Maclaurin expansion of $arctan(x)/(1 − x).$
$begingroup$
How was this Maclaurin expansion derived? For each $|x|<1,$
begin{align} left( frac{arctan(x)}{1-x} right)&=left( sum^{infty}_{k=0}x^kright)left(sum^{infty}_{j=0}dfrac{(-1)^j x^{2j+1}}{2j+1}right)\&= sum^{infty}_{k=0}left(sum_{jin D_k} dfrac{ (-1)^{j} }{2j+1}right)x^k,;text{where}; D_k={jin Bbb{N}:0leq jleq (k-1)/2}.end{align}
HERE'S MY TRIAL
begin{align} left( frac{arctan(x)}{1-x} right)&=left( sum^{infty}_{k=0}x^kright)left(sum^{infty}_{j=0}dfrac{(-1)^j x^{2j+1}}{2j+1}right)\&= sum^{infty}_{k=0}left(sum^{k}_{j=0} x^jdfrac{ (-1)^{(k-j)} x^{2(k-j)+1}}{2(k-j)+1}right),;text{for}; kin Bbb{N}\&stackrel{text{how?}}{=} sum^{infty}_{k=0}left(sum_{jin D_k} dfrac{ (-1)^{j} }{2j+1}right)x^k.end{align}
real-analysis calculus sequences-and-series analysis taylor-expansion
$endgroup$
add a comment |
$begingroup$
How was this Maclaurin expansion derived? For each $|x|<1,$
begin{align} left( frac{arctan(x)}{1-x} right)&=left( sum^{infty}_{k=0}x^kright)left(sum^{infty}_{j=0}dfrac{(-1)^j x^{2j+1}}{2j+1}right)\&= sum^{infty}_{k=0}left(sum_{jin D_k} dfrac{ (-1)^{j} }{2j+1}right)x^k,;text{where}; D_k={jin Bbb{N}:0leq jleq (k-1)/2}.end{align}
HERE'S MY TRIAL
begin{align} left( frac{arctan(x)}{1-x} right)&=left( sum^{infty}_{k=0}x^kright)left(sum^{infty}_{j=0}dfrac{(-1)^j x^{2j+1}}{2j+1}right)\&= sum^{infty}_{k=0}left(sum^{k}_{j=0} x^jdfrac{ (-1)^{(k-j)} x^{2(k-j)+1}}{2(k-j)+1}right),;text{for}; kin Bbb{N}\&stackrel{text{how?}}{=} sum^{infty}_{k=0}left(sum_{jin D_k} dfrac{ (-1)^{j} }{2j+1}right)x^k.end{align}
real-analysis calculus sequences-and-series analysis taylor-expansion
$endgroup$
1
$begingroup$
I'm not sure what you're asking here. Do you want a different expansion? This is a fairly straightforward approach.
$endgroup$
– robjohn♦
Jan 7 at 15:36
$begingroup$
@robjohn: I have edited it. Thanks.
$endgroup$
– Omojola Micheal
Jan 7 at 16:02
1
$begingroup$
Look up the Cauchy product.
$endgroup$
– Darks
Jan 7 at 16:30
add a comment |
$begingroup$
How was this Maclaurin expansion derived? For each $|x|<1,$
begin{align} left( frac{arctan(x)}{1-x} right)&=left( sum^{infty}_{k=0}x^kright)left(sum^{infty}_{j=0}dfrac{(-1)^j x^{2j+1}}{2j+1}right)\&= sum^{infty}_{k=0}left(sum_{jin D_k} dfrac{ (-1)^{j} }{2j+1}right)x^k,;text{where}; D_k={jin Bbb{N}:0leq jleq (k-1)/2}.end{align}
HERE'S MY TRIAL
begin{align} left( frac{arctan(x)}{1-x} right)&=left( sum^{infty}_{k=0}x^kright)left(sum^{infty}_{j=0}dfrac{(-1)^j x^{2j+1}}{2j+1}right)\&= sum^{infty}_{k=0}left(sum^{k}_{j=0} x^jdfrac{ (-1)^{(k-j)} x^{2(k-j)+1}}{2(k-j)+1}right),;text{for}; kin Bbb{N}\&stackrel{text{how?}}{=} sum^{infty}_{k=0}left(sum_{jin D_k} dfrac{ (-1)^{j} }{2j+1}right)x^k.end{align}
real-analysis calculus sequences-and-series analysis taylor-expansion
$endgroup$
How was this Maclaurin expansion derived? For each $|x|<1,$
begin{align} left( frac{arctan(x)}{1-x} right)&=left( sum^{infty}_{k=0}x^kright)left(sum^{infty}_{j=0}dfrac{(-1)^j x^{2j+1}}{2j+1}right)\&= sum^{infty}_{k=0}left(sum_{jin D_k} dfrac{ (-1)^{j} }{2j+1}right)x^k,;text{where}; D_k={jin Bbb{N}:0leq jleq (k-1)/2}.end{align}
HERE'S MY TRIAL
begin{align} left( frac{arctan(x)}{1-x} right)&=left( sum^{infty}_{k=0}x^kright)left(sum^{infty}_{j=0}dfrac{(-1)^j x^{2j+1}}{2j+1}right)\&= sum^{infty}_{k=0}left(sum^{k}_{j=0} x^jdfrac{ (-1)^{(k-j)} x^{2(k-j)+1}}{2(k-j)+1}right),;text{for}; kin Bbb{N}\&stackrel{text{how?}}{=} sum^{infty}_{k=0}left(sum_{jin D_k} dfrac{ (-1)^{j} }{2j+1}right)x^k.end{align}
real-analysis calculus sequences-and-series analysis taylor-expansion
real-analysis calculus sequences-and-series analysis taylor-expansion
edited Jan 7 at 22:49
Matemáticos Chibchas
5,44322141
5,44322141
asked Jan 7 at 14:33
Omojola MichealOmojola Micheal
2,064424
2,064424
1
$begingroup$
I'm not sure what you're asking here. Do you want a different expansion? This is a fairly straightforward approach.
$endgroup$
– robjohn♦
Jan 7 at 15:36
$begingroup$
@robjohn: I have edited it. Thanks.
$endgroup$
– Omojola Micheal
Jan 7 at 16:02
1
$begingroup$
Look up the Cauchy product.
$endgroup$
– Darks
Jan 7 at 16:30
add a comment |
1
$begingroup$
I'm not sure what you're asking here. Do you want a different expansion? This is a fairly straightforward approach.
$endgroup$
– robjohn♦
Jan 7 at 15:36
$begingroup$
@robjohn: I have edited it. Thanks.
$endgroup$
– Omojola Micheal
Jan 7 at 16:02
1
$begingroup$
Look up the Cauchy product.
$endgroup$
– Darks
Jan 7 at 16:30
1
1
$begingroup$
I'm not sure what you're asking here. Do you want a different expansion? This is a fairly straightforward approach.
$endgroup$
– robjohn♦
Jan 7 at 15:36
$begingroup$
I'm not sure what you're asking here. Do you want a different expansion? This is a fairly straightforward approach.
$endgroup$
– robjohn♦
Jan 7 at 15:36
$begingroup$
@robjohn: I have edited it. Thanks.
$endgroup$
– Omojola Micheal
Jan 7 at 16:02
$begingroup$
@robjohn: I have edited it. Thanks.
$endgroup$
– Omojola Micheal
Jan 7 at 16:02
1
1
$begingroup$
Look up the Cauchy product.
$endgroup$
– Darks
Jan 7 at 16:30
$begingroup$
Look up the Cauchy product.
$endgroup$
– Darks
Jan 7 at 16:30
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The idea here is to use the Cauchy Product. However, since one series has exponents of $k$ and the other series has exponents of $2j+1$, we need to extract the essence of the product formula: that is, for a given $m$, the products of which terms give $x^m$? That would be when $k+2j+1=m$. Thus, the coefficient of $x^m$ in the final product is
$$
sum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{vphantom{b} a_{m-2j-1} }^{substack{text{coefficient}\text{of $x^{m-2j-1}$}}}overbrace{ b_j }^{substack{text{coefficient}\text{of $x^{2j+1}$}}}
$$
That is,
$$
sum_{k=0}^infty a_kx^ksum_{j=0}^infty b_jx^{2j+1}
=sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}a_{m-2j-1}b_jx^m
$$
Since $a_k=1$ for all $kge0$, we have
$$
sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{ frac{(-1)^j}{2j+1} }^{b_j}x^m
$$
$endgroup$
$begingroup$
(+1) Thanks for the correction.
$endgroup$
– Omojola Micheal
Jan 8 at 5:35
add a comment |
$begingroup$
Corrected: Thanks to robjohn for the mentorship. Since
begin{align} left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^jright)&=sum^{infty}_{r=0}left( sum^{r}_{j=0}b_j a_{r-j} right)x^{r},;text{where}; r=k+j;text{and};rinBbb{N},.end{align}
we have that,
begin{align} left( frac{arctan x }{1-x} right)&=left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^{2j+1}right)\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}b_j a_{gamma-2j-1} right)x^{gamma},;text{where}; gamma=k+2j+1;text{and};gammainBbb{N},\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}dfrac{ (-1)^{j} }{2j+1} right)x^{gamma},\&= sum^{infty}_{gamma=0}left(sum_{jin D_gamma} dfrac{ (-1)^{j} }{2j+1}right)x^gamma.end{align}
where $D_gamma={jin Bbb{N}:0leq jleq (gamma-1)/2},;a_{gamma-2j-1} =1,,jin D_gamma ,;b_j= (-1)^{j} /(2j+1).$
$endgroup$
$begingroup$
In the last set of equations, the second line is wrong for exponents $k$ and $2j+1$, and the upper limit in the inner sum on the third line does not make sense because $j$ is the variable of iteration. It is not obvious how $frac{gamma-1}2$ appears in the fourth line (especially since that line says $gamma=k+2j+1$ which is the upper limit in the prevous line).
$endgroup$
– robjohn♦
Jan 7 at 23:29
$begingroup$
@robjohn: Will fix it.
$endgroup$
– Omojola Micheal
Jan 7 at 23:30
$begingroup$
@robjohn: I have fixed it. Thank you!
$endgroup$
– Omojola Micheal
Jan 8 at 5:20
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065071%2fmaclaurin-expansion-of-arctanx-1-%25e2%2588%2592-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The idea here is to use the Cauchy Product. However, since one series has exponents of $k$ and the other series has exponents of $2j+1$, we need to extract the essence of the product formula: that is, for a given $m$, the products of which terms give $x^m$? That would be when $k+2j+1=m$. Thus, the coefficient of $x^m$ in the final product is
$$
sum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{vphantom{b} a_{m-2j-1} }^{substack{text{coefficient}\text{of $x^{m-2j-1}$}}}overbrace{ b_j }^{substack{text{coefficient}\text{of $x^{2j+1}$}}}
$$
That is,
$$
sum_{k=0}^infty a_kx^ksum_{j=0}^infty b_jx^{2j+1}
=sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}a_{m-2j-1}b_jx^m
$$
Since $a_k=1$ for all $kge0$, we have
$$
sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{ frac{(-1)^j}{2j+1} }^{b_j}x^m
$$
$endgroup$
$begingroup$
(+1) Thanks for the correction.
$endgroup$
– Omojola Micheal
Jan 8 at 5:35
add a comment |
$begingroup$
The idea here is to use the Cauchy Product. However, since one series has exponents of $k$ and the other series has exponents of $2j+1$, we need to extract the essence of the product formula: that is, for a given $m$, the products of which terms give $x^m$? That would be when $k+2j+1=m$. Thus, the coefficient of $x^m$ in the final product is
$$
sum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{vphantom{b} a_{m-2j-1} }^{substack{text{coefficient}\text{of $x^{m-2j-1}$}}}overbrace{ b_j }^{substack{text{coefficient}\text{of $x^{2j+1}$}}}
$$
That is,
$$
sum_{k=0}^infty a_kx^ksum_{j=0}^infty b_jx^{2j+1}
=sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}a_{m-2j-1}b_jx^m
$$
Since $a_k=1$ for all $kge0$, we have
$$
sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{ frac{(-1)^j}{2j+1} }^{b_j}x^m
$$
$endgroup$
$begingroup$
(+1) Thanks for the correction.
$endgroup$
– Omojola Micheal
Jan 8 at 5:35
add a comment |
$begingroup$
The idea here is to use the Cauchy Product. However, since one series has exponents of $k$ and the other series has exponents of $2j+1$, we need to extract the essence of the product formula: that is, for a given $m$, the products of which terms give $x^m$? That would be when $k+2j+1=m$. Thus, the coefficient of $x^m$ in the final product is
$$
sum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{vphantom{b} a_{m-2j-1} }^{substack{text{coefficient}\text{of $x^{m-2j-1}$}}}overbrace{ b_j }^{substack{text{coefficient}\text{of $x^{2j+1}$}}}
$$
That is,
$$
sum_{k=0}^infty a_kx^ksum_{j=0}^infty b_jx^{2j+1}
=sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}a_{m-2j-1}b_jx^m
$$
Since $a_k=1$ for all $kge0$, we have
$$
sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{ frac{(-1)^j}{2j+1} }^{b_j}x^m
$$
$endgroup$
The idea here is to use the Cauchy Product. However, since one series has exponents of $k$ and the other series has exponents of $2j+1$, we need to extract the essence of the product formula: that is, for a given $m$, the products of which terms give $x^m$? That would be when $k+2j+1=m$. Thus, the coefficient of $x^m$ in the final product is
$$
sum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{vphantom{b} a_{m-2j-1} }^{substack{text{coefficient}\text{of $x^{m-2j-1}$}}}overbrace{ b_j }^{substack{text{coefficient}\text{of $x^{2j+1}$}}}
$$
That is,
$$
sum_{k=0}^infty a_kx^ksum_{j=0}^infty b_jx^{2j+1}
=sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}a_{m-2j-1}b_jx^m
$$
Since $a_k=1$ for all $kge0$, we have
$$
sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{ frac{(-1)^j}{2j+1} }^{b_j}x^m
$$
answered Jan 7 at 17:36
robjohn♦robjohn
271k27313642
271k27313642
$begingroup$
(+1) Thanks for the correction.
$endgroup$
– Omojola Micheal
Jan 8 at 5:35
add a comment |
$begingroup$
(+1) Thanks for the correction.
$endgroup$
– Omojola Micheal
Jan 8 at 5:35
$begingroup$
(+1) Thanks for the correction.
$endgroup$
– Omojola Micheal
Jan 8 at 5:35
$begingroup$
(+1) Thanks for the correction.
$endgroup$
– Omojola Micheal
Jan 8 at 5:35
add a comment |
$begingroup$
Corrected: Thanks to robjohn for the mentorship. Since
begin{align} left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^jright)&=sum^{infty}_{r=0}left( sum^{r}_{j=0}b_j a_{r-j} right)x^{r},;text{where}; r=k+j;text{and};rinBbb{N},.end{align}
we have that,
begin{align} left( frac{arctan x }{1-x} right)&=left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^{2j+1}right)\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}b_j a_{gamma-2j-1} right)x^{gamma},;text{where}; gamma=k+2j+1;text{and};gammainBbb{N},\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}dfrac{ (-1)^{j} }{2j+1} right)x^{gamma},\&= sum^{infty}_{gamma=0}left(sum_{jin D_gamma} dfrac{ (-1)^{j} }{2j+1}right)x^gamma.end{align}
where $D_gamma={jin Bbb{N}:0leq jleq (gamma-1)/2},;a_{gamma-2j-1} =1,,jin D_gamma ,;b_j= (-1)^{j} /(2j+1).$
$endgroup$
$begingroup$
In the last set of equations, the second line is wrong for exponents $k$ and $2j+1$, and the upper limit in the inner sum on the third line does not make sense because $j$ is the variable of iteration. It is not obvious how $frac{gamma-1}2$ appears in the fourth line (especially since that line says $gamma=k+2j+1$ which is the upper limit in the prevous line).
$endgroup$
– robjohn♦
Jan 7 at 23:29
$begingroup$
@robjohn: Will fix it.
$endgroup$
– Omojola Micheal
Jan 7 at 23:30
$begingroup$
@robjohn: I have fixed it. Thank you!
$endgroup$
– Omojola Micheal
Jan 8 at 5:20
add a comment |
$begingroup$
Corrected: Thanks to robjohn for the mentorship. Since
begin{align} left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^jright)&=sum^{infty}_{r=0}left( sum^{r}_{j=0}b_j a_{r-j} right)x^{r},;text{where}; r=k+j;text{and};rinBbb{N},.end{align}
we have that,
begin{align} left( frac{arctan x }{1-x} right)&=left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^{2j+1}right)\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}b_j a_{gamma-2j-1} right)x^{gamma},;text{where}; gamma=k+2j+1;text{and};gammainBbb{N},\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}dfrac{ (-1)^{j} }{2j+1} right)x^{gamma},\&= sum^{infty}_{gamma=0}left(sum_{jin D_gamma} dfrac{ (-1)^{j} }{2j+1}right)x^gamma.end{align}
where $D_gamma={jin Bbb{N}:0leq jleq (gamma-1)/2},;a_{gamma-2j-1} =1,,jin D_gamma ,;b_j= (-1)^{j} /(2j+1).$
$endgroup$
$begingroup$
In the last set of equations, the second line is wrong for exponents $k$ and $2j+1$, and the upper limit in the inner sum on the third line does not make sense because $j$ is the variable of iteration. It is not obvious how $frac{gamma-1}2$ appears in the fourth line (especially since that line says $gamma=k+2j+1$ which is the upper limit in the prevous line).
$endgroup$
– robjohn♦
Jan 7 at 23:29
$begingroup$
@robjohn: Will fix it.
$endgroup$
– Omojola Micheal
Jan 7 at 23:30
$begingroup$
@robjohn: I have fixed it. Thank you!
$endgroup$
– Omojola Micheal
Jan 8 at 5:20
add a comment |
$begingroup$
Corrected: Thanks to robjohn for the mentorship. Since
begin{align} left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^jright)&=sum^{infty}_{r=0}left( sum^{r}_{j=0}b_j a_{r-j} right)x^{r},;text{where}; r=k+j;text{and};rinBbb{N},.end{align}
we have that,
begin{align} left( frac{arctan x }{1-x} right)&=left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^{2j+1}right)\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}b_j a_{gamma-2j-1} right)x^{gamma},;text{where}; gamma=k+2j+1;text{and};gammainBbb{N},\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}dfrac{ (-1)^{j} }{2j+1} right)x^{gamma},\&= sum^{infty}_{gamma=0}left(sum_{jin D_gamma} dfrac{ (-1)^{j} }{2j+1}right)x^gamma.end{align}
where $D_gamma={jin Bbb{N}:0leq jleq (gamma-1)/2},;a_{gamma-2j-1} =1,,jin D_gamma ,;b_j= (-1)^{j} /(2j+1).$
$endgroup$
Corrected: Thanks to robjohn for the mentorship. Since
begin{align} left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^jright)&=sum^{infty}_{r=0}left( sum^{r}_{j=0}b_j a_{r-j} right)x^{r},;text{where}; r=k+j;text{and};rinBbb{N},.end{align}
we have that,
begin{align} left( frac{arctan x }{1-x} right)&=left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^{2j+1}right)\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}b_j a_{gamma-2j-1} right)x^{gamma},;text{where}; gamma=k+2j+1;text{and};gammainBbb{N},\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}dfrac{ (-1)^{j} }{2j+1} right)x^{gamma},\&= sum^{infty}_{gamma=0}left(sum_{jin D_gamma} dfrac{ (-1)^{j} }{2j+1}right)x^gamma.end{align}
where $D_gamma={jin Bbb{N}:0leq jleq (gamma-1)/2},;a_{gamma-2j-1} =1,,jin D_gamma ,;b_j= (-1)^{j} /(2j+1).$
edited Jan 8 at 11:30
answered Jan 7 at 21:57
Omojola MichealOmojola Micheal
2,064424
2,064424
$begingroup$
In the last set of equations, the second line is wrong for exponents $k$ and $2j+1$, and the upper limit in the inner sum on the third line does not make sense because $j$ is the variable of iteration. It is not obvious how $frac{gamma-1}2$ appears in the fourth line (especially since that line says $gamma=k+2j+1$ which is the upper limit in the prevous line).
$endgroup$
– robjohn♦
Jan 7 at 23:29
$begingroup$
@robjohn: Will fix it.
$endgroup$
– Omojola Micheal
Jan 7 at 23:30
$begingroup$
@robjohn: I have fixed it. Thank you!
$endgroup$
– Omojola Micheal
Jan 8 at 5:20
add a comment |
$begingroup$
In the last set of equations, the second line is wrong for exponents $k$ and $2j+1$, and the upper limit in the inner sum on the third line does not make sense because $j$ is the variable of iteration. It is not obvious how $frac{gamma-1}2$ appears in the fourth line (especially since that line says $gamma=k+2j+1$ which is the upper limit in the prevous line).
$endgroup$
– robjohn♦
Jan 7 at 23:29
$begingroup$
@robjohn: Will fix it.
$endgroup$
– Omojola Micheal
Jan 7 at 23:30
$begingroup$
@robjohn: I have fixed it. Thank you!
$endgroup$
– Omojola Micheal
Jan 8 at 5:20
$begingroup$
In the last set of equations, the second line is wrong for exponents $k$ and $2j+1$, and the upper limit in the inner sum on the third line does not make sense because $j$ is the variable of iteration. It is not obvious how $frac{gamma-1}2$ appears in the fourth line (especially since that line says $gamma=k+2j+1$ which is the upper limit in the prevous line).
$endgroup$
– robjohn♦
Jan 7 at 23:29
$begingroup$
In the last set of equations, the second line is wrong for exponents $k$ and $2j+1$, and the upper limit in the inner sum on the third line does not make sense because $j$ is the variable of iteration. It is not obvious how $frac{gamma-1}2$ appears in the fourth line (especially since that line says $gamma=k+2j+1$ which is the upper limit in the prevous line).
$endgroup$
– robjohn♦
Jan 7 at 23:29
$begingroup$
@robjohn: Will fix it.
$endgroup$
– Omojola Micheal
Jan 7 at 23:30
$begingroup$
@robjohn: Will fix it.
$endgroup$
– Omojola Micheal
Jan 7 at 23:30
$begingroup$
@robjohn: I have fixed it. Thank you!
$endgroup$
– Omojola Micheal
Jan 8 at 5:20
$begingroup$
@robjohn: I have fixed it. Thank you!
$endgroup$
– Omojola Micheal
Jan 8 at 5:20
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065071%2fmaclaurin-expansion-of-arctanx-1-%25e2%2588%2592-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
I'm not sure what you're asking here. Do you want a different expansion? This is a fairly straightforward approach.
$endgroup$
– robjohn♦
Jan 7 at 15:36
$begingroup$
@robjohn: I have edited it. Thanks.
$endgroup$
– Omojola Micheal
Jan 7 at 16:02
1
$begingroup$
Look up the Cauchy product.
$endgroup$
– Darks
Jan 7 at 16:30