Solving $int^{+ infty}_{- infty} exp(-x-e^{-x})dx= frac{1}{c}$











up vote
1
down vote

favorite












I need to solve an equation.
$int^{+ infty}_{- infty} exp(-x-e^{-x})dx= frac{1}{c}$



I know that
$int^{+infty}_{-infty} exp(-x-e^{-x})dx= lim_{a rightarrow -infty} int^{0}_{a} exp(-x-e^{-x})dx + lim_{b {rightarrow infty}} int^{b}_{0} exp(-x-e^{-x})dx$



Can somebody explain step by step how to integrate $int lim_{a rightarrow -infty} int^{a}_{0} exp(-x-e^{-x})dx $
I used variable exchange method and I got
$lim_{a rightarrow -infty} (e-e^{-a})$.



Is it right? But how to solve this limit?










share|cite|improve this question
























  • Are you sure about your limit expansion? Should they not be $a rightarrow infty$ and $b rightarrow -infty$?
    – Easymode44
    Nov 19 at 11:30















up vote
1
down vote

favorite












I need to solve an equation.
$int^{+ infty}_{- infty} exp(-x-e^{-x})dx= frac{1}{c}$



I know that
$int^{+infty}_{-infty} exp(-x-e^{-x})dx= lim_{a rightarrow -infty} int^{0}_{a} exp(-x-e^{-x})dx + lim_{b {rightarrow infty}} int^{b}_{0} exp(-x-e^{-x})dx$



Can somebody explain step by step how to integrate $int lim_{a rightarrow -infty} int^{a}_{0} exp(-x-e^{-x})dx $
I used variable exchange method and I got
$lim_{a rightarrow -infty} (e-e^{-a})$.



Is it right? But how to solve this limit?










share|cite|improve this question
























  • Are you sure about your limit expansion? Should they not be $a rightarrow infty$ and $b rightarrow -infty$?
    – Easymode44
    Nov 19 at 11:30













up vote
1
down vote

favorite









up vote
1
down vote

favorite











I need to solve an equation.
$int^{+ infty}_{- infty} exp(-x-e^{-x})dx= frac{1}{c}$



I know that
$int^{+infty}_{-infty} exp(-x-e^{-x})dx= lim_{a rightarrow -infty} int^{0}_{a} exp(-x-e^{-x})dx + lim_{b {rightarrow infty}} int^{b}_{0} exp(-x-e^{-x})dx$



Can somebody explain step by step how to integrate $int lim_{a rightarrow -infty} int^{a}_{0} exp(-x-e^{-x})dx $
I used variable exchange method and I got
$lim_{a rightarrow -infty} (e-e^{-a})$.



Is it right? But how to solve this limit?










share|cite|improve this question















I need to solve an equation.
$int^{+ infty}_{- infty} exp(-x-e^{-x})dx= frac{1}{c}$



I know that
$int^{+infty}_{-infty} exp(-x-e^{-x})dx= lim_{a rightarrow -infty} int^{0}_{a} exp(-x-e^{-x})dx + lim_{b {rightarrow infty}} int^{b}_{0} exp(-x-e^{-x})dx$



Can somebody explain step by step how to integrate $int lim_{a rightarrow -infty} int^{a}_{0} exp(-x-e^{-x})dx $
I used variable exchange method and I got
$lim_{a rightarrow -infty} (e-e^{-a})$.



Is it right? But how to solve this limit?







probability integration limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 19 at 11:47









amWhy

191k27223439




191k27223439










asked Nov 19 at 10:06









Atstovas

466




466












  • Are you sure about your limit expansion? Should they not be $a rightarrow infty$ and $b rightarrow -infty$?
    – Easymode44
    Nov 19 at 11:30


















  • Are you sure about your limit expansion? Should they not be $a rightarrow infty$ and $b rightarrow -infty$?
    – Easymode44
    Nov 19 at 11:30
















Are you sure about your limit expansion? Should they not be $a rightarrow infty$ and $b rightarrow -infty$?
– Easymode44
Nov 19 at 11:30




Are you sure about your limit expansion? Should they not be $a rightarrow infty$ and $b rightarrow -infty$?
– Easymode44
Nov 19 at 11:30










2 Answers
2






active

oldest

votes

















up vote
6
down vote













This isn't an integral equation---it's just doing an integral. Change variable $u=e^{-x}$, and you get 1.






share|cite|improve this answer




























    up vote
    1
    down vote













    we have:
    $$I=intexpleft(-x-e^{-x}right)dx$$
    $$=int e^{-x-e^{-x}}dx$$
    $u=e^{-x}$ so $dx=frac{du}{-e^{-x}}$
    $$I=-int e^{-u}du=e^{-u}+C=e^{-e^{-x}}+C$$
    now put in limits






    share|cite|improve this answer























      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004740%2fsolving-int-infty-infty-exp-x-e-xdx-frac1c%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      6
      down vote













      This isn't an integral equation---it's just doing an integral. Change variable $u=e^{-x}$, and you get 1.






      share|cite|improve this answer

























        up vote
        6
        down vote













        This isn't an integral equation---it's just doing an integral. Change variable $u=e^{-x}$, and you get 1.






        share|cite|improve this answer























          up vote
          6
          down vote










          up vote
          6
          down vote









          This isn't an integral equation---it's just doing an integral. Change variable $u=e^{-x}$, and you get 1.






          share|cite|improve this answer












          This isn't an integral equation---it's just doing an integral. Change variable $u=e^{-x}$, and you get 1.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 19 at 10:12









          Richard Martin

          1,6328




          1,6328






















              up vote
              1
              down vote













              we have:
              $$I=intexpleft(-x-e^{-x}right)dx$$
              $$=int e^{-x-e^{-x}}dx$$
              $u=e^{-x}$ so $dx=frac{du}{-e^{-x}}$
              $$I=-int e^{-u}du=e^{-u}+C=e^{-e^{-x}}+C$$
              now put in limits






              share|cite|improve this answer



























                up vote
                1
                down vote













                we have:
                $$I=intexpleft(-x-e^{-x}right)dx$$
                $$=int e^{-x-e^{-x}}dx$$
                $u=e^{-x}$ so $dx=frac{du}{-e^{-x}}$
                $$I=-int e^{-u}du=e^{-u}+C=e^{-e^{-x}}+C$$
                now put in limits






                share|cite|improve this answer

























                  up vote
                  1
                  down vote










                  up vote
                  1
                  down vote









                  we have:
                  $$I=intexpleft(-x-e^{-x}right)dx$$
                  $$=int e^{-x-e^{-x}}dx$$
                  $u=e^{-x}$ so $dx=frac{du}{-e^{-x}}$
                  $$I=-int e^{-u}du=e^{-u}+C=e^{-e^{-x}}+C$$
                  now put in limits






                  share|cite|improve this answer














                  we have:
                  $$I=intexpleft(-x-e^{-x}right)dx$$
                  $$=int e^{-x-e^{-x}}dx$$
                  $u=e^{-x}$ so $dx=frac{du}{-e^{-x}}$
                  $$I=-int e^{-u}du=e^{-u}+C=e^{-e^{-x}}+C$$
                  now put in limits







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Nov 21 at 0:16









                  Batominovski

                  32.1k23190




                  32.1k23190










                  answered Nov 21 at 0:09









                  Henry Lee

                  1,692218




                  1,692218






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004740%2fsolving-int-infty-infty-exp-x-e-xdx-frac1c%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Probability when a professor distributes a quiz and homework assignment to a class of n students.

                      Aardman Animations

                      Are they similar matrix