Complex integration lemma: shorter proof?
up vote
4
down vote
favorite
The black line is the branch cut.
Lemma
$$lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt$$ where $arg(z-s)in[theta,theta+2pi)$, $f$ being holomorphic on the path of integration.
Many advanced users on this site use this lemma without stating, letting alone proving it. I wrote a proof here, but it is quite long.
Is there a shorter proof of this lemma?
complex-analysis complex-integration
add a comment |
up vote
4
down vote
favorite
The black line is the branch cut.
Lemma
$$lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt$$ where $arg(z-s)in[theta,theta+2pi)$, $f$ being holomorphic on the path of integration.
Many advanced users on this site use this lemma without stating, letting alone proving it. I wrote a proof here, but it is quite long.
Is there a shorter proof of this lemma?
complex-analysis complex-integration
add a comment |
up vote
4
down vote
favorite
up vote
4
down vote
favorite
The black line is the branch cut.
Lemma
$$lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt$$ where $arg(z-s)in[theta,theta+2pi)$, $f$ being holomorphic on the path of integration.
Many advanced users on this site use this lemma without stating, letting alone proving it. I wrote a proof here, but it is quite long.
Is there a shorter proof of this lemma?
complex-analysis complex-integration
The black line is the branch cut.
Lemma
$$lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt$$ where $arg(z-s)in[theta,theta+2pi)$, $f$ being holomorphic on the path of integration.
Many advanced users on this site use this lemma without stating, letting alone proving it. I wrote a proof here, but it is quite long.
Is there a shorter proof of this lemma?
complex-analysis complex-integration
complex-analysis complex-integration
asked Nov 19 at 0:27
Szeto
6,2792726
6,2792726
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
I just found a short proof using integration by parts:
Let $hat k=ifrac{s}{|s|}$.
Let $P=pe^{itheta}, Q=qe^{itheta}$.
Let $P^{pm}=Ppm Deltahat k,Q^{pm}=Qpm Deltahat k$.
Let $F$ be the local antiderivative of $f$. (A local antiderivative exists due to local continuity.)
Then,
$$
begin{align}
&~~~~~lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-} -lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)frac{F(z)}{z-s}dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-}+0 \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+}^{P^-}
+lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{P^+}^{P^-}
+F(Q)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)(2pi i)+F(Q)(-2pi i) \
&=-2pi ibigg(F(Q)-F(P)bigg) \
&=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt
end{align}
$$
Q.E.D.
Essentially the proof is only 9 lines long.
1
You may accept your own answer(?)
– Tianlalu
Nov 30 at 7:36
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
I just found a short proof using integration by parts:
Let $hat k=ifrac{s}{|s|}$.
Let $P=pe^{itheta}, Q=qe^{itheta}$.
Let $P^{pm}=Ppm Deltahat k,Q^{pm}=Qpm Deltahat k$.
Let $F$ be the local antiderivative of $f$. (A local antiderivative exists due to local continuity.)
Then,
$$
begin{align}
&~~~~~lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-} -lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)frac{F(z)}{z-s}dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-}+0 \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+}^{P^-}
+lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{P^+}^{P^-}
+F(Q)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)(2pi i)+F(Q)(-2pi i) \
&=-2pi ibigg(F(Q)-F(P)bigg) \
&=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt
end{align}
$$
Q.E.D.
Essentially the proof is only 9 lines long.
1
You may accept your own answer(?)
– Tianlalu
Nov 30 at 7:36
add a comment |
up vote
1
down vote
accepted
I just found a short proof using integration by parts:
Let $hat k=ifrac{s}{|s|}$.
Let $P=pe^{itheta}, Q=qe^{itheta}$.
Let $P^{pm}=Ppm Deltahat k,Q^{pm}=Qpm Deltahat k$.
Let $F$ be the local antiderivative of $f$. (A local antiderivative exists due to local continuity.)
Then,
$$
begin{align}
&~~~~~lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-} -lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)frac{F(z)}{z-s}dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-}+0 \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+}^{P^-}
+lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{P^+}^{P^-}
+F(Q)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)(2pi i)+F(Q)(-2pi i) \
&=-2pi ibigg(F(Q)-F(P)bigg) \
&=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt
end{align}
$$
Q.E.D.
Essentially the proof is only 9 lines long.
1
You may accept your own answer(?)
– Tianlalu
Nov 30 at 7:36
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
I just found a short proof using integration by parts:
Let $hat k=ifrac{s}{|s|}$.
Let $P=pe^{itheta}, Q=qe^{itheta}$.
Let $P^{pm}=Ppm Deltahat k,Q^{pm}=Qpm Deltahat k$.
Let $F$ be the local antiderivative of $f$. (A local antiderivative exists due to local continuity.)
Then,
$$
begin{align}
&~~~~~lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-} -lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)frac{F(z)}{z-s}dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-}+0 \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+}^{P^-}
+lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{P^+}^{P^-}
+F(Q)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)(2pi i)+F(Q)(-2pi i) \
&=-2pi ibigg(F(Q)-F(P)bigg) \
&=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt
end{align}
$$
Q.E.D.
Essentially the proof is only 9 lines long.
I just found a short proof using integration by parts:
Let $hat k=ifrac{s}{|s|}$.
Let $P=pe^{itheta}, Q=qe^{itheta}$.
Let $P^{pm}=Ppm Deltahat k,Q^{pm}=Qpm Deltahat k$.
Let $F$ be the local antiderivative of $f$. (A local antiderivative exists due to local continuity.)
Then,
$$
begin{align}
&~~~~~lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-} -lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)frac{F(z)}{z-s}dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-}+0 \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+}^{P^-}
+lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{P^+}^{P^-}
+F(Q)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)(2pi i)+F(Q)(-2pi i) \
&=-2pi ibigg(F(Q)-F(P)bigg) \
&=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt
end{align}
$$
Q.E.D.
Essentially the proof is only 9 lines long.
edited Nov 22 at 5:30
answered Nov 20 at 10:17
Szeto
6,2792726
6,2792726
1
You may accept your own answer(?)
– Tianlalu
Nov 30 at 7:36
add a comment |
1
You may accept your own answer(?)
– Tianlalu
Nov 30 at 7:36
1
1
You may accept your own answer(?)
– Tianlalu
Nov 30 at 7:36
You may accept your own answer(?)
– Tianlalu
Nov 30 at 7:36
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004332%2fcomplex-integration-lemma-shorter-proof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown