Finding a distribution function of random variable sum
$begingroup$
Let $xi_1, xi_2, xi_3$ independent random variables in $(Omega, mathcal{F},mathbb{P}).$ Also, they are evenly distributed in $[0,1]$. I need to find a distribution function of sum $xi_1+ xi_2+ xi_3$.
So, I know that $F_{xi}(x)=mathbb{P}(omega : xi(omega leq x)=mathbb{P}(xi leq x)=mathbb{P}(xi^{-1}(-infty;x])$. Also I know that $mathbb{P}(xi_1,xi_2,xi_3)=mathbb{P}(xi_1)* mathbb{P}(xi_1)* mathbb{P}(xi_1)$.
But how to use it and find a distribution function?
probability probability-theory probability-distributions random-variables
$endgroup$
add a comment |
$begingroup$
Let $xi_1, xi_2, xi_3$ independent random variables in $(Omega, mathcal{F},mathbb{P}).$ Also, they are evenly distributed in $[0,1]$. I need to find a distribution function of sum $xi_1+ xi_2+ xi_3$.
So, I know that $F_{xi}(x)=mathbb{P}(omega : xi(omega leq x)=mathbb{P}(xi leq x)=mathbb{P}(xi^{-1}(-infty;x])$. Also I know that $mathbb{P}(xi_1,xi_2,xi_3)=mathbb{P}(xi_1)* mathbb{P}(xi_1)* mathbb{P}(xi_1)$.
But how to use it and find a distribution function?
probability probability-theory probability-distributions random-variables
$endgroup$
add a comment |
$begingroup$
Let $xi_1, xi_2, xi_3$ independent random variables in $(Omega, mathcal{F},mathbb{P}).$ Also, they are evenly distributed in $[0,1]$. I need to find a distribution function of sum $xi_1+ xi_2+ xi_3$.
So, I know that $F_{xi}(x)=mathbb{P}(omega : xi(omega leq x)=mathbb{P}(xi leq x)=mathbb{P}(xi^{-1}(-infty;x])$. Also I know that $mathbb{P}(xi_1,xi_2,xi_3)=mathbb{P}(xi_1)* mathbb{P}(xi_1)* mathbb{P}(xi_1)$.
But how to use it and find a distribution function?
probability probability-theory probability-distributions random-variables
$endgroup$
Let $xi_1, xi_2, xi_3$ independent random variables in $(Omega, mathcal{F},mathbb{P}).$ Also, they are evenly distributed in $[0,1]$. I need to find a distribution function of sum $xi_1+ xi_2+ xi_3$.
So, I know that $F_{xi}(x)=mathbb{P}(omega : xi(omega leq x)=mathbb{P}(xi leq x)=mathbb{P}(xi^{-1}(-infty;x])$. Also I know that $mathbb{P}(xi_1,xi_2,xi_3)=mathbb{P}(xi_1)* mathbb{P}(xi_1)* mathbb{P}(xi_1)$.
But how to use it and find a distribution function?
probability probability-theory probability-distributions random-variables
probability probability-theory probability-distributions random-variables
asked Dec 10 '18 at 6:50
AtstovasAtstovas
1089
1089
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Convolution of two distributions.
$t_{x_0} = 0$
$t_{x_1} = 1$
$t_{h_0} = 0$
$t_{h_1} = 1$
Thus $$f_Y(t) = 0, t le t_{x_0}+t_{h_0} ,$$
$$f_Y(t) = int_{max(t_{h_0}, t-t_{x_1})}^{min(t_{h_1}, t-t_{x_0})} f_X(tau)f_H(t-tau)dtau, text{ } t_{x_0}+t_{h_0} le t le t_{x_1}+t_{h_1},$$
$$f_Y(t) = 0, t ge t_{x_1}+t_{h_1} ,$$
THese translate to the following solution
First convolve two uniform distributions
$X(t) ~ U(0,1)$ and $H(t) ~ U(0,1)$
$$Y(t) = x(t).h(t) = int_{-infty}^{infty} x(tau)h(t-tau)dtau$$
The above convolution reduces to
$y(t) = 0, tlt 0$
$y(t) = int_{max(0,t-1)}^{min(1,t)} dtau , 0lt t lt 2$,
$y(t) = 0 , t gt 2$
The middle one will have to split into two intervals, namely $0lt t lt 1$ and $1lt t lt 2$
$y(t) = 0, tlt 0$
$y(t) = int_{0}^{t} dtau =t, 0lt tlt 1$,
$y(t) = int_{t-1}^{1} dtau = 2-t, 1lt tlt 2$,
$y(t) = 0 , t gt 2$
Now $W(t) = Y(t). S(t)$ where $S(t) ~U(0,1)$
For $0lt tlt 1$, the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 0$
$t_{y_1} = 1$
$$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau = int_{0}^{t}tau dtau = frac{t^2}{2}, 0lt tlt 1$$,
For $1lt tlt 2$, $S(t)$ convolves with $Y(t)$ on two intervals namely $(0,1)$ and $(1,2)$. For the interval $(0,1)$ the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 0$
$t_{y_1} = 1$
and for the interval $(1,2)$ the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 1$
$t_{y_1} = 2$
Thus $$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau + int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau$$ $$ = int_{t-1}^{1}tau dtau + int_{1}^{t}(2-tau) dtau$$ $$ = -frac{1}{2}(2t^2-6t+3), 1lt tlt 2$$,
For $2lt tlt 3$, $S(t)$ convolves with $Y(t)$ on $(1,2)$. For the interval $(1,2)$ the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 1$
$t_{y_1} = 2$
Thus $$W(t) = int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau $$ $$ = int_{t-1}^{2} (2- tau) dtau$$ $$ = frac{(t-3)^2}{2}, 2lt t lt 3$$
and finally $W(t) = 0, tgt 3$
Thus the $W(t)$ is defined by
$W(t) = 0 , tlt 0$
$W(t) = frac{t^2}{2}, 0lt t lt 1$
$W(t) = -t^2+3t-frac{3}{2}, 1lt t lt 2$
$W(t) = frac{(t-3)^2}{2}, 2lt t lt 3$
$W(t) = 0 , tgt 3$
$endgroup$
add a comment |
$begingroup$
One way is (I used $Z$ instead of $xi$)$$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{min(z,,1)}int_{z_2=0}^{min(z-z_3,,1)}int_{z_1=0}^{min(z-z_2-z_3,,1)}dz_1,dz_2,dz_3$$
$endgroup$
$begingroup$
How to integrate this?
$endgroup$
– Atstovas
Dec 10 '18 at 9:00
$begingroup$
I guess you need to find the possible cases. The simplest one is when $z < 1$. In this case, the upper limits are $z, ,z-z_3,,z-z_2-z_3$. For $zgeq 1$ there are more cases.
$endgroup$
– BlackMath
Dec 10 '18 at 9:24
$begingroup$
A similar questions is found here math.stackexchange.com/questions/2631501/…
$endgroup$
– BlackMath
Dec 10 '18 at 9:32
$begingroup$
can you show your solution when $z<1$?
$endgroup$
– Atstovas
Dec 11 '18 at 17:40
$begingroup$
It will be $$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{z}int_{z_2=0}^{z-z_3}int_{z_1=0}^{z-z_2-z_3}dz_1,dz_2,dz_3$$ Can you solve this? I suppose it's straightforward. Start from the most inner integral.
$endgroup$
– BlackMath
Dec 11 '18 at 23:52
|
show 2 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033555%2ffinding-a-distribution-function-of-random-variable-sum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Convolution of two distributions.
$t_{x_0} = 0$
$t_{x_1} = 1$
$t_{h_0} = 0$
$t_{h_1} = 1$
Thus $$f_Y(t) = 0, t le t_{x_0}+t_{h_0} ,$$
$$f_Y(t) = int_{max(t_{h_0}, t-t_{x_1})}^{min(t_{h_1}, t-t_{x_0})} f_X(tau)f_H(t-tau)dtau, text{ } t_{x_0}+t_{h_0} le t le t_{x_1}+t_{h_1},$$
$$f_Y(t) = 0, t ge t_{x_1}+t_{h_1} ,$$
THese translate to the following solution
First convolve two uniform distributions
$X(t) ~ U(0,1)$ and $H(t) ~ U(0,1)$
$$Y(t) = x(t).h(t) = int_{-infty}^{infty} x(tau)h(t-tau)dtau$$
The above convolution reduces to
$y(t) = 0, tlt 0$
$y(t) = int_{max(0,t-1)}^{min(1,t)} dtau , 0lt t lt 2$,
$y(t) = 0 , t gt 2$
The middle one will have to split into two intervals, namely $0lt t lt 1$ and $1lt t lt 2$
$y(t) = 0, tlt 0$
$y(t) = int_{0}^{t} dtau =t, 0lt tlt 1$,
$y(t) = int_{t-1}^{1} dtau = 2-t, 1lt tlt 2$,
$y(t) = 0 , t gt 2$
Now $W(t) = Y(t). S(t)$ where $S(t) ~U(0,1)$
For $0lt tlt 1$, the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 0$
$t_{y_1} = 1$
$$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau = int_{0}^{t}tau dtau = frac{t^2}{2}, 0lt tlt 1$$,
For $1lt tlt 2$, $S(t)$ convolves with $Y(t)$ on two intervals namely $(0,1)$ and $(1,2)$. For the interval $(0,1)$ the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 0$
$t_{y_1} = 1$
and for the interval $(1,2)$ the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 1$
$t_{y_1} = 2$
Thus $$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau + int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau$$ $$ = int_{t-1}^{1}tau dtau + int_{1}^{t}(2-tau) dtau$$ $$ = -frac{1}{2}(2t^2-6t+3), 1lt tlt 2$$,
For $2lt tlt 3$, $S(t)$ convolves with $Y(t)$ on $(1,2)$. For the interval $(1,2)$ the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 1$
$t_{y_1} = 2$
Thus $$W(t) = int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau $$ $$ = int_{t-1}^{2} (2- tau) dtau$$ $$ = frac{(t-3)^2}{2}, 2lt t lt 3$$
and finally $W(t) = 0, tgt 3$
Thus the $W(t)$ is defined by
$W(t) = 0 , tlt 0$
$W(t) = frac{t^2}{2}, 0lt t lt 1$
$W(t) = -t^2+3t-frac{3}{2}, 1lt t lt 2$
$W(t) = frac{(t-3)^2}{2}, 2lt t lt 3$
$W(t) = 0 , tgt 3$
$endgroup$
add a comment |
$begingroup$
Convolution of two distributions.
$t_{x_0} = 0$
$t_{x_1} = 1$
$t_{h_0} = 0$
$t_{h_1} = 1$
Thus $$f_Y(t) = 0, t le t_{x_0}+t_{h_0} ,$$
$$f_Y(t) = int_{max(t_{h_0}, t-t_{x_1})}^{min(t_{h_1}, t-t_{x_0})} f_X(tau)f_H(t-tau)dtau, text{ } t_{x_0}+t_{h_0} le t le t_{x_1}+t_{h_1},$$
$$f_Y(t) = 0, t ge t_{x_1}+t_{h_1} ,$$
THese translate to the following solution
First convolve two uniform distributions
$X(t) ~ U(0,1)$ and $H(t) ~ U(0,1)$
$$Y(t) = x(t).h(t) = int_{-infty}^{infty} x(tau)h(t-tau)dtau$$
The above convolution reduces to
$y(t) = 0, tlt 0$
$y(t) = int_{max(0,t-1)}^{min(1,t)} dtau , 0lt t lt 2$,
$y(t) = 0 , t gt 2$
The middle one will have to split into two intervals, namely $0lt t lt 1$ and $1lt t lt 2$
$y(t) = 0, tlt 0$
$y(t) = int_{0}^{t} dtau =t, 0lt tlt 1$,
$y(t) = int_{t-1}^{1} dtau = 2-t, 1lt tlt 2$,
$y(t) = 0 , t gt 2$
Now $W(t) = Y(t). S(t)$ where $S(t) ~U(0,1)$
For $0lt tlt 1$, the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 0$
$t_{y_1} = 1$
$$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau = int_{0}^{t}tau dtau = frac{t^2}{2}, 0lt tlt 1$$,
For $1lt tlt 2$, $S(t)$ convolves with $Y(t)$ on two intervals namely $(0,1)$ and $(1,2)$. For the interval $(0,1)$ the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 0$
$t_{y_1} = 1$
and for the interval $(1,2)$ the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 1$
$t_{y_1} = 2$
Thus $$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau + int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau$$ $$ = int_{t-1}^{1}tau dtau + int_{1}^{t}(2-tau) dtau$$ $$ = -frac{1}{2}(2t^2-6t+3), 1lt tlt 2$$,
For $2lt tlt 3$, $S(t)$ convolves with $Y(t)$ on $(1,2)$. For the interval $(1,2)$ the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 1$
$t_{y_1} = 2$
Thus $$W(t) = int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau $$ $$ = int_{t-1}^{2} (2- tau) dtau$$ $$ = frac{(t-3)^2}{2}, 2lt t lt 3$$
and finally $W(t) = 0, tgt 3$
Thus the $W(t)$ is defined by
$W(t) = 0 , tlt 0$
$W(t) = frac{t^2}{2}, 0lt t lt 1$
$W(t) = -t^2+3t-frac{3}{2}, 1lt t lt 2$
$W(t) = frac{(t-3)^2}{2}, 2lt t lt 3$
$W(t) = 0 , tgt 3$
$endgroup$
add a comment |
$begingroup$
Convolution of two distributions.
$t_{x_0} = 0$
$t_{x_1} = 1$
$t_{h_0} = 0$
$t_{h_1} = 1$
Thus $$f_Y(t) = 0, t le t_{x_0}+t_{h_0} ,$$
$$f_Y(t) = int_{max(t_{h_0}, t-t_{x_1})}^{min(t_{h_1}, t-t_{x_0})} f_X(tau)f_H(t-tau)dtau, text{ } t_{x_0}+t_{h_0} le t le t_{x_1}+t_{h_1},$$
$$f_Y(t) = 0, t ge t_{x_1}+t_{h_1} ,$$
THese translate to the following solution
First convolve two uniform distributions
$X(t) ~ U(0,1)$ and $H(t) ~ U(0,1)$
$$Y(t) = x(t).h(t) = int_{-infty}^{infty} x(tau)h(t-tau)dtau$$
The above convolution reduces to
$y(t) = 0, tlt 0$
$y(t) = int_{max(0,t-1)}^{min(1,t)} dtau , 0lt t lt 2$,
$y(t) = 0 , t gt 2$
The middle one will have to split into two intervals, namely $0lt t lt 1$ and $1lt t lt 2$
$y(t) = 0, tlt 0$
$y(t) = int_{0}^{t} dtau =t, 0lt tlt 1$,
$y(t) = int_{t-1}^{1} dtau = 2-t, 1lt tlt 2$,
$y(t) = 0 , t gt 2$
Now $W(t) = Y(t). S(t)$ where $S(t) ~U(0,1)$
For $0lt tlt 1$, the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 0$
$t_{y_1} = 1$
$$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau = int_{0}^{t}tau dtau = frac{t^2}{2}, 0lt tlt 1$$,
For $1lt tlt 2$, $S(t)$ convolves with $Y(t)$ on two intervals namely $(0,1)$ and $(1,2)$. For the interval $(0,1)$ the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 0$
$t_{y_1} = 1$
and for the interval $(1,2)$ the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 1$
$t_{y_1} = 2$
Thus $$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau + int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau$$ $$ = int_{t-1}^{1}tau dtau + int_{1}^{t}(2-tau) dtau$$ $$ = -frac{1}{2}(2t^2-6t+3), 1lt tlt 2$$,
For $2lt tlt 3$, $S(t)$ convolves with $Y(t)$ on $(1,2)$. For the interval $(1,2)$ the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 1$
$t_{y_1} = 2$
Thus $$W(t) = int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau $$ $$ = int_{t-1}^{2} (2- tau) dtau$$ $$ = frac{(t-3)^2}{2}, 2lt t lt 3$$
and finally $W(t) = 0, tgt 3$
Thus the $W(t)$ is defined by
$W(t) = 0 , tlt 0$
$W(t) = frac{t^2}{2}, 0lt t lt 1$
$W(t) = -t^2+3t-frac{3}{2}, 1lt t lt 2$
$W(t) = frac{(t-3)^2}{2}, 2lt t lt 3$
$W(t) = 0 , tgt 3$
$endgroup$
Convolution of two distributions.
$t_{x_0} = 0$
$t_{x_1} = 1$
$t_{h_0} = 0$
$t_{h_1} = 1$
Thus $$f_Y(t) = 0, t le t_{x_0}+t_{h_0} ,$$
$$f_Y(t) = int_{max(t_{h_0}, t-t_{x_1})}^{min(t_{h_1}, t-t_{x_0})} f_X(tau)f_H(t-tau)dtau, text{ } t_{x_0}+t_{h_0} le t le t_{x_1}+t_{h_1},$$
$$f_Y(t) = 0, t ge t_{x_1}+t_{h_1} ,$$
THese translate to the following solution
First convolve two uniform distributions
$X(t) ~ U(0,1)$ and $H(t) ~ U(0,1)$
$$Y(t) = x(t).h(t) = int_{-infty}^{infty} x(tau)h(t-tau)dtau$$
The above convolution reduces to
$y(t) = 0, tlt 0$
$y(t) = int_{max(0,t-1)}^{min(1,t)} dtau , 0lt t lt 2$,
$y(t) = 0 , t gt 2$
The middle one will have to split into two intervals, namely $0lt t lt 1$ and $1lt t lt 2$
$y(t) = 0, tlt 0$
$y(t) = int_{0}^{t} dtau =t, 0lt tlt 1$,
$y(t) = int_{t-1}^{1} dtau = 2-t, 1lt tlt 2$,
$y(t) = 0 , t gt 2$
Now $W(t) = Y(t). S(t)$ where $S(t) ~U(0,1)$
For $0lt tlt 1$, the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 0$
$t_{y_1} = 1$
$$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau = int_{0}^{t}tau dtau = frac{t^2}{2}, 0lt tlt 1$$,
For $1lt tlt 2$, $S(t)$ convolves with $Y(t)$ on two intervals namely $(0,1)$ and $(1,2)$. For the interval $(0,1)$ the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 0$
$t_{y_1} = 1$
and for the interval $(1,2)$ the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 1$
$t_{y_1} = 2$
Thus $$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau + int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau$$ $$ = int_{t-1}^{1}tau dtau + int_{1}^{t}(2-tau) dtau$$ $$ = -frac{1}{2}(2t^2-6t+3), 1lt tlt 2$$,
For $2lt tlt 3$, $S(t)$ convolves with $Y(t)$ on $(1,2)$. For the interval $(1,2)$ the bounds are
$t_{s_0} = 0$
$t_{s_1} = 1$
$t_{y_0} = 1$
$t_{y_1} = 2$
Thus $$W(t) = int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau $$ $$ = int_{t-1}^{2} (2- tau) dtau$$ $$ = frac{(t-3)^2}{2}, 2lt t lt 3$$
and finally $W(t) = 0, tgt 3$
Thus the $W(t)$ is defined by
$W(t) = 0 , tlt 0$
$W(t) = frac{t^2}{2}, 0lt t lt 1$
$W(t) = -t^2+3t-frac{3}{2}, 1lt t lt 2$
$W(t) = frac{(t-3)^2}{2}, 2lt t lt 3$
$W(t) = 0 , tgt 3$
edited Dec 11 '18 at 10:24
answered Dec 11 '18 at 5:04
Satish RamanathanSatish Ramanathan
9,86531323
9,86531323
add a comment |
add a comment |
$begingroup$
One way is (I used $Z$ instead of $xi$)$$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{min(z,,1)}int_{z_2=0}^{min(z-z_3,,1)}int_{z_1=0}^{min(z-z_2-z_3,,1)}dz_1,dz_2,dz_3$$
$endgroup$
$begingroup$
How to integrate this?
$endgroup$
– Atstovas
Dec 10 '18 at 9:00
$begingroup$
I guess you need to find the possible cases. The simplest one is when $z < 1$. In this case, the upper limits are $z, ,z-z_3,,z-z_2-z_3$. For $zgeq 1$ there are more cases.
$endgroup$
– BlackMath
Dec 10 '18 at 9:24
$begingroup$
A similar questions is found here math.stackexchange.com/questions/2631501/…
$endgroup$
– BlackMath
Dec 10 '18 at 9:32
$begingroup$
can you show your solution when $z<1$?
$endgroup$
– Atstovas
Dec 11 '18 at 17:40
$begingroup$
It will be $$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{z}int_{z_2=0}^{z-z_3}int_{z_1=0}^{z-z_2-z_3}dz_1,dz_2,dz_3$$ Can you solve this? I suppose it's straightforward. Start from the most inner integral.
$endgroup$
– BlackMath
Dec 11 '18 at 23:52
|
show 2 more comments
$begingroup$
One way is (I used $Z$ instead of $xi$)$$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{min(z,,1)}int_{z_2=0}^{min(z-z_3,,1)}int_{z_1=0}^{min(z-z_2-z_3,,1)}dz_1,dz_2,dz_3$$
$endgroup$
$begingroup$
How to integrate this?
$endgroup$
– Atstovas
Dec 10 '18 at 9:00
$begingroup$
I guess you need to find the possible cases. The simplest one is when $z < 1$. In this case, the upper limits are $z, ,z-z_3,,z-z_2-z_3$. For $zgeq 1$ there are more cases.
$endgroup$
– BlackMath
Dec 10 '18 at 9:24
$begingroup$
A similar questions is found here math.stackexchange.com/questions/2631501/…
$endgroup$
– BlackMath
Dec 10 '18 at 9:32
$begingroup$
can you show your solution when $z<1$?
$endgroup$
– Atstovas
Dec 11 '18 at 17:40
$begingroup$
It will be $$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{z}int_{z_2=0}^{z-z_3}int_{z_1=0}^{z-z_2-z_3}dz_1,dz_2,dz_3$$ Can you solve this? I suppose it's straightforward. Start from the most inner integral.
$endgroup$
– BlackMath
Dec 11 '18 at 23:52
|
show 2 more comments
$begingroup$
One way is (I used $Z$ instead of $xi$)$$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{min(z,,1)}int_{z_2=0}^{min(z-z_3,,1)}int_{z_1=0}^{min(z-z_2-z_3,,1)}dz_1,dz_2,dz_3$$
$endgroup$
One way is (I used $Z$ instead of $xi$)$$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{min(z,,1)}int_{z_2=0}^{min(z-z_3,,1)}int_{z_1=0}^{min(z-z_2-z_3,,1)}dz_1,dz_2,dz_3$$
answered Dec 10 '18 at 7:10
BlackMathBlackMath
30518
30518
$begingroup$
How to integrate this?
$endgroup$
– Atstovas
Dec 10 '18 at 9:00
$begingroup$
I guess you need to find the possible cases. The simplest one is when $z < 1$. In this case, the upper limits are $z, ,z-z_3,,z-z_2-z_3$. For $zgeq 1$ there are more cases.
$endgroup$
– BlackMath
Dec 10 '18 at 9:24
$begingroup$
A similar questions is found here math.stackexchange.com/questions/2631501/…
$endgroup$
– BlackMath
Dec 10 '18 at 9:32
$begingroup$
can you show your solution when $z<1$?
$endgroup$
– Atstovas
Dec 11 '18 at 17:40
$begingroup$
It will be $$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{z}int_{z_2=0}^{z-z_3}int_{z_1=0}^{z-z_2-z_3}dz_1,dz_2,dz_3$$ Can you solve this? I suppose it's straightforward. Start from the most inner integral.
$endgroup$
– BlackMath
Dec 11 '18 at 23:52
|
show 2 more comments
$begingroup$
How to integrate this?
$endgroup$
– Atstovas
Dec 10 '18 at 9:00
$begingroup$
I guess you need to find the possible cases. The simplest one is when $z < 1$. In this case, the upper limits are $z, ,z-z_3,,z-z_2-z_3$. For $zgeq 1$ there are more cases.
$endgroup$
– BlackMath
Dec 10 '18 at 9:24
$begingroup$
A similar questions is found here math.stackexchange.com/questions/2631501/…
$endgroup$
– BlackMath
Dec 10 '18 at 9:32
$begingroup$
can you show your solution when $z<1$?
$endgroup$
– Atstovas
Dec 11 '18 at 17:40
$begingroup$
It will be $$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{z}int_{z_2=0}^{z-z_3}int_{z_1=0}^{z-z_2-z_3}dz_1,dz_2,dz_3$$ Can you solve this? I suppose it's straightforward. Start from the most inner integral.
$endgroup$
– BlackMath
Dec 11 '18 at 23:52
$begingroup$
How to integrate this?
$endgroup$
– Atstovas
Dec 10 '18 at 9:00
$begingroup$
How to integrate this?
$endgroup$
– Atstovas
Dec 10 '18 at 9:00
$begingroup$
I guess you need to find the possible cases. The simplest one is when $z < 1$. In this case, the upper limits are $z, ,z-z_3,,z-z_2-z_3$. For $zgeq 1$ there are more cases.
$endgroup$
– BlackMath
Dec 10 '18 at 9:24
$begingroup$
I guess you need to find the possible cases. The simplest one is when $z < 1$. In this case, the upper limits are $z, ,z-z_3,,z-z_2-z_3$. For $zgeq 1$ there are more cases.
$endgroup$
– BlackMath
Dec 10 '18 at 9:24
$begingroup$
A similar questions is found here math.stackexchange.com/questions/2631501/…
$endgroup$
– BlackMath
Dec 10 '18 at 9:32
$begingroup$
A similar questions is found here math.stackexchange.com/questions/2631501/…
$endgroup$
– BlackMath
Dec 10 '18 at 9:32
$begingroup$
can you show your solution when $z<1$?
$endgroup$
– Atstovas
Dec 11 '18 at 17:40
$begingroup$
can you show your solution when $z<1$?
$endgroup$
– Atstovas
Dec 11 '18 at 17:40
$begingroup$
It will be $$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{z}int_{z_2=0}^{z-z_3}int_{z_1=0}^{z-z_2-z_3}dz_1,dz_2,dz_3$$ Can you solve this? I suppose it's straightforward. Start from the most inner integral.
$endgroup$
– BlackMath
Dec 11 '18 at 23:52
$begingroup$
It will be $$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{z}int_{z_2=0}^{z-z_3}int_{z_1=0}^{z-z_2-z_3}dz_1,dz_2,dz_3$$ Can you solve this? I suppose it's straightforward. Start from the most inner integral.
$endgroup$
– BlackMath
Dec 11 '18 at 23:52
|
show 2 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033555%2ffinding-a-distribution-function-of-random-variable-sum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown