Calculate the probability that the sample average of the second sample population exceeds the sample mean of...











up vote
0
down vote

favorite












A normal population has mean 3 and variance 4. A second normal population has mean.
5 and variance 6. Random samples are taken from both size 40 and 36 stocks.
respectively. Calculate the probability that the sample average of the second sample
population exceeds the sample mean of the first sample by 3 units or more.
population.



My attempt:



I think i need find $P(bar{x}leq 3bar{y})$



I know $bar{x}-bar{y}sim N(u_x+u_y,frac{sigma_x^2}{n_x-1}+frac{sigma_y^2}{n_y-1})$ but here i'm stuck. can someone help me?










share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    A normal population has mean 3 and variance 4. A second normal population has mean.
    5 and variance 6. Random samples are taken from both size 40 and 36 stocks.
    respectively. Calculate the probability that the sample average of the second sample
    population exceeds the sample mean of the first sample by 3 units or more.
    population.



    My attempt:



    I think i need find $P(bar{x}leq 3bar{y})$



    I know $bar{x}-bar{y}sim N(u_x+u_y,frac{sigma_x^2}{n_x-1}+frac{sigma_y^2}{n_y-1})$ but here i'm stuck. can someone help me?










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      A normal population has mean 3 and variance 4. A second normal population has mean.
      5 and variance 6. Random samples are taken from both size 40 and 36 stocks.
      respectively. Calculate the probability that the sample average of the second sample
      population exceeds the sample mean of the first sample by 3 units or more.
      population.



      My attempt:



      I think i need find $P(bar{x}leq 3bar{y})$



      I know $bar{x}-bar{y}sim N(u_x+u_y,frac{sigma_x^2}{n_x-1}+frac{sigma_y^2}{n_y-1})$ but here i'm stuck. can someone help me?










      share|cite|improve this question













      A normal population has mean 3 and variance 4. A second normal population has mean.
      5 and variance 6. Random samples are taken from both size 40 and 36 stocks.
      respectively. Calculate the probability that the sample average of the second sample
      population exceeds the sample mean of the first sample by 3 units or more.
      population.



      My attempt:



      I think i need find $P(bar{x}leq 3bar{y})$



      I know $bar{x}-bar{y}sim N(u_x+u_y,frac{sigma_x^2}{n_x-1}+frac{sigma_y^2}{n_y-1})$ but here i'm stuck. can someone help me?







      probability






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 19 at 0:49









      Bvss12

      1,724617




      1,724617






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          You need to find $P(overline{y}geqoverline{x}+3)$, i.e. $P(overline{y}-overline{x}geq 3)$. We have $mathbb{E}(overline{Y}-overline{X})=mathbb{E}(overline{Y})-mathbb{E}(overline{X})=5-3=2$. Assuming independence, we also have $text{Var}(overline{Y}-overline{X})=text{Var}(overline{Y})+text{Var}(overline{X})=6/36+4/40=4/15$. Plug "normalcdf(3,1E99,2,$sqrt{4/15}$)" into your calculator to get the answer.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004356%2fcalculate-the-probability-that-the-sample-average-of-the-second-sample-populatio%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote



            accepted










            You need to find $P(overline{y}geqoverline{x}+3)$, i.e. $P(overline{y}-overline{x}geq 3)$. We have $mathbb{E}(overline{Y}-overline{X})=mathbb{E}(overline{Y})-mathbb{E}(overline{X})=5-3=2$. Assuming independence, we also have $text{Var}(overline{Y}-overline{X})=text{Var}(overline{Y})+text{Var}(overline{X})=6/36+4/40=4/15$. Plug "normalcdf(3,1E99,2,$sqrt{4/15}$)" into your calculator to get the answer.






            share|cite|improve this answer

























              up vote
              1
              down vote



              accepted










              You need to find $P(overline{y}geqoverline{x}+3)$, i.e. $P(overline{y}-overline{x}geq 3)$. We have $mathbb{E}(overline{Y}-overline{X})=mathbb{E}(overline{Y})-mathbb{E}(overline{X})=5-3=2$. Assuming independence, we also have $text{Var}(overline{Y}-overline{X})=text{Var}(overline{Y})+text{Var}(overline{X})=6/36+4/40=4/15$. Plug "normalcdf(3,1E99,2,$sqrt{4/15}$)" into your calculator to get the answer.






              share|cite|improve this answer























                up vote
                1
                down vote



                accepted







                up vote
                1
                down vote



                accepted






                You need to find $P(overline{y}geqoverline{x}+3)$, i.e. $P(overline{y}-overline{x}geq 3)$. We have $mathbb{E}(overline{Y}-overline{X})=mathbb{E}(overline{Y})-mathbb{E}(overline{X})=5-3=2$. Assuming independence, we also have $text{Var}(overline{Y}-overline{X})=text{Var}(overline{Y})+text{Var}(overline{X})=6/36+4/40=4/15$. Plug "normalcdf(3,1E99,2,$sqrt{4/15}$)" into your calculator to get the answer.






                share|cite|improve this answer












                You need to find $P(overline{y}geqoverline{x}+3)$, i.e. $P(overline{y}-overline{x}geq 3)$. We have $mathbb{E}(overline{Y}-overline{X})=mathbb{E}(overline{Y})-mathbb{E}(overline{X})=5-3=2$. Assuming independence, we also have $text{Var}(overline{Y}-overline{X})=text{Var}(overline{Y})+text{Var}(overline{X})=6/36+4/40=4/15$. Plug "normalcdf(3,1E99,2,$sqrt{4/15}$)" into your calculator to get the answer.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 19 at 1:03









                Ben W

                1,234510




                1,234510






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004356%2fcalculate-the-probability-that-the-sample-average-of-the-second-sample-populatio%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Aardman Animations

                    Are they similar matrix

                    “minimization” problem in Euclidean space related to orthonormal basis