Solve $intfrac{2x-3}{(x^2+x+1)^2}dx$
up vote
2
down vote
favorite
$intfrac{2x-3}{(x^2+x+1)^2}dx$
$intfrac{2x-3}{(x^2+x+1)^2}dx=intfrac{2x+1}{(x^2+x+1)^2}dx-intfrac{4}{(x^2+x+1)^2}dx$
First integral is easily integrable but substituting $x^2+x+1=t$ but i cannot integrate the second integral.
integration
add a comment |
up vote
2
down vote
favorite
$intfrac{2x-3}{(x^2+x+1)^2}dx$
$intfrac{2x-3}{(x^2+x+1)^2}dx=intfrac{2x+1}{(x^2+x+1)^2}dx-intfrac{4}{(x^2+x+1)^2}dx$
First integral is easily integrable but substituting $x^2+x+1=t$ but i cannot integrate the second integral.
integration
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
$intfrac{2x-3}{(x^2+x+1)^2}dx$
$intfrac{2x-3}{(x^2+x+1)^2}dx=intfrac{2x+1}{(x^2+x+1)^2}dx-intfrac{4}{(x^2+x+1)^2}dx$
First integral is easily integrable but substituting $x^2+x+1=t$ but i cannot integrate the second integral.
integration
$intfrac{2x-3}{(x^2+x+1)^2}dx$
$intfrac{2x-3}{(x^2+x+1)^2}dx=intfrac{2x+1}{(x^2+x+1)^2}dx-intfrac{4}{(x^2+x+1)^2}dx$
First integral is easily integrable but substituting $x^2+x+1=t$ but i cannot integrate the second integral.
integration
integration
asked Nov 23 at 13:34
user984325
15812
15812
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
5
down vote
accepted
Hint:
As $x^2+x+1=dfrac{(2x+1)^2+3}4,$ set $2x+1=sqrt3tan t$
add a comment |
up vote
3
down vote
$$dfrac{dleft(dfrac{ax^2+bx+c}{x^2+x+1}right)}{dx}=dfrac{(2ax+b)(x^2+x+1)-(ax^2+bx+c)(2x+1)}{(x^2+x+1)^2}$$
The numerator $(2ax+b)(x^2+x+1)-(ax^2+bx+c)(2x+1)=x^2(a-b)+x(2a+2c)+b-c$
If the numerator $2x-3,$
$a-b=0iff a=b$
$b-c=-3iff c=b+3$
$2(a+c)=2iff1=a+c=b+b+3iff b=-1$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010370%2fsolve-int-frac2x-3x2x12dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
accepted
Hint:
As $x^2+x+1=dfrac{(2x+1)^2+3}4,$ set $2x+1=sqrt3tan t$
add a comment |
up vote
5
down vote
accepted
Hint:
As $x^2+x+1=dfrac{(2x+1)^2+3}4,$ set $2x+1=sqrt3tan t$
add a comment |
up vote
5
down vote
accepted
up vote
5
down vote
accepted
Hint:
As $x^2+x+1=dfrac{(2x+1)^2+3}4,$ set $2x+1=sqrt3tan t$
Hint:
As $x^2+x+1=dfrac{(2x+1)^2+3}4,$ set $2x+1=sqrt3tan t$
answered Nov 23 at 13:36
lab bhattacharjee
222k15155273
222k15155273
add a comment |
add a comment |
up vote
3
down vote
$$dfrac{dleft(dfrac{ax^2+bx+c}{x^2+x+1}right)}{dx}=dfrac{(2ax+b)(x^2+x+1)-(ax^2+bx+c)(2x+1)}{(x^2+x+1)^2}$$
The numerator $(2ax+b)(x^2+x+1)-(ax^2+bx+c)(2x+1)=x^2(a-b)+x(2a+2c)+b-c$
If the numerator $2x-3,$
$a-b=0iff a=b$
$b-c=-3iff c=b+3$
$2(a+c)=2iff1=a+c=b+b+3iff b=-1$
add a comment |
up vote
3
down vote
$$dfrac{dleft(dfrac{ax^2+bx+c}{x^2+x+1}right)}{dx}=dfrac{(2ax+b)(x^2+x+1)-(ax^2+bx+c)(2x+1)}{(x^2+x+1)^2}$$
The numerator $(2ax+b)(x^2+x+1)-(ax^2+bx+c)(2x+1)=x^2(a-b)+x(2a+2c)+b-c$
If the numerator $2x-3,$
$a-b=0iff a=b$
$b-c=-3iff c=b+3$
$2(a+c)=2iff1=a+c=b+b+3iff b=-1$
add a comment |
up vote
3
down vote
up vote
3
down vote
$$dfrac{dleft(dfrac{ax^2+bx+c}{x^2+x+1}right)}{dx}=dfrac{(2ax+b)(x^2+x+1)-(ax^2+bx+c)(2x+1)}{(x^2+x+1)^2}$$
The numerator $(2ax+b)(x^2+x+1)-(ax^2+bx+c)(2x+1)=x^2(a-b)+x(2a+2c)+b-c$
If the numerator $2x-3,$
$a-b=0iff a=b$
$b-c=-3iff c=b+3$
$2(a+c)=2iff1=a+c=b+b+3iff b=-1$
$$dfrac{dleft(dfrac{ax^2+bx+c}{x^2+x+1}right)}{dx}=dfrac{(2ax+b)(x^2+x+1)-(ax^2+bx+c)(2x+1)}{(x^2+x+1)^2}$$
The numerator $(2ax+b)(x^2+x+1)-(ax^2+bx+c)(2x+1)=x^2(a-b)+x(2a+2c)+b-c$
If the numerator $2x-3,$
$a-b=0iff a=b$
$b-c=-3iff c=b+3$
$2(a+c)=2iff1=a+c=b+b+3iff b=-1$
answered Nov 23 at 13:48
lab bhattacharjee
222k15155273
222k15155273
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010370%2fsolve-int-frac2x-3x2x12dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown