8,6093516
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024798%2fdeta2a-i-2-deta2i-2-5%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
It took me a while to decipher what you did wrong. The first error is the line after the Cayley-Hamilton Theorem, where you should have $det(text{tr}(A),A-det(A),I_2+A-I_2)$ for the first term. The second error is the line after $det(A+B)$. You should have $big(text{tr}(A)+1big)^2,det(A)$ for the first term, $big(-det(A)-1big)^2,det(I_2)$ for the second term, and then $det(A),big(text{tr}(A)+1big),big(-det(A)-1big),text{tr}(I^{-1},A)$ for the third term.
$endgroup$
– Batominovski
Dec 3 '18 at 23:06